热交换器组合件和结合有该组合件的低温蒸馏设备转让专利

申请号 : CN200580045642.2

文献号 : CN100590374C

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : P·卡瓦涅A·吉亚尔P·勒博D·古尔丹M·瓦格纳F·茹达斯J-M·佩龙B·索尼耶D·阿弗鲁I·瑙德I·莱沃

申请人 : 乔治洛德方法研究和开发液化空气有限公司诺尔东低温技术公司

摘要 :

热交换器组合件,包括至少一个第一热交换器主体和一个第二热交换器主体(5,7),每一个热交换器主体是板式热交换器类型并包括:多个具有基本上相似轮廓的金属板,这些金属板沿着第一方向或长度和第二方向或宽度延伸,沿着第三方向或厚度彼此间隔地、相互平行地设置;以及密封装置,该密封装置与上述板一起限定扁平通道,形成至少一个第一类型的通道和至少一个第二类型的通道,分配于每一个通道的密封装置形成一个流体进口和一个流体出口,其特征在于,由至少一个第一热交换器主体的宽度和厚度限定的侧面与由至少一个第二热交换器主体的宽度和厚度限定的侧面至少部分地相对配置,这两侧面由绝热材料(I)分隔开。

权利要求 :

1、一种热交换器组合件,包括至少一个第一热交换器主体和一个第二 热交换器主体(5,7),每一个热交换器主体是板式热交换器类型并包括: 多个具有基本上相似轮廓的金属板,这些金属板沿着第一方向或长度和第 二方向或宽度延伸,沿着第三方向或厚度彼此间隔地、相互平行地设置; 以及密封装置,该密封装置与所述金属板一起限定扁平通道,形成至少一 个第一类型的通道和至少一个第二类型的通道,分配于每一个通道的密封 装置形成一个流体进口和一个流体出口,第一热交换器主体的一个进口 (E1)连接到一用于待冷却流体的第一输送管道(D AIR MP),第一热 交换器主体的一个出口(S1)连接到一用于冷却后的流体的第一集流管道 (C AIR MP),第一热交换器主体的另一进口连接到一用于待加热流体 的第一输送管道(DNR),第一热交换器主体的另一出口连接到一用于加 热后流体的第一集流管道(CNR),第二热交换器主体的一个进口连接到 一用于待冷却流体的输送管道(D1 AIR HP,D2 AIR HP),第二热交换 器主体的一个出口连接到一用于冷却后的流体的集流管道(C1 AIR HP, C2 AIR HP),第二热交换器主体的另一进口连接到一用于待加热流体的 输送管道(DNR’),第二热交换器主体的另一出口连接到一用于加热后流 体的集流管道(CNR’),其特征在于,由至少一个第一热交换器主体的宽 度和厚度限定的侧面与由至少一个第二热交换器主体的宽度和厚度限定的 侧面至少部分地相对配置,这两侧面由绝热材料(I)分隔开。

2、根据权利要求1所述的组合件,其特征在于,第一热交换器主体(5) 构成具有至少三个基本上成行排列的热交换器主体的第一组热交换器(1) 的一部分,第一组热交换器的至少两个第一热交换器主体平行地至少连接 到用于待冷却流体的第一输送管道、用于待加热流体的第一输送管道、用 于加热后流体的第一集流管道、以及用于冷却后流体的第一集流管道,和/ 或第二热交换器主体(7)构成具有至少三个基本上成行排列的热交换器主 体的第二组热交换器(2)的一部分,第二组热交换器的至少两个第二热交 换器主体平行地连接到至少一个用于待冷却流体的输送管道、至少一个用 于待加热流体的输送管道、至少一个用于冷却后流体的集流管道以及至少 连接到用于加热后流体的集流管道。

3、根据权利要求2所述的组合件,其特征在于,第二组热交换器中的 至少一个热交换器主体(7)连接到不与第一组热交换器中的任一个热交换 器主体相连接的至少一个流体输送管道(D1 AIR HP,D2 AIR HP)。

4、根据权利要求3所述的组合件,其特征在于,第二组热交换器的至 少一个热交换器主体连接到不与第一组热交换器中的任一个热交换器主体 相连接的流体集流管道(C1 AIR HP,C2 AIR HP)。

5、根据权利要求1-4之一所述的组合件,其特征在于,至少一个第二 热交换器主体(7)的一个进口连接到用于待冷却流体的第一输送管道或用 于待加热流体的第一输送管道。

6、根据权利要求1-4之一所述的组合件,其特征在于,至少一个第二 热交换器主体(7)的一个进口连接到不同于用于待冷却流体的第一输送管 道的一个用于待冷却流体的输送管道,和/或第二热交换器主体的另一个进 口连接到不同于用于待加热流体的第一输送管道的一个用于待加热流体的 输送管道。

