热电装置及其制造方法转让专利

申请号 : CN200610110939.9

文献号 : CN100585896C

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 十河敬宽馆山和树花田博吉斋藤康人荒川雅之近藤成仁常冈治岩抚直和

申请人 : 株式会社东芝

摘要 :

提供了一种在施加热循环之后保持气密封的同时能够提高发电性能并能够通过减少物品的数量实现结构的简化以及装置生产率和可靠性的提高的热电装置以及这种热电装置的制造方法。一种热电装置,包括金属基板(2)、装配在金属基板(2)表面中央部分上的热电元件(3)、用于遮盖热电元件(3)的上表面和侧面的金属盖(4)以及设置到金属基板(2)表面的外围部分以气密封金属基板(2)和盖(4)之间的空间的接合金属构件(5)。

权利要求 :

1.一种热电装置,包括:

封闭容器,将至少包含具有第一主要表面的金属构件和具有第二主要表面 的金属构件的多个金属构件借助各自的金属部分的焊接来互相接合,从而构成 所述第一主要表面和所述第二主要表面相对配置的借助所述金属构件的金属 部分进行气密封的内部空间;

形成在所述第一主要表面上的绝缘层;

设置在所述绝缘层表面上的布线层;

一端固定到所述布线层以垂直竖立并被电连接的多个热电元件;

排列在所述热电元件的另一端上以电连接所述多个热电元件的金属细丝 网;以及设置在所述金属细丝网和所述第二主要表面之间的绝缘构件。

2.如权利要求1所述的热电装置,其特征在于,所述金属细丝网由金 属箔包裹,并经由所述金属箔电连接所述多个热电元件。

3.如权利要求1或2所述的热电装置,其特征在于,在所述金属构件 中至少放置在热电元件另一端侧的金属构件的材料由科瓦铁镍钴合金或者 不锈钢或这两种材料的组合物构成。

4.如权利要求1或2所述的热电装置,其特征在于,用于连接多个设 置为构成封闭容器的封闭结构的金属构件的接合部分由所述金属构件的材 料与镍的合金构成。

5.如权利要求1或2所述的热电装置,其特征在于,绝缘构件为形成 为紧密接触金属构件内表面的喷镀层。

6.如权利要求5所述的热电装置,其特征在于,所述喷镀层由白色氧 化铝、灰色氧化铝、镁氧尖晶石、氧化铬或锆石中的任一种构成。

7.如权利要求1或2所述的热电装置,其特征在于,所述具有第一主 表面的金属构件包括:设置成通过所述具有第一主要表面的金属构件的通孔布线;以及

经由所述通孔布线将所述热电元件中产生的电动势提取到所述热电元 件的外部的外部电极。

8.如权利要求7所述的热电装置,其特征在于,与所述外部电极和所 述通孔布线之间的连接表面相对的所述外部电极的下表面被设定为高度等 于具有所述第一主要表面的金属构件的背表面的位置。

9.如权利要求7所述的热电装置,其特征在于,与所述外部电极和所 述通孔布线之间的连接表面相对的所述外部电极的下表面被设置于比具有 所述第一主要表面的金属构件的背表面更靠近所述通孔布线的位置。

10.如权利要求1或2所述的热电装置,其特征在于,封闭容器在连接 第一主要表面和第二主要表面的区域具有不锈钢构成的导热热阻成形部分。

11.如权利要求1或2所述的热电装置,其特征在于,封闭容器在连接 第一主要表面和第二主要表面的区域具有不锈钢构成的导热热阻成形部分, 所述导热热阻成形部分是以从所述第一主要表面向所述第二主要表面出现多 个弯曲部分的形态成形的形状。

12.如权利要求1或2所述的热电装置,其特征在于,封闭容器在连接 第一主要表面和第二主要表面的区域具有不锈钢构成的导热热阻成形部分, 所述导热热阻成形部分是通过从所述第一主要表面到所述第二主要表面交替 接合构件使得两边之间的内角是锐角的脊背部分和两边之间的外角是锐角 的底部部分交替出现而形成的形状。

13.如权利要求1或2所述的热电装置,其特征在于,封闭容器在连接 第一主要表面和第二主要表面的区域具有不锈钢构成的导热热阻成形部分, 在包含所述第一主要表面和所述第二主要表面的任意截面内,所述第一主要 表面和所述第二主要表面被其他金属构件焊接而连结,在所述其他金属构件的 截面间形成有接合部分。

14.一种制造热电装置的方法,包括:

经由绝缘层在构成金属封闭容器的第一主要表面上形成布线层的步骤;

经由接合材料将热电元件接合到所述布线层的步骤;

将金属细丝网装配在所述热电元件上的步骤;

在所述金属细丝网上装配绝缘构件以在所述金属细丝网和构成金属封闭 容器的第二主要表面之间保持所述绝缘构件,并借助焊接封闭具有所述第一主 要表面的金属构件和具有所述第二主要表面的金属构件来构成所述金属封闭 容器,对形成在所述金属封闭容器中的内部空间进行气密封的步骤。

15.一种制造热电装置的方法,包括:

将热电元件装配在经由绝缘层形成于金属基板上的布线图形上的步骤;

将金属框体安装到所述金属基板表面中包围所述布线图形的外围部分的 步骤;

将金属细丝网安装在通过喷镀绝缘材料形成于金属盖的内表面上的喷镀 层上的步骤;以及使所述金属基板的所述布线图形与所述盖的所述喷镀层相对配置,所述盖 经由所述喷镀层推动所述金属细丝网按压所述热电元件的电极,并通过将所述 盖的外围部分焊接到所述框体上来将所述热电元件气密封在由所述基板、所述 盖和所述框体所包围的空间中的步骤。

16.如权利要求15所述的制造热电装置的方法,其特征在于,所述气 密封步骤是通过将框体的端部焊接到基板上来气密封的步骤。

17.如权利要求15或16所述的制造热电装置的方法,其特征在于, 所述将金属细丝网安装在喷镀层上的步骤是经由涂布在所述喷镀层上的无 机喷镀剂接合所述金属细丝网的步骤。

说明书 :

(1)技术领域

本发明涉及热电装置及其制造方法,更具体地说,涉及用于将热转换成电 或将电转换成热的热电装置及其制造方法。

(2)背景技术

热电装置是利用诸如汤姆逊效应、珀尔贴效应、塞贝克效应等热电效应的 装置。作为已经被大量生产的装置,可列举用于将电转换成热的温度调节单元 等。此外,例如用于从余热产生电能的发电机单元的研发正在进行之中。

为了促使热电装置的发电效率更加接近热电元件本身的发电效率,把热供 给到热电元件的一个端部并从热电元件的另一个端部散热必须被平稳地执行。 因此,在热传导方面性能优良的陶瓷基板被用作构成热电装置的绝缘基板。于 是,配备到热电元件端部的电极由具有低电阻值的材料组成。

同样,在热电装置暴露到200℃的高温时,不仅要求直接暴露于热量中的 构件不会被热量损坏,而且要求热电元件和电连接到该热电元件的电极应当被 气密封。这是因为应当防止这种情况,即热电元件和电极暴露于高温并被氧化 因而导致发电效率降低。如上所述,在热电装置中,陶瓷基板通常被用作绝缘 基板,且陶瓷基板和外壳通过钎焊被气密封。

在热电装置中,为了增加能够输出到外部的电动势的输出,多个热电元件 被排列在基板上以放在具有电极的绝缘基板之间,并被串联地电连接和并联地 热连接。但是,在某些情况下,单独的热电元件高度有变化。在这种场合,可 产生这样的缺点,即从高温侧吸收的热量不能够充分地供给到热电元件等,并 且在某些情况下不能获得所需的发电性能。因此,已经提出了其中弹性导电构 件排列在热电元件与连接基板的一个端面相对的另一个端面上以及设置用于 遮盖导电构件和热电元件的帽型电极以防止它们运动的热电装置(见专利文献 1)。

[专利文献1]专利申请说明书(公开)2005-64457

然而,在专利文献1揭示的发明中,可认为存在这种情况,即热电装置发 电性能的提高变得困难了。更具体地说,在设置帽型电极时,在基板上各自具 有预定高度的绝缘板分别排列在热电元件之间,以防止这些多个电极彼此接触 产生短路。在排列这些绝缘板时,限制了排列在基板上的热电元件的数量,并 降低了基板单位面积的热电元件的比率。因此,不能够增强热电装置的单位输 出量,并降低了发电性能。

同样,由于热电装置在工作期间它被暴露于高温,构成热电装置的各个构 件的热膨胀超过常温条件。此时,由于各个构件的线性膨胀系数的差异以及吸 热侧和散热侧之间的温度差异,各个构件的变形量各自不同。特别是,由于陶 瓷基板和外壳之间线性膨胀系数的差异较大,施加到钎焊部分的负荷增加,产 生断裂,并且热电装置的气密性下降,降低了发电性能。