7、根据权利要求1-4之一所述的组合件,其特征在于,所述组合件包 括与第二热交换器主体的通道相连通的、用于将液体传送到至少一个第二 热交换器主体(7)的液体输送管道,所述通道与位于待冷却气体的一个进 口附近的用于蒸发后液体的一个出口相连通。

8、根据权利要求1至4之一所述的组合件,其特征在于,至少一个第 一热交换器主体(5)只连接到至少一个气体输送管道和至少一个用于待冷 却液体的管道。

9、根据权利要求1至4之一所述的组合件,其特征在于,包括至少一 个设置在第一热交换器主体和第二热交换器主体的彼此相对设置的侧面之 间的热交换器主体。

10、一种用于气体混合物的低温分离设备,该设备包括洗提单元、如 权利要求1至9之一所述的组合件、塔系统、用于将气体混合物传送到洗 提单元的装置、用于将洗提后的气体混合物传送到热交换器组合件以使该 洗提后的气体混合物至少在第一和第二热交换器主体(5,7)之一中被冷 却到至少一个压力的装置、用于将至少一些在第一和第二热交换器主体(5, 7)中的至少一个中冷却的气体混合物传送到塔系统的装置、用于将从塔系 统中产生的至少一种产品传送到第一组热交换器和第二组热交换器的热交 换器主体中的每一个中的装置(DNR,DNR’)。

11、根据权利要求10所述的低温分离设备,其特征在于,包括用于将 加压的、富含气体混合物的一种组分的液体流传送到至少一个第二热交换 器主体(7)的装置,以及用于将一种富含气体混合物的一种组分的气体传 送到至少一个第一热交换器主体(5)中的装置。

说明书 :

技术领域

本发明涉及一种热交换器组合件,一种结合有该热交换器组合件的低 温蒸馏设备,以及一种使用该热交换器组合件的低温蒸馏方法。

背景技术

为蒸馏空气,将空气冷却到很低温度。为限制和外界环境的热交换, 通过一种或多种绝热材料(如珍珠岩,岩棉等)对每个塔和热交换器进行 保温,在该每个塔和热交换器中源于空气中气体的流体发生各阶段的分离/ 液化,由于机械原因这种绝热材料容纳在一般称作冷箱(cold box)的大结 构中。
这些冷箱的尺寸大小取决于塔的数量,热交换器的数量,也取决于塔 和热交换器的大小,取决于各个管路和其它附加低温元件,取决于所有这 些低温元件彼此之间所需要的绝热材料的距离以及容纳绝热材料的外部结 构。
许多情况下,对于这种空气分离设备,出于质量和控制的原因,有利 地,在专门的工厂预制这些包括下述重要部件——即塔、所有或几乎所有 的附加低温元件和低温管路,也包括热交换器——的结构,同时尽可能限 制这些“冷箱包装”的构型以适于在制造的地方和最终安装的地方之间运 输。
已知使用两种不同的用于冷却被送到空气分离设备中的空气的热交换 器主体。FR-A-2 846 077,US-A-4 555 256,EP-A-0 044 679和EP-A-0 042 676中描述了一种用于在高压下冷却和加热流体的第一热交换器主体和一 种用于在中压下冷却和加热流体的第二热交换器主体。
本发明适用于充分地限制容纳有绝热材料的外部结构的尺寸而不管所 考虑的分离类型和该分离单元的空气处理能力,并且就冷箱包装来说,适 用于扩大工厂-预制的分离设备的容量限制。