此外,从热源到热电元件的热阻受到置于热源和热电元件之间的构件类 型、构件厚度以及这些构件之间的机械接触的影响。特别是,由于机械接触的 影响是显著的,必须通过减少物品数量来减少热源和热电元件之间的机械接 触,也必须通过减小热阻来提高发电性能。例如,当用于从热电装置把电动势 输出到外部的外部电极的厚度比基板厚并且然后在热电装置的基板与冷却剂 之间产生间隙时,在它们之间的热阻增加并且导致发电性能下降。

同样,当把陶瓷基板安装到盖并与盖的内表面没有间隙地接触以获得对盖 的电绝缘时,由于加工精度的原因在盖的内表面和陶瓷基板之间产生间隙。因 此,存在于该间隙中的空气层产生到热电元件的传热损耗。在帽型电极和陶瓷 基板之间也会产生这种传热损耗。这些传热损耗导致发电性能的降低。

(3)发明内容

已经做出了本发明以解决上述问题,本发明的目的是提供一种在施加热循 环之后保持气密封的同时能够提高发电性能并能够通过减少物品的数量实现 结构的简化以及装置生产率和可靠性的提高的热电装置以及这种热电装置的 制造方法。

根据本发明的第一方面,提供了一种热电装置,它包括其中由金属构件以 及以一定距离彼此相对的第一主要表面和第二主要表面构成内部空间的封闭 容器;形成在第一主要表面上的绝缘层;设置在绝缘层表面上的布线层;多个 一端固定到布线层以垂直竖立并被电连接的热电元件;排列在热电元件的另一 端上以电连接多个热电元件的金属细丝网;以及设置在金属细丝网和第二主要 表面之间的绝缘构件。

根据本发明的第二方面,提供了一种热电装置,它包括金属基板;装配基 板表面中央部分上的热电元件;接合到基板表面的外围部分以将热电元件包围 在内部的框体;一端电连接到热电元件且另一端在接合框体的基板表面上通向 框体的布线电极;以及排列成经由框体与基板表面相对的盖,使得盖、基板和 框体密封热电元件。

根据本发明的第三方面,提供了一种热电装置,它包括金属基板;装配在 基板表面上的热电元件;排列成经由热电元件与基板表面相对的盖;具有一端 接合到基板的外围部分以包围热电元件的周边且另一端接合到盖的外围部分 的高热阻成形部分的框体。

根据本发明的第四方面,提供了一种制造热电装置的方法,它包括经由绝 缘层在构成金属封闭容器的第一主要表面上形成布线层的步骤;经由接合材料 将热电元件接合到布线层的步骤;将金属细丝网装配在热电元件上的步骤;在 金属细丝网上装配绝缘构件以在金属细丝网和构成金属封闭容器的第二主要 表面之间保持绝缘构件,并通过借助焊接封闭金属封闭容器来气密封形成在金 属封闭容器中的内部空间的步骤。

根据本发明的第五方面,提供了一种制造热电装置的方法,它包括将热电 元件装配在基板上的步骤;将框体安装到基板表面外围部分的步骤;将金属细 丝网安装在通过喷镀绝缘材料形成于盖的内表面上的喷镀层上的步骤;以及排 列盖以使盖的内表面与基板表面相对,使得盖经由喷镀层推动金属细丝网按压 热电元件的其它电极,并通过将盖的外围部分安装到框体将热电元件气密封在 被基板、盖和框体所包围的空间中的步骤。

根据本发明的第六方面,提供了一种制造热电装置的方法,它包括从中央 部分到外围部分在金属基板表面上形成引出布线的步骤;将框体接合到基板表 面的外围部分以跨过引出布线的步骤;使热电元件电连接到构成在引出布线一 个端部的区域中的电极的步骤;以及经由框体将盖安装到基板表面,并将热电 元件密封在由基板、框体和盖所包围的空间中的步骤。

根据本发明,能够提供在施加热循环之后保持气密封的同时能够提高发电 性能而且也能够通过减少物品的数量实现结构的简化以及装置生产率和可靠 性的提高的热电装置以及这种热电装置的制造方法。

(4)附图说明

图1是根据本发明第一实施例的热电装置的截面图;

图2是说明制造根据本发明第一实施例热电装置的方法的说明图;

图3是说明制造根据本发明第一实施例热电装置的方法的说明图;

图4是说明制造根据本发明第一实施例热电装置的方法的说明图;

图5是说明制造根据本发明第一实施例热电装置的方法的说明图;

图6是说明制造根据本发明第一实施例热电装置的方法的说明图;

图7是说明制造根据本发明第一实施例热电装置的方法的说明图;

图8是根据本发明第一实施例第一变化的热电装置的截面图;

图9是根据本发明第一实施例第二变化的热电装置的截面图;

图10A到D是图9中示出的热电装置的主要步骤的截面图;

图11是根据本发明第一实施例第三变化的热电装置的截面图;

图12是根据本发明第一实施例第四变化的热电装置的截面图;

图13A是根据本发明第一实施例第五变化的热电装置的截面图,而图13B 是从沿图13A箭头方向的B-B线看去的换热套的平面图;

图14是根据本发明第一实施例第五变化的热电装置的另一种变化的截面 图;

图15是根据本发明第二实施例的热电装置的截面图;

图16是说明制造根据本发明第二实施例热电装置的方法的说明图;

图17是说明制造根据本发明第二实施例热电装置的方法的说明图;

图18是说明制造根据本发明第二实施例热电装置的方法的说明图;

图19是说明制造根据本发明第二实施例热电装置的方法的说明图;

图20是说明制造根据本发明第二实施例热电装置的方法的说明图;

图21是说明制造根据本发明第二实施例热电装置的方法的说明图;

图22是说明制造根据本发明第二实施例热电装置的方法的说明图;

图23是说明制造根据本发明第二实施例热电装置的方法的说明图;

图24是根据本发明第二实施例第一变化的热电装置的截面图;

图25是根据本发明第二实施例第二变化的热电装置的截面图;

图26是根据本发明第三实施例的热电装置的截面图;

图27(包括27A、27B、27C)是示出根据本发明第四实施例用箔制造金属 细丝网的方法的说明图;

图28(包括28A、28B)是示出根据本发明第四实施例用箔制造金属细丝 网的另一种方法的说明图;

图29是示出根据本发明第五实施例的热电装置的截面图;

图30是说明制造根据本发明第五实施例热电装置的方法的说明图;

图31是图30中示出的热电装置的主要步骤的平面图;

图32是说明制造根据本发明第五实施例热电装置的方法的说明图;

图33是图32中示出的热电装置的主要步骤的平面图;

图34是说明制造根据本发明第五实施例热电装置的方法的说明图;

图35是图34中示出的热电装置的主要步骤的平面图;

图36是说明制造根据本发明第五实施例热电装置的方法的说明图;

图37是说明制造根据本发明第五实施例热电装置的方法的说明图;

图38是说明制造根据本发明第五实施例热电装置的方法的说明图;

图39是说明制造根据本发明第五实施例热电装置的方法的说明图;

图40是在从方向D看图29中示出的热电装置时热电装置的侧视图;

图41是根据本发明第五实施例一种变化的热电装置的截面图;

图42是根据本发明第六实施例的热电装置的截面图;

图43A、B是以放大方式示出根据本发明第六实施例的框体的说明图;

图44是以放大方式示出在本发明第六实施例中盖和框体之间的接合部分 的说明图;

图45是根据本发明第六实施例第一变化的热电装置的截面图;

图46是说明根据本发明第六实施例第一变化的框体的说明图

图47是说明根据本发明第六实施例第二变化的框体的说明图;

图48是本发明第六实施例第二变化的另一种变化的说明图;

图49是本发明第六实施例第二变化的再一种变化的说明图。

(5)具体实施方式

将参照以下附图来详细说明本发明的各个实施例。

(第一实施例)

如图1所示,根据本发明第一实施例的热电装置(封闭的容器)1由 金属制成的金属基板2、放在金属基板2表面(以下称作“第一主要表面α”) 中央部分上的热电元件3、用于遮盖热电元件3的上表面和侧面的盖4以及 在第一主要表面α的外围部分上气密封金属基板2和盖4的金属制成的接合 金属构件5构成。更具体地说,构成容器(电热装置)1的所有构件,即金 属基板2、金属盖4以及接合金属构件5都由金属制成。

绝缘层6设置在第一主要表面α上的中央部分内,而第一导电布线层7 形成在绝缘层6上。作为绝缘层6,较佳地是应当采用例如树脂或含有陶瓷 粉末的树脂。在第一实施例中,铜可被具体地用作金属基板2和第一布线 层7,而包含陶瓷粉末的环氧树脂可被用作绝缘层6。热电元件3例如经由 诸如焊料等的接合材料8被接合到第一布线层7。

作为类似网状导电构件的金属细丝网9排列在热电元件3没有粘结到 第一布线层7的端部以展开在一对热电元件3上面。具体地,通过使直径 为0.6mm的Cu细丝结网并切成预定长度所形成的条可被用作金属细丝网9。

由于金属细丝网9在厚度方向具有弹性,这种金属细丝网9能够吸收 所装配的热电元件3的高度变化。因此,经由金属细丝9可确定热电元件3 和第二布线层11之间的电连接,并且也可忽略等选择/检查热电元件3每 长度的步骤。

绝缘构件10排列在金属细丝网9上。第二布线层11形成在绝缘构件 10的表面(图1中的下表面)上,而金属膜12设置在绝缘构件10的整个 背表面(图1中的上表面)上。金属膜12接触盖4与第一主要表面α相对 的表面(以下称为“第二主要表面β”)。通过将绝缘构件10放在第二布 线层11和金属膜12之间,可增加绝缘构件10的机械强度。同样,由于金 属膜12接触第二主要表面β,可提高吸热效率。

盖4由诸如科瓦铁镍钴合金、不锈钢(较佳地是SUS304)等金属构成, 并且经由接合金属构件5被金属性质地接合到金属基板2。诸如镍(Ni)箔 等的金属箔可被用作接合金属构件5。不像到目前为止的陶瓷基板,金属基 板2和盖4都由金属制成。因此,可减小金属基板2和盖4之间线性膨胀 系数的差异,并且可减小遵循热循环的两个构件之间的接合部分中产生的 应力,同时能够保持气密性。

通过使市场上出售的金属基板形成为热电装置的金属基板的形状,获 得用于第一实施例的布线层。作为普通广泛销售的金属基板,铜(Cu)、 铝(Al)等被用作金属基板2。同样,由图形化铜箔所获得的第一布线层7 通过使用包含填充物的绝缘环氧粘合剂粘贴在金属基板2的第一主要表面 α上。在采用这种商业金属基板时,通过借助经由镍部件的焊接形成合金所 获得的金属性质的接合在把基板接合到诸如科瓦铁镍钴合金、不锈钢等合 金方面是有效的。为此目的,和金属基板的外周边具有相同形状的框状镍 构件被用作接合金属构件5,使得接合金属构件5能够沿着离开其金属基板 2被暴露的金属基板外缘来设置,在与盖4相同的材料可被用作金属基板2 的材料时,则不需要接合金属构件5。

盖4被排列成在其第二主要表面β接触金属膜12并遮盖多个热电元件 3的上表面和侧面,并在金属基板2的外围部分经由接合金属构件5被接合 到金属基板2。由于盖4和金属基板2被接合到一起,绝缘构件10(第二 布线层11)和放在热电元件3上的金属细线网9由盖4和金属基板2保持 并夹在当中,以沿热电元件3的纵向,即响应电动势的产生电流所流经的 方向施加压力。

接触接合金属构件5的盖4的一部分形成为凸缘形状。在整个周边上 面将激光焊接应用于端面部分,盖4的凸缘的端部、连接金属构件5和金 属基板2被叠层于此,以通过在其成分中含镍的合金接合它们。

用这种方式,热电装置1具有被金属基板2和盖4所包围的内部空间, 并且该内部空间用作与外部隔离的封闭容器。封闭容器的内部被设为低压 气氛,使得该封闭容器即使在暴露到高温时也难以变形和损坏。各个热电 元件3被气密封在维持低压气氛的封闭容器中。

作为热电元件3,有p型热电元件3a和n型热电元件3b构成的两种 类型。多个p型热电元件3a和多个n型热电元件3b被交替地串联电连接, 并从吸热侧到散热侧并联地热对准。

在热电元件3中,使在施加热量时在p型热电元件3a和n型热电元件 3b中产生的电流以和热梯度方向相反的方向流动。在p型热电元件3a和n 型热电元件3b由第一布线层7和第二布线层11串联电连接时,增加了电 动势的电压。

作为电串联连接,例如,在金属基板2上,p型热电元件3a和n型热 电元件3b分别沿行方向和列方向交替连接,而在每一行,使一个第一布线 层7分别与一对p型热电元件3a和n型热电元件3b的一端电接触。然后, 使一个第二布线层11与一对相邻p型热电元件3a和n型热电元件3b的另 一端电接触,这一对相邻的p型热电元件3a和n型热电元件3b没有分别 连接到相同的第一布线层7。就是说,位于每一行端部的p型热电元件3a 和n型热电元件3b以这样的方式构成,使得通过第一布线层7或第二布线 层11,在列方向的相邻热电元件彼此电接触。采用这样的配置,从热量转 换而来的电流交替经过p型热电元件3a和n型热电元件3b并从外部电极 输出。

设置成通过金属基板2和绝缘层6的通孔布线13在金属基板2暴露于 外部的部分被连接到金属层14。然后,该金属层14经由焊料15连接到外 部电极16,从而在热电元件3中产生的电动势被取出到外部。

接下来,在下文将参照附图2到7来说明热电装置1的制造方法(装 配方法)的示例。

如图2中所示,第一布线层7形成在其上面的绝缘层6被接合到金属 基板2(第一主要表面α),并也形成了通孔布线13。绝缘层6没有被接合 到第一主要表面α的全部表面,而是将绝缘层6接合到金属基板2的中央部 分,使得没有接合绝缘层6的区域存在于沿着金属基板2的周边的外围部 分,以确保将盖4和金属基板2接合在一起的接合区域。

如图3中所示,在第一布线层7的预定部分,涂布接合材料8。例如, 较佳地是将焊料用作接合材料8。但是,如果可获得与第一实施例类似的优 点,则不会特别限制材料。

然后,如图4中所示,把多个热电元件3a和3b放在涂布了接合材料 8的位置上,以和例如上述排列一致,并使热电元件3a和3b分别接合到第 一布线层7。例如,在把焊料用作接合材料8时,第一布线层7与热电元件 3a和3b在回流炉中被分别共同地接合在一起。

如图5中所示,将金属细线网9放在热电元件3a和3b上,以在它们 上面伸展(电连接它们)。在这个步骤,金属细丝网9没有接合到热电元 件3,而只是放在那上面。

然后,把在其表面和背表面分别预先设置第二布线层11和金属膜12 的绝缘膜10装载到已经放在热电元件3上的金属细线网9的上面。如从图 6所清楚看到的那样,只在第二布线层11接触金属细丝网9的范围内设置 它们。在这个步骤,绝缘构件10没有接合到金属细丝网9,而只是放在金 属细丝网9上面。

然后,如图7中所示,将盖4布置成接触在绝缘构件10上的金属膜 12并遮盖热电元件3的上表面和侧面,并也将盖4的侧部放置在金属基板 2的周围表面部分上,该周围表面部分没有接合上述的绝缘层6。然后,经 由接合金属构件5将盖4和金属基板2接合在一起。在第一实施例中,SUS304 被用作盖4的材料,而Ni被用作接合金属构件5的材料。但是,如果能够 维持气密封,盖4和接合构件5的材料不限于这些材料。

通过用这种方式接合盖4和接合金属构件5,在它们之间产生了电热 元件3放置在其中的内部空间C1。经由以前设置到盖4的密封孔17通过把 来自大气压的压力减少例如0.07MPa,把内部空间C1设定成低压气氛。同 样,通过填充氮气、氩气等,使内部空间C1变成非氧化气氛,然后用激光 熔合密封孔17,以气密封内部空间。因此,可获得具有气密封结构的热电 装置1。然后,把由热电装置1产生的电输出到外部的外部电极16被安装 到通孔布线13的部分。配备给热电装置1的通孔布线13不限于一条,可 设置多条通孔布线。

用这种方式,由于金属盖4经由接合金属构件5被接合到金属基板2, 可减少构成热电装置外壳的各个构件之间热膨胀系数的差异。因此,即使 在热电装置1暴露到高温时,在金属基板2和盖4之间的接合部分也不会 损坏,并且也绝不会丧失气密性。从而,可提高设置在热电装置1内部空 间C1中的热电元件3的发电性能,可实现可靠性杰出的热电装置1,并能 够简单地制造热电装置1。

(第一变化)

接下来,将在下面说明第一实施例的第一变化。在第一实施例和第一 实施例的后续变化中,将相同的标号附加到与第一实施例中所说明的组成 元件相同的组成件,因而相同组成件的重复说明在此将被省略。

第一变化的配置与第一实施例的配置的不同之处在于盖4被分为盖4 的主体和框体4a以及金属基板2被接合到框体4a。就是说,在第一实施例 中盖4经由接合金属构件5接合到金属基板2表面的外围部分,而在第一 变化中框体4a接合到金属基板2背表面的外围部分。

通过使用热电元件3电热装置1从吸收的热量产生电。为了通过产生 更大的输出来提高热电转换效率,必须在第一主要表面α上每单位面积排列 大量的热电元件3。然而,在盖4在第一主要表面α的外围部分处接合到金 属基板2时,需要有把盖4接合到金属基板2的预定接合区域,使得需要 排列热电元件3的第一主要表面α的表面面积减少了。因此,在根据第一变 化的热电装置1中,在提高在第一主要表面α上的热电元件3的包装效率的 同时能够充分保证盖4和金属基板2之间的接合区域。

更具体地说,如图8中所示,用于遮盖热电元件3侧面的部分的框体 4a被构成为围绕金属基板2的背表面的延伸,且框体4a和金属基板2背表 面的外围部分经由接合金属构件5接合在一起。因此,与第一主要表面α 相比较,在金属基板2的背表面上可充分保证与框体4a的接合区域。在该 接合区域(金属基板2背表面的外围部分)中的金属基板2的厚度被设定 为比金属基板2背表面的中央部分薄。因此,可容易地对准接合金属构件5, 且框体4a(接合区域)不从金属基板2背表面的中央部分凸出。

用这种方式,将框体4a接合到金属基板2的背表面。因此,可将第一 主要表面α有效地用作热电元件3的装配区域而不设置接合区域,因而可将 更多数量的热电元件3排列在第一主要表面α上。从而,在维持气密封性的 同时能够更进一步地提高热电装置1的发电效率。

(第二变化)

接下来,将在下面说明第一实施例的第二变化。

在第二变化中,不像第一实施例,如图9中所示,通孔布线13的配置 是不同的。更具体地说,在第二变化中,如图10A中所示,首先预先在金 属基板2中形成通孔13A,以形成通孔布线13。然后,如图10B中所示, 将绝缘材料13B填充在通孔13A中,塞住以前形成在金属基板2中的通孔 13A。然后,在第一主要表面α上接合具有第一布线层7的绝缘层6,并将 绝缘层13C和金属层14(二者都未在图10中示出)接合到金属基板2的背 表面。因此,当从底部看时(见图9),依次形成金属层14、绝缘层13C、 金属基板2、绝缘层6以及布线层7。

在这种情况下,如图10C所示,形成分别通过前述层的通孔13D。例 如,可通过使用钻孔机加工形成通孔13D。通孔13D也可通过冲孔来形成。 如图10D中所示,通孔布线13至少沿通孔13D的内壁形成。例如,通过电 镀形成通孔布线13。然后,经由焊料15把外部电极16接合到金属层14。

由于采用了这样的制造通孔布线13的方法,可气密封热电装置1的内 部空间C1并能够提高电热元件3的发电效率。从而,不仅可实现可靠性杰 出的热电装置1及其制造方法,而且可以简单地制造通孔布线13而不用在 制造通孔布线13的过程中使用特殊的夹具等。

(第三变化)

接下来,将在下面说明第一实施例的第三变化。

如图11所示,不像第一实施例,第三变化在通孔布线23的配置方面 是不同的。首先,在金属基板2中先形成通孔23A,以形成通孔布线23。 该通孔23A被这样形成,使得其在背表面的直径开口得比金属基板2表面 (第一主要表面α)上的直径大。然后,将绝缘材料23B填充在通孔23A中, 以掩埋以前形成在金属基板2中的通孔23A。在这种情况下,填充绝缘材料 23B但不完全掩埋通孔23A,而是当从金属基板2的背表面看时形成凹口。

然后,把具有第一布线层7形成于其上的绝缘层6接合到金属基板2 的表面,并且形成通过除第一布线层7之外各个布线层的通孔23C。例如, 通过使用钻孔机的加工形成通孔23C。同样,可通过冲孔来形成通孔23C。

然后,通孔布线23形成在通孔23C的内壁上,同时形成接触绝缘材料 23B的台阶部分,并形成与金属基板2背表面的共平面。例如,可通过电镀 形成通孔布线23和台阶部分23D。然后,尽管未在图11中示出,外部电极 16经由焊料15被接合。

由于采用了这样的制造通孔布线23的方法,可气密封热电装置1的内 部空间C1并能够提高电热元件3的发电效率。从而,能够实现可靠性杰出 的热电装置1及其制造方法,也能够在设计上自由决定要形成的台阶部分 23D的大小。更具体地说,如图11中A所示的那样,由于可以自由决定在 台阶部分23D和金属基板2之间的距离,即绝缘距离,更能够确保台阶部 分23D和金属基板2之间的绝缘。同样,由于可以使外部电极16和台阶部 分23D之间的接合部分的面积相对于绝缘距离平衡而最大化,所以能够更 加简单地加强外部电极16和台阶部分23D之间的接合。

在第三变化中,通孔23A被开成阶梯状的孔。但是,如果金属基板2 背表面上的孔开得比表面上的孔大,即,若孔被开得从金属基板2的背表 面到表面直径减小,例如,也可开具有任何外形的诸如锥形孔之类的孔。

同样,同第三变化中的台阶部分23D一样,从安装方面最好是,台阶 部分23D构成共平面的表面。但是,并不总是需要台阶部分23D形成为共 平面的表面。但是,较佳地是应考虑不妨碍金属基板2和冷热源之间的接 触。

(第四变化)

接下来,将在下面说明第一实施例的第四变化。

如图12中所示,根据第四变化的热电装置1具有这样的特征使得肋片 2a被设置到金属基板2的背表面。在第四变化中,容易加工的金属被用作 金属基板2,通过对金属基板2的背表面进行切割、蚀刻等可制造这些肋片 2a。

换言之,散热效应高的肋片2a被设置到金属基板2的背表面,起到散 热侧的作用。因此,可提高热电装置1的散热效率,并且也能够更多地提 高热电元件3的发电效率。从而,能够更进一步提高热电装置1的发电效 率。

这里,肋片2a不是通过加工金属基板2的背表面来制造的,而是可将 作为金属基板2的分离体而制造的肋片2a安装在金属基板2的背表面上。

(第五变化)

接下来,将在下面说明第一实施例的第五变化。

如图13A和13B中所示,根据第五变化的热电装置1的特征在于金属 基板2具有换热套功能。图13B是作为平面图的示出沿着图13A中的B-B 线所切开的热交换套2b的视图。

更具体地说,换热套功能是通过提供流动通道2c而构成的,流动通道 2c位于热电装置1的金属基板2的内部,以使介质循环。为了获得均匀的 和高的热交换效率,流动通道2c在除了到外部电极16的连接区域之外的 金属基板2的整个区域被布置成锯齿形。在通过把两片基板粘贴在一起制 造基板2且然后通过加工、蚀刻等在至少一个粘贴的基板中形成流动通道 2c的情况下,能够简单地对金属基板2设置换热套功能。

具有高热交换效果的换热套被提供给金属基板2。因此,可提高热电 装置1的热交换效率,并且也能够提高热电元件3的发电效率。从而,更 加能够提高热电装置1的发电性能。

如同根据上面第四变化的热电装置1,在根据第五变化的热电装置1 中,可将作为金属基板2的分离体而制造的换热套2b安装到金属基板2的 背表面上。同样,如图14所示,也可安装在第四变化中描述的肋片2a以 增加表面面积。

(第二实施例)

接下来,下面将说明第二实施例。在第二实施例和第二实施例的各个 变化中,将相同的标号附加到与第一实施例中所说明的组成元件相同的组 成件,因而相同组成件的重复说明在此将被省略。

如图15中所示,根据本发明第二实施例的热电装置31包括基板32、 在基板32上的热电元件3以及盖34,也包括形成为紧密接触绝缘盖4的内 表面的喷镀层35。

基板32由绝缘基板32a、设置在绝缘基板32上的金属膜32b以及布 线层37构成。这里,基板32的表面指装有热电元件的表面,而其背表面 指金属膜32b设置在其上面的表面。作为绝缘基板32a,例如,在第二实施 例中除了图15中示出的陶瓷板之外,较佳地可采用树脂或包含陶瓷粉末的 树脂。同样,例如,金属膜32b可通过焊接、喷镀等形成在绝缘基板32a 的背表面上。作为金属膜32b,例如,较佳地可采用铜。在绝缘基板32a 的表面上,例如,热电元件3经由诸如焊料等接合材料8被接合到布线层 37

作为热电元件3,有p型热电元件3a和n型热电元件3b构成的两种 类型。多个p型热电元件3a和多个n型热电元件3b被交替地串联电连接, 并从吸热侧到散热侧并联地热对准。

盖34由诸如科瓦铁镍钴合金、不锈钢(较佳地是SUS304)等金属构 成,例如,将喷镀层35设置成紧密接触盖34的内表面。这里,盖34的内 表面指经由热电元件3与基板32的表面相对的表面。在完成热电装置31 时盖34接触外部的表面被假设为外表面。

绝缘陶瓷材料被用作喷镀层35。作为陶瓷材料,可适当选择具有电绝 缘性能、耐磨以及例如与构成盖34的科瓦铁镍钴合金、不锈钢相兼容的白 色氧化铝、灰色氧化铝、镁氧尖晶石、氧化铬、锆石等并然后喷涂。这里, 在盖34的内表面上可将盖34的全部表面设为喷镀层35的喷涂范围。但是, 喷镀层35必须被形成到这样的范围,使得喷镀层35至少覆盖对准热电元 件3的区域。

将盖34排列在遮盖多个热电元件3上表面的位置,并接合到框体39。 当盖34和框体39相互接合时,用盖34、框体39和基板32压紧放在热电 元件3上的金属细丝网9,以沿热电元件3的纵向,即沿由于电动势产生所 引起的电流流动的方向施加压力。

接触盖34的一部分框体39被定形成凸缘形状。框体39的凸缘端部分 重叠于其上的盖34的端面部分在其整个周边上面通过激光焊予以焊接。

将用作网状导电构件的金属细丝网9排列在热电元件3的端部上,它 没有粘结到布线层37,以展开在一对热电元件3上面。

框体39经由在框连接电极40上的粘合剂材料41被接合到绝缘基板 32a,框连接电极40被设置在绝缘基板32a表面的周围部分上。就是说, 框体39围绕热电元件3并连接基板32和盖34。作为粘合剂材料41,例如, 较佳地是采用钎焊填充料金属。

用这种方式,热电装置31具有被基板32、盖34和框体39所围绕的 其内部空间。该内部空间构成与外部气密的箱形结构。该箱形结构的内部 被设定为低压气氛,使得该箱形结构即使在暴露于高温时也难以变形和损 坏。各热电元件3被气密封在维持低压气氛的箱形结构中。

设置成通过绝缘基板32a的通孔布线42在绝缘基板32a向外暴露的部 分经由接合材料(未示出)与外部电极43相接合。因此,在热电元件3中 产生的电动势被取出到外部。

接下来,下面将参照附图16到23来说明热电装置31的制造方法(装 配方法)的示例。

如图16中所示,首先制造热电装置31中除盖34之外的基板32。将 布线层37接合到由绝缘基板32a和金属膜32b构成的基板32的表面,并 也形成通孔布线42和外部电极43。没有将布线层37接合到基板32的全部 表面,而是接合到基板32的中央部分,使得没有接合布线层37的区域存 在于沿着金属基板32的周边的外围部分,以确保在基板32表面上与框体 39的接合区域。基板32的外围部分被用于框体39和基板32之间的接合区 域,且框连接电极40形成在其上面。

如图17中所示,将框体39通过粘合剂材料41接合到形成在基板32 上的框连接电极40上。

如图18中所示,将接合材料8涂布在布线层37的预定部分上。作为 接合材料8,例如,较佳地是采用焊料。但是如果能够获得和实施例方式2 类似的效果,则不用特别限制材料。

如图19中所示,例如,按照第一实施例中所描述的对准,将多个热电 元件3a、3b放在涂有接合材料8的位置上,然后使热电元件3a、3b分别 接合到布线层37。例如,在焊料被用于接合材料8时,在回流炉中热电元 件3a、3b被分别共同地接合到布线层37。

然后,制造盖34。如图20中所示,装载盖34使其外表面向下(使其 内表面向上)。先在盖34中形成密封孔34a。

然后,如图21中所示,使喷镀层35形成于盖34的内表面上。如上所 述,例如,较佳地是将白色氧化铝用作喷镀层35。但是如果能够获得与第 二实施例类似的效果,则不特别限制材料。

如图22中所示,将耐热粘合剂35a涂布在喷镀层35上,然后将作为 导电构件的金属细丝网9接合到那。在第二实施例中,无机粘合剂材料被 用作耐热粘合剂35a,即使在高温下使用热电装置31时也不会产生气体等。 耐热粘合剂35a要用足够的量来涂布,以暂时固定金属细丝网9。另外,涂 有耐热粘合剂35a的部分隆起,在喷镀层35上形成不平坦。在这种情况下, 因为金属细丝网9沿着不平坦发生变形,在使金属细丝网9与热电元件3 接触时,这样的不平坦可以被金属细丝网9吸收。这里,即使在只有金属 细丝网9放在喷镀层35的预定部分上而不使用耐热粘合剂35a时,也能获 得与本实施例相似的优点。

然后,将用这种方式分别制造的基板32和盖34接合在一起,以使基 板32的表面经由框体39与盖34的内表面相对。在图23中,假设这样的 情况,即喷镀层35和金属细丝网9在盖34制造步骤中没有耐热粘合剂35a 的情况下被相互接合。换言之,将金属细丝网9简单地放在形成于盖34内 表面上的喷镀层35上,使得在接合到基板32的过程中当盖34的内表面指 向下时金属细丝网9下落。为此,盖34和框体39用这样的方式相互接合, 使得基板32被放置成使热电元件3向下,然后基板32被放在盖34上。

相反,在金属细丝网9通过耐热粘合剂35a被固定到喷镀层35a时, 金属细丝网9不会落下。因此,不同于上述情况,不需要特别的接合程序, 并且基板32和盖34中的任一个都可以接合到另一个。

用这种方式,因为基板32和盖34被相互接合,使得基板32的表面经 由框体39与盖34的内表面相对,在它们之间产生了热电元件在其中对准 的内部空间C2。通过利用先前在盖34中设置的密封孔34a,将内部空间C2 的内部设定为低压气氛。在第二实施例中,例如,压力从大气压减少 0.07MPa,或者通过填充氮气、氩气等将气氛设定为非氧化气氛,然后通过 借助激光熔合密封孔34a将内部空间C2气密封。因此,可获得具有气密封 结构的热电装置31。在这种情况下,配备给热电装置31的通孔布线42不 限于一条,可提供多条通孔布线42。

根据用这种方式制造的热电装置31,不需要设置帽型电极和绝缘板, 而只在盖34的内表面和热电元件3之间设置喷镀层35和金属细丝网9。因 此,由于可在基板32的表面上设置大量的热电元件3,能够增加单位输出 量,并通过减少降低热阻的物品的数量减少了热源和热电元件之间机械接 触。从而,可实现能够提高发电性能的热电装置31,同时能够以低成本和 高生产率来制造热电装置31。

(第一变化)

接下来,将在下面说明本发明第二实施例的第一变化。

在第二实施例中,盖34和框体39由金属构成。第一变化不同于第二 实施例之处在于基板32也是由金属构成且盖34有不同的成形。就是说, 将第二实施例中的喷镀层35提供给第一实施例中的热电装置1。

如图24中所示,根据第二实施例第一变化的热电装置51包括金属基 板2、放在金属基板2表面上的热电元件3以及具有内表面与金属基板2 的表面相对的上壁和耦合到该上壁的外围部分并接合到金属基板2的周围 部分的侧壁的盖24。此外,热电装置51还包括接触盖24内表面的喷镀层 35、接触热电元件3的电极和接触喷镀层35的金属细丝网9。绝缘层6设 置在金属基板2表面的中央部分,而导电布线层37被放在绝缘层6上。

在第一变化中的盖24在配置上与第一实施例中的盖4相同。因此,在 第二实施例中不需要将框体39设置到金属基板2表面的周围部分,因此可 减少物品的数量。例如,在第一变化中的盖24由科瓦铁镍钴合金或不锈钢 构成,而构件的厚度被设为0.2mm或更低。

同样,在第二实施例中通过整体形成盖34和框体39构成盖24,并通 过激光焊金属性地接合到金属基板2。这里,例如,通过放入诸如镍(Ni) 箔等的接合金属构件5,可提高盖24和金属基板2之间的接合能力。

将设置成通过金属基板2和绝缘层6的通孔布线13在暴露于金属基板 2外部的部分连接到金属层14,然后经由焊料15将金属层14连接到外部 电极16。因此,在热电元件3中产生的电动势可以被拾取到外部。

用这种方式形成的金属基板2和盖24例如通过激光被金属化地相互接 合,由此在它们之间产生其中热电元件被对准的内部空间C2。通过利用先 前设置在盖24中的密封孔4b将内部空间C2的内部设定为低压气氛,或通 过填充氮气、氩气等将气氛设定为非氧化气氛,然后,内部空间C2通过利 用激光熔合密封孔4b被气密封。因此,能够获得具有气密封结构的热电装 置51。

根据用这种方式制造的热电装置51,由于盖24被成形为具有内表面 与金属基板2的表面相对的上壁和耦合到该上壁的外围部分并接合到金属 基板2的周围部分的侧壁的结构,所以可减少物品的数量。同时,不需要 提供帽型电极和绝缘板,而只将喷镀层35和金属细丝网9被设置在盖24 的内表面和热电元件3之间。因此,由于可在基板32的表面上设置大量的 热电元件3,能够增加单位输出量,并通过减少降低热阻的物品的数量减少 了热源和热电元件之间机械接触。从而,在减少物品数量的同时可提高提 供给热电装置51中内部空间C2的发电性能,可实现可靠性杰出的热电装 置51,同时能够以低成本和高生产率来制造热电装置51。

(第二变化)

接下来,在下面将说明本发明第二实施例的第二种变化。

在第一变化中,在金属基板2的表面上盖24经由金属接合构件5被接 合到外围部分。该第二变化与此不同之处在于将盖接合到金属基板2背表 面上的外围部分。就是说,在第二实施例中的喷镀层35被提供给第一实施 例第一变化中示出的热电装置1。

如图25中所示,用于遮盖热电元件3侧面的部分的框体4a被构成为 围绕金属基板2的背表面的延伸,且框体4a和金属基板2背表面的外围部 分经由接合金属构件5接合在一起。因此,与金属基板2的表面相比,在 金属基板2的背表面上可充分保证与框体4a的接合区域。在该接合区域(金 属基板2背表面的外围部分)中的金属基板2的厚度被设定为比金属基板2 背表面的中央部分薄。因此,可容易地对准接合金属构件5,且框体4a(接 合区域)不从金属基板2背表面的中央部分凸出。此外,设置了接触盖4 内表面的喷镀层35、接触热电元件3的电极的金属细丝网9和喷镀层35。

用这种方式,将框体4a接合到金属基板2的背表面,在金属基板2的 表面上不设置接合区域。因此,可将金属基板2的表面有效地用作热电元 件3的装配区域,因而可排列更多数量的热电元件3。同时,不需要提供帽 型电极和绝缘板,而只将喷镀层35和金属细丝网9设置在盖4的内表面和 热电元件3之间。因此,能够增加单位输出量,并通过减少降低热阻的物 品的数量减少了热源和热电元件之间机械接触。从而,在减少物品数量的 同时可提高提供给热电装置61中内部空间C2的发电性能,可实现可靠性 杰出的热电装置61,同时能够以低成本和高生产率来制造热电装置61。

(第三实施例)

接下来,将在下面说明第三实施例。在第三实施例中,将相同的标号 附加到与第一实施例中所说明的组成元件相同的组成件,因而相同组成件 的重复说明在此将被省略。

图26是根据第三实施例的热电装置1的截面图。从热电元件3产生的 电动势分别经过通孔布线13、金属层14、焊料15和外部电极16被取出到 热电装置1的外部。在第三实施例中,与冷却介质绝缘的绝缘材料18被设 置在与连接到外部电极16的焊料15的表面相对的表面上。

在上述各实施例中,在热电装置1等中,通孔布线13的区域中金属基 板2等的厚度被减少,以包括外部电极16等在其中,通孔布线13的区域 被用来输出电动势。在叠层通孔布线13、金属层14、焊料15和外部电极 16之后所获得的组合厚度和金属基板2的背表面厚度相同。

在第三实施例中,设置在输出电动势的通孔布线13的区域中的通孔布 线13、金属层14、焊料15、外部电极16和绝缘层18的叠层厚度变得比金 属基板2的背表面薄长度γ(从金属基板2的表面看时变得降低)。就是说, 从金属基板2的背表面到通孔布线13和金属层14之间的接合表面的距离 比从绝缘材料18到通孔布线13和金属层14之间的距离长γ。

换言之,由于通过设置例如绝缘材料18,通孔布线13到绝缘材料18 的叠层厚度变厚,可认为这样的情况,在使冷却介质与金属基板2的背表 面接触时,因为从通孔布线13到绝缘材料18的总厚度产生间隙。但是, 采用这样的排列,有可能避免由于冷却介质和金属基板2背表面之间产生 的间隙所引起的热阻的增加。因此,可有效地执行从热电装置1的散热, 并从而提高热电元件3的发电效率。从而,可进一步提高热电装置1的发 电性能。

(第四实施例)

接下来,将在下面说明第四实施例。在第四实施例中,将相同的标号 附加到与第一实施例中所说明的组成元件相同的组成件,因而相同组成件 的重复说明在此将被省略。

在第四实施例中,有这样一个特征,即用在上面的实施例中的金属细 丝网9用金属箔包裹。用这种金属箔包裹的金属细丝网9a(以下称为“带 有箔的金属细丝网9a”)可通过例如下面的方法来制造。

首先,如图27A所示,制备了通过焊接金属箔9b如同圆柱体所形成的 圆柱形金属箔9c以及图27B中示出的金属细丝网9。然后,通过使金属细 丝网9通过圆柱形的金属箔9c制造带有箔的金属细丝网9a,然后将该圆柱 形的金属箔9c切成适当的尺寸,如虚线所示。

同样,通过例如图28中示出的方法可制造带有箔的金属细丝网9a。 就是说,如图28A中所示,将金属细丝网9放在两片金属箔9b之间,然后 将金属箔9b焊接到金属细丝网9的两边(见图28B)。然后,通过将多个 焊接的带有箔的金属细丝网9a切成由虚线指示的所需尺寸,获得所需的带 有箔的金属细丝网9a。

由于采用这种带有箔的金属细丝网9a,可增加在金属细丝网9和电热 元件3之间的粘合性,并且也能够实现热阻的降低。同样,由于采用金属 箔9b包裹金属细丝网9,可以防止这样的情形,即金属细丝网9的Cu细丝 断裂并落下使得与第一布线层7等接触并产生短路,由此更加能够获得发 电性能的提高。此外,由于在制造热电装置1等的过程中能够接纳和处理 带有箔的金属细丝网9a,把金属细丝网9放在热电元件3上的步骤能够被 自动化,并且也能够提高热电装置1的生产率等。

(第五实施例)

接下来,下面将说明第五实施例。在第五实施例中,将相同的标号附 加到与第一实施例中所说明的组成元件相同的组成件,因而相同组成件的 重复说明在此将被省略。

如图29中所示,根据本发明第五实施例的热电装置71包括金属基板 72、放在金属基板72表面中央部分上的热电元件3、接合到基板72表面外 围部分以把热电元件3包围到其内部的框体74、一端在基板72的表面上电 连接到热电元件3且另一端被连接到从框体74延伸到外部的外部电极的引 出布线75、排列成与基板72的表面相对并在由这个盖76、基板72和框体 74所形成的空间中密封热电元件3的盖76。

将第一绝缘膜77设置在金属基板72的表面上,将导电电极78放在第 一绝缘膜77的中央部分上。作为第一绝缘膜77,较佳地是应采用树脂或包 含陶瓷粉末的树脂。在第五实施例中,铜可被具体地用作金属基板72和第 一电极78,而包含陶瓷粉末的环氧树脂可被用作第一绝缘膜77。热电元件 3例如经由诸如焊料等的接合材料79被接合到第一电极78。

将绝缘基板80排列在热电元件3没有接合到第一电极78的端部。第 二电极81跨过一对电极元件3形成在绝缘基板80的表面(图29中的下表 面)上。金属膜82设置在绝缘基板80背表面的整个区域(图29中的上表 面)上。因为采用绝缘基板80放在第二电极81和金属膜82之间的这种结 构,能够增加绝缘基板80的机械强度,并且也能够降低在金属膜82和接 触到外部的盖76之间的接触热阻。由此,能够增加在热电元件3的上端和 下端之间的温度差异,并且能够提高发电能力。

在基板72表面的外围部分将框体74分别接合到基板72(金属箔83) 和盖76,以将热电元件3包围在那里面,由此热电装置71构成为箱形结构。 框体74例如由诸如科瓦铁镍钴合金、不锈钢(较佳地是SUS304)等金属构 成,并且通过在金属箔83和框体74之间放置镍箔及再对它们施加激光焊, 使框体74金属性地接合到基板72。

在框体74下方通过的引出布线75设置在基板72的表面上。热电元件 3电连接到在引出导线75一个端部的区域中构成的电极,在框体74下方通 过的另一个端部延伸到框体74的外部。另一个端部的区域充当外部电极, 在热电元件3中产生的电动势从其取出到热电装置71的外部。用这种方式, 因为电动势在没有通孔布线的情况下被输出到热电装置71的外部,可以消 除由通孔布线所产生的电阻,由此能够提高热电装置71的发电能力。

盖76例如由诸如科瓦铁镍钴合金、不锈钢(较佳地是SUS304)等金 属构成。因为,特别是采用了与框体74相同的材料,能够容易地获得盖 76和框体74之间的接合以及气密封。在接触金属膜82的同时排列盖76, 以遮盖热电元件3的上表面,并经由框体74与基板72的表面相对。当盖 76和框体74被接合在一起时,放在热电元件3上的绝缘基板80(第二电 极81)被盖76和金属基板72保持并夹在当中,以使沿热电元件3的纵向, 即沿着依照电动势产生时电流所流经的方向施加压力。

用这种方式,热电装置71具有由基板72、框体74、盖76所包围的内 部空间,并构成其内部空间与外部区域隔离的箱形结构。将箱形结构的内 部设定为低压气氛,使得该箱形结构即使在暴露到高温时也难以变形和损 坏,或者通过设定成非氧化气氛使箱形结构的内部被气密封。

接下来,下面将参照图30到图40说明热电装置71的制造方法(装配 方法)的示例。

如图30中所示,将第一绝缘膜77设置在金属基板72的表面上,然后 第一电极78被接合到那。此时,接合引出布线75,使基板72和第一绝缘 膜77的端部一致。

引出布线75在基板72(第一绝缘膜77)连接框体74的一部分区域中 在框体74的下方通过,然后从框体74的内部延伸到外部,在框体74的内 部放置了电热元件3。就是说,如图31中所示,如上所述,电极区域在一 端上,外部电极区域在另一端上,而置于电极区域和外部电极区域之间的 区域被设置成引出布线75。将框体74设置在置于电极区域和外部电极区域 之间的区域上,且从狭义上来说,例如,被用作引导电极。同样,为了在 基板72(第一绝缘膜77)上水平地形成框体74,在连接框体74但是没有 引出布线从其引出的区域也必须确保与引出布线75具有相同的高度。因此, 如图31和图32中所示,在基板72(第一绝缘膜77)表面的外围部分,框 体连接金属箔85形成在这样的区域中,该区域连接框体74但是引出布线 75不从其引出。这里,在图30中,基板72的表面指接合第一绝缘膜77 的上表面。

如图32和33中所示,将其中金属箔83形成在第二绝缘膜84上的半 固化片86粘贴到基板72外围部分连接框体74的区域以及热电元件3装配 在其上的基板72表面中央部分的区域。就是说,连接形成在基板72表面 周围部分上的金属箔85的框体的外周边与半固化片86的外周边重合,并 且第二绝缘膜84被直接接合到框体连接金属箔85。

在热电装置71工作时,框体74用作连接吸热侧和散热侧的传热途径, 但是流过框体74内部的热量对热电装置71的发电不起作用。如上所述, 在第五实施例中,采用这样的结构,使得具有低的热传导率的第二绝缘膜 84叠层在引出导线75、框体连接金属箔85与金属箔83之间。采用这种排 列,通过减少通过接合到金属箔83的框体74的热量,能够增加供给到热 电元件3的热量,因此能够提高热电装置71的发电能力。

然后,如图34中所示,去除半固化片86以留下接合框体74的区域。 作为去除方法,可考虑通过蚀刻去除金属箔的方法和通过研磨去除绝缘膜 的方法。但去除方法不限于这些。从而,如同从图35可以清楚看到的那样, 跨过引出布线75形成第二绝缘膜84和金属箔83(半固化片86),将热电 元件3围在其中。在这种情况下,因为第二绝缘膜84形成在引出布线75 和金属箔83之间,可防止诸如引出布线75和金属箔83之间短路的缺点等。

然后,如图36所示,在第一电极78上涂布接合材料79,然后依照第 一实施例中所描述的排列对准多个热电元件3a和3b。然后,第一电极78 与热电元件3a、3b被分别相互接合。在这种情况下,例如,较佳地是把焊 料用作接合材料79。但是,如果能够获得与气体实施例类似的效果,并不 特别限制材料。同样,例如,在焊料被用作接合材料79时,第一电极78 与热电元件3a、3b在回流炉中在对应于所使用的焊料类型的温度上被分别 共同地连接在一起。

如图37中所示,通过例如激光焊将框体74接合到金属箔83。由于引 出布线75形成在其上的部分和剩余部分已经被设定为高度一致,不需要依 靠连接位置改变框体74的高度,并且也能够在整个周边上容易地保证水平 度。同样,激光焊能够只在接合部分局部地加热而不会加热整个热电装置 71。因此,能够在热电元件3和第一电极78接合之后通过使用接合材料79 来接合框体74,使得能够便于热电装置71的制造。

然后,如图38中所示,将已经设置在第二电极81和金属膜82的表面 和背表面上的绝缘基板80放在那上面。特别是,跨过热电元件3a和3b放 置第二电极81(电连接它们)。因此,在第一电极78和第二电极81之间 多个p型热电元件3a和多个n型热电元件3b被交替地串联电连接。在该 步骤,绝缘基板80没有连接到热电元件3而只是放在那上面。

然后,如图39中所示,通过激光焊将盖76和框体74接合在一起。如 上所述,由于在基板72表面上保持水平姿势的同时将框体74接合到金属 箔83,能够将盖76接合到框体74以保持气密封。在第五实施例中,SUS304 被用作盖76和框体74的材料。但是如果能够保持气密封,则盖76和框体 74的材料不限于这种材料。

用这种方式,因为盖76和基板72经由框体74被接合,在它们之间产 生了热电元件在其中被对准的内部空间C3。通过利用先前在盖76中设置的 密封孔(未示出),将内部空间C3设定为低压气氛。同样,通过填充氮气、 氩气等将内部空间C3设定为非氧化气氛,然后通过激光熔合密封孔以将内 部空间C2气密封。因此,可获得具有气密封结构的热电装置71。

用这种方式,由热电元件3产生的电动势没有经由通孔布线而是经由 形成在金属基板72上的引出布线75被取出到外部。因此,可防止通过设 置通孔所引起的电阻增加。

如从图29中箭头标注的方向D观察热电装置71时所描绘的图40中所 示,与引出布线75具有相同高度的框体连接金属箔85形成在该区域中, 在该区域框体74被连接到基板72但是没有形成引出布线75。从而,框体 74和盖76被分别水平地接合到基板72,因此,能够维持在内部空间C3中 气密封。

因此,能够采用简单的配置降低热电装置的电阻,也能够将产生的电 能有效地取出到外部。同样,能够实现在保持气密性的同时提高设置在热 电装置71的内部空间C3中并具有杰出可靠性的热电元件3的发电性能的 热电装置71,并能够简单地制造该热电装置71。

(第一变化)

接下来,下面将说明第五实施例的第一变化。

如图41中所示,根据第一变化的热电装置71的特征在于在基板72的 背表面设置了肋片2a。如同在第五实施例中说明的那样,通过利用形成在 金属基板72表面上的引出布线75将在热电装置71中产生的电动势输出到 外部。换言之,不像采用通孔布线的情形,不需要将外部电极连接到基板 72的背表面,所以基板72的背表面可以保持在平面的情形而没有不平坦。

因此,由于将具有良好换热效果的肋片2a设置在基板72平坦的背表 面上,能够提高提高热电装置71的换热效率并能够提高热电元件3的发电 效率。因此,更加能够提高热电装置71的发电性能。

在第一变化中,由于通过加工容易处理的金属能够被用作基板72,通 过依靠切割、蚀刻等处理基板72的背表面能够制造肋片2a。同样,肋片 2a不是通过加工基板72的背表面来制造的,而是作为基板72的分离体被 固定到基板72的背表面。此外,如同在第一实施例的第五变化中说明的那 样(见图13),可安装换热套2b或将肋片2a和换热套2b结合在一起使用。

(第六实施例)

接下来,将在下面说明第六实施例。在第六实施例和第六实施例的各 种变化中,将相同的标号附加到与第一实施例中所说明的组成元件相同的 组成件,因而相同组成件的重复说明在此将被省略。

如图42中所示,根据本发明第六实施例的热电装置91包括基板92、 装配于基板92表面上的热电元件3、排列成与基板92相对并把热电元件3 置于它们之间的盖94、具有高热阻成形部分的框体95,其一端接合到基板 92的周围部分以将热电元件3包围在其中,而另一端接合到盖94的外围部 分。

基板92由第一绝缘基板92a和设置到第一绝缘基板92a背表面的金属 箔92b构成。第一导电电极96被放在第一绝缘基板92a表面的中央部分上。 作为第一绝缘基板92a,如图42中所示,除了第六实施例的陶瓷基板之外, 较佳地是例如使用树脂或包含陶瓷粉末的树脂。通过接合、涂镀等,金属 箔92b例如可以形成在第一绝缘基板92a的背表面上。作为金属箔92b,例 如,较佳地是使用铜。热电元件3例如经由诸如焊料等第一接合材料97被 接合到第一电极96。

第二绝缘基板98排列在热电元件3没有接合到第一电极96的端部。 第二电极99跨过一对热电元件3形成在第二绝缘基板98的表面(图42中 的下表面)上,而金属膜100设置在第二绝缘基板98背表面(图42中的 上表面)的整个区域上。金属膜100可增强第二绝缘基板98的机械强度。 此外,金属膜100可提高第二绝缘基板98相对于盖94的实质接触并由此 减小热阻,从而提高与外界的换热效率。

盖94由诸如科瓦铁镍钴合金、不锈钢(较佳地是SUS304)等金属构 成,并且在接触金属膜100和金属性地接合到框体95的同时放置在遮盖多 个热电元件3的位置。当盖94和框体95被接合在一起时,放在热电元件3 上的第二绝缘基板98(第二电极99)被盖94、框体95和基板92保持并夹 在当中,以使沿热电元件3的纵向,即电流响应电动势产生所流经的方向 施加压力。同样,如果与框体95相同的金属例如被用作盖94,能够减小在 盖94和框体95之间的接合部分所产生的应力,并能够容易地保证气密性。

框体95在基板92表面的外围部分接合基板92与排列在和基板92相 对位置的盖94,以将热电元件3包围在其内部并连接它们。热电装置91 通过框体95被定形成箱性结构。框体95例如由诸如不锈钢(较佳地是 SUS 304)等构成,并且分别经由框体结合金属箔101a和镍箔101b被金属 性地接合到盖94和基板82。作为框体结合金属箔101,可使用诸如铜箔之 类的金属箔。

同样,热电装置91在由基板92和盖94的内部具有空间,并且这个空 间能够与外部气密封。将箱形结构的内部设定为低压气氛,使得该箱形结 构即使在暴露到高温时也难以变形和损坏。各个热电元件3被气密封在其 中维持低压气氛的箱形结构中。

同时,“热阻”表示在施加1W的电功率时温度上升,并且热阻正比于 长度(距离)而增加。因此,在本发明的实施例中,由于框体95的长度被 设定为长于基板92和盖94之间的间隙,框体95的热阻及流到框体的热量 增加,使得较大的热量被供给热电元件3。结果,能够获得热电装置91发 电性能的提高。

根据第六实施例的框体95没有被定形成具有线性截面形状。为了增加 热阻,如图42中所示,通过使构件定形而形成框体95,使得从基板92的 外围部分到盖94的外围部分构成脊部的部分和构成根部的部分以截面形式 横向交替出现。

更具体地说,为了使基板92和盖94之间的框体95变长,如图42中 所示,构件被接合使得从基板92到盖94构成脊部的部分和构成根部的部 分交替出现,并且通过减小弯曲部分的半径到尽可能地小以增加圆弧(折 叠)的数量。例如,在从接触框体95的框体结合金属箔101的表面到盖94 的背表面的长度被设定为20mm且框体95的厚度被设定为0.25mm的情况下, 通过塑性加工可使弯曲部分的半径降到约0.5mm。在这种情况下,如图43A 中所示,框体95向热电装置91外部延伸的折叠数量是九个,框体95的总 长度变成大约31mm。

同样,在图43B所示的情况中,框体95的总长度变成大约40mm并且 比从框体结合金属箔101表面到盖94背面的正常长度长两倍。

由于热阻正比于长度(距离)而增加,当总长度几乎增加两倍时这样 的热阻也变为两倍。在安装热电装置91的热源的能力在这种条件下是有限 的小时,供给到热电元件3的热量对流经框体95的热量的比例范围在6∶4 到7.5∶2.5。因此,由于供给到热电元件3的热量增加了1.25倍,能够提 高热电装置91的发电性能。

此外,例如,可将模制波纹管用作框体95。在这样的条件下,即当由 构成框体95的材料制成的管子通过并保持在其内部先形成了折叠的模具中 的同时,使大量诸如水、油等的流体通过管子以通过流体压力使管子向外 膨胀,通过设置在模具上的折叠使成直线的管子成形来生产模制波纹管。 同样,可采用通过施加拉延加工以从内部向外部推动由构成框体95制成的 管子来形成折叠的制造方法等。例如,在热电装置91是圆柱形结构体时, 如上面的方法成形的模制波纹管可以被用作框体95,而采用箱形结构时通 过根据塑性加工将波纹管成形成矩形形状来进一步处理的模制波纹管能够 被用作框体95。同样,通过将平板成形为波纹板,然后折弯该板并将两端 焊接成像环一样能够形成框体95。

用这样的方式将框体95接合到基板92和盖94,使得接合到基板92 和盖94的一端和另一端指向热电装置91的外部。在这种情况下,有时给 出说明好像基板92和框体95彼此被直接接合,但是,如上上述,实际上 两个构件经由框体结合金属箔101a和镍箔101b被接合。

然后,通过将盖94和框体95之间的接合部分作为示例,下面将做出 说明。如图44中所示,框体95具有在另一端95c接合到盖94的第二接合 区域95d。另一端95c的另一端面95e被排列在盖94的外围侧,而盖94 和框体95经由第二接合区域95d被接合在一起。接合到基板92的框体95 的一端被类似地排列,并被接合到基板92。

因为框体95被排列在到基板92和盖94这样的方向,可以更容易地执 行它们的相互接合。

设置成通过基板92和第一绝缘基板92a的通孔布线102在进一步暴露 于基板92外部的部分中被连接到外部电极103。然后,外部电极103经由 第二结合材料104被连接到外部电极105。由此,可将在热电元件3中产生 的电动势输出到外部。

用这种方式,接合构件,使得从基板92到盖94构成脊部的部分和构 成根部的部分以框体95的截面形式交替出现。从而,由于能够延长框体 95的总长度,所以能够增加框体95的热阻并且也能够从外部将更大的热量 传导给热电元件3。结果,在保持气密条件的同时能够提高发电性能,并能 够实现可靠性杰出的电热装置91。

(第一变化)

接下来,下面将说明第六实施例的第一变化。

如图45中所示,第一变化的配置在框体110的形状方面不同于第六实 施例中示出的配置。在第六实施例中,通过成形构件来形成框体95,使得 从基板92的外围部分到盖94的外围部分构成脊部的部分和构成根部的部 分以截面形式横向交替出现。而在第一变化中,通过从基板92到盖94以 截面形式交替接合两边之间的内角是锐角的脊背部分和两边之间的外角是 锐角的底部部分而构成框体110。

换言之,如图45和46所示,假设与作为框体110组成构件的一个组 成构件110a和另一个组成构件110a之间的接合表面平行画出的直线是X (见图46),由这条直线X和出现在组成构件110a表面上的直线Y组成的 两条边之间的夹角是Δ1。这里Δ1是九十度或更小。在这种情况下,在从热 电装置91的外部(从位置Z)观察框体110时向热电装置91内部形成的脊 被定义为脊部,相反,在从外部观察框体110时向热电装置91外部形成的 脊被定义为底部。从基板92到盖94通过交替地接合脊部和底部构成框体 110。具体地,框体110通过叠层在形成孔的中央部分的环状平板、然后交 替地接合设置在平板中央部分中的孔的外围部分和平板的外围部分来制 造。

更具体说,例如,假设从框体结合金属箔101的表面到盖94背面的长 度为10mm,而假设在设置框体110的位置的框体110的厚度为0.25mm。同 样,在通过叠层8片平板制造框体110时(后面描述),框体110的总长 度为24mm且长度变成2.4倍。如上所述,因为热阻正比于长度(距离), 热阻变成2.4倍。从而,由于框体110的热阻增加,供给到热电元件3的 热量胜于目前所获得的热量,由此能够提高热电装置91的发电性能。

这里,用这样的方式将框体110接合到基板92和盖94,使得接合到 基板92和盖94的一端和另一端指向热电装置91的外部。

用这种方式,通过从脊部92到盖94以截面形式接合两边之间的内角 为锐角的脊部和两边之间的外角为锐角的底部延长了框体110的总长度。 从而,能够增加热阻并且也能够从外部将更大的热量传导给热电元件3。结 果,在保持气密条件的同时能够提高发电性能,并能够实现可靠性杰出的 电热装置91。而且,在通过上面的制造方法制造框体110时,能够容易地 制造框体110。

(第二变化)

接下来,下面将说明第六实施例的第二变化。

在第二变化中,在参照第一变化中示出的框体110进行说明时,框体 110由增加数量的组成构件构成,例如如图47中示出的构成组件110a、 110b。在构成组件110a、110b例如通过激光焊在接合表面110c被接合在 一起时,框体110的热阻增加,从而提高了热电装置91的发电性能。用这 种方式,例如,构成框体110的组成构件由诸如不锈钢(较佳地是SUS304) 之类的金属构成。

用这种方式,由于构成框体110的组成构件是用这样的方式相互焊接, 使得除了以任何截面形式包含盖94和基板92的框体110的端部,接合部 分以截面形式形成,增加了框体110的热阻。同样,在通过用来接合框体 110的金属箔接合框体110和基板92时,也会增加热阻。结果,供给热电 元件3的热量比通常情况远远地增加,从而能够提高热电装置91的发电性 能。

在第二变化中,通过使用在第一变化中示出的框体110做出说明。例 如,如图48和图49中所示,在若干构成框体110的组成构件被接合时, 能够增加框体110的热阻。而且,到目前为止说明的是进行例如使用激光 的焊接的情况。此外,通过施加例如钎焊能够增加热阻。

目前,本发明不限于它们上面的实施例,在不背离原领域的范围内通 过在实施阶段改变组成构件也能够具体体现本发明。而且,通过适当组合 在上述实施例中揭示的多个组成元件能够产生各种发明。例如,可以从上 述实施例中揭示的全部组成元件中删去几个组成元件。此外,可适当地组 合遍布于不同实施例的组成元件。

相关申请的交叉引用

本申请依据和要求2005年8月2日提交的No.2005-224491、2005年8 月12日提交的No.2005-234133、2005年8月22日提交的No.2005-239819、 2005年9月15日提交的No.2005-268516、2006年7月2日提交的No.2006- 在先日本专利申请的优先权利益,其全部内容通过引用包括在此。