发明内容

本发明的一个目的是提供一个热交换器组合件,该组合件包括至少一 个第一热交换器主体和一个第二热交换器主体,每个热交换器主体为板式 热交换器类型并包括:多个具有基本上相似轮廓的金属板,这些金属板沿 着第一方向或长度和第二方向或宽度延伸,沿着第三方向或厚度彼此间隔 地、相互平行地设置;以及密封装置,该密封装置和上述板一起限定扁平 通道,形成至少一个第一类型的通道和至少一个第二类型的通道,分配于 每个通道的密封装置形成(releasing)一个流体进口和一个流体出口,第 一热交换器主体的一个进口连接到一用于待冷却流体的第一输送管道 (delivery line),第一热交换器主体的一个出口连接到一用于冷却后的流 体的第一集流管道(collecting line),第一热交换器主体的另一进口连接 到一用于待加热流体的第一输送管道,第一热交换器主体的另一出口连接 到一用于加热后流体的第一集流管道,第二热交换器主体的一个进口连接 到一用于待冷却流体的输送管道,第二热交换器主体的一个出口连接到一 用于冷却后的流体的集流管道,第二热交换器主体的另一进口连接到一用 于待加热流体的输送管道,第二热交换器主体的另一出口连接到一用于加 热后流体的集流管道,其特征在于,由至少一个第一热交换器主体的宽度 和厚度限定的侧面与由至少一个第二热交换器主体的宽度和厚度限定的侧 面至少部分地相对配置,这两侧面由绝热材料分隔开。
根据其它可选的方面:
-第二组热交换器的至少一个热交换器主体连接到一不与第一组热交 换器的任一个热交换器主体相连接的流体输送管道,并且可选地,第二组 热交换器的至少一个热交换器主体连接到一不与第一组热交换器的任一个 热交换器主体相连接的流体集流管道;
-第一热交换器主体形成具有至少三个基本上成行排列的热交换器主 体的第一组热交换器的一部分,第一组热交换器的至少两个第一热交换器 主体平行地至少连接到用于待冷却流体的第一输送管道、用于待加热流体 的第一输送管道、用于加热后流体的第一集流管道、用于冷却后流体的第 一集流管道,和/或,第二热交换器主体形成具有至少三个基本上成行排列 的热交换器主体的第二组热交换器的一部分,第二组热交换器的至少两个 第二热交换器主体平行连接到至少一个用于待冷却流体的输送管道、至少 一个用于待加热流体的输送管道、至少一个用于冷却后流体的集流管道以 及至少连接到用于加热后流体的集流管道;
-第二热交换器主体的一个进口连接到用于待冷却流体的第一输送管 道或用于待加热流体的第一输送管道;
-第二热交换器主体的一个进口连接到不同于用于待冷却流体的第一 输送管道的一个用于待冷却流体的输送管道和/或第二热交换器主体的另 一个进口连接到不同于用于待加热流体的第一输送管道的一个用于待加热 流体的输送管道;
-该组合件包括与第二热交换器主体的通道相连通的、用于将液体传 送到至少一个第二热交换器主体的液体输送管道,所述通道与位于待冷却 气体的一个进口附近的用于蒸发后液体的一个出口相连通;
-(第一组热交换器的)至少一个第一热交换器主体只连接到至少一 个气体输送管道和至少一个用于待冷却液体的管道;
-至少一个热交换器主体设置在第一热交换器主体和第二热交换器主 体的彼此相对设置的侧面之间。
“成行排列(aligned)”的热交换器主体沿纵向彼此并排设置。
术语“液体”包括伪液体(psuedo-liquids),也就是在临界压力之上 的液体。
“液体注入”意味着一种低温液体注入到塔系统中,目的在于吸收热 量。
本发明的另一目的是提供一种用于气体混合物的低温分离的设备,该 设备包括洗提单元(stripping unit)、所述的组合件和塔系统、用于将气 体混合物传送到上述洗提单元的装置、用于将洗提后的气体混合物传送到 热交换器组合件以使该洗提后的气体混合物至少在第一和第二组热交换器 的热交换器主体之一中被冷却到至少一个压力的装置、用于将至少一些在 第一和第二热交换器主体中的至少一个中冷却的气体混合物传送到塔系统 的装置以及用于将来自塔系统的至少一种产品传送到第一和第二热交换器 主体中的每一个的装置。
根据本发明的其它可选的方面,该设备包括:
-用于将富含有气体混合物的一种组分的、加压的液体流传送到(第 二组热交换器的)至少一个第二热交换器主体的装置,和用于将富含有气 体混合物的一种组分的气体传送到(第一组热交换器的)一个第一热交换 器主体的装置;
-至少一个热交换器主体,所述至少一个热交换器主体构成一过冷器, 该过冷器放置于第一组热交换器的热交换器主体的下方,优选地放置在第 二组热交换器的热交换器主体的下方;
-再沸器-冷凝器以及用于将一种源于塔系统中的待冷凝气体和一种 源于塔系统中的待蒸发液体送到其中的装置,上述再沸器-冷凝器位于系 统的任一个塔的外面、第二组热交换器的热交换器主体的上方,优选地位 于第一组热交换器的热交换器主体的上方。
本发明的另一目的是提供一种用于气体混合物的低温分离的设备,该 设备包括洗提单元、包括至少一个第一热交换器和一个第二热交换器的组 合件、塔系统、用于将该气体混合物传送到洗提单元的装置、用于将洗提 后的气体混合物传送到热交换器组合件以使该洗提后的气体混合物至少在 第一和第二热交换器主体之一中被冷却到至少一个压力的装置、用于将至 少一些在至少一个第一和第二热交换器主体中冷却的气体混合物传送到塔 系统的装置、用于将从塔系统中产生的至少一种产品传送到第一和第二热 交换器主体中的每一个的装置,其特征在于,第一热交换器位于第二热交 换器上方,优选地位于第二热交换器的正上方。
根据本发明的一可选方面,该设备包括用于将源于塔系统中的一个塔 的液体送到该液体在其中被蒸发的第二热交换器的装置,以及用于从第二 热交换器收集被蒸发的液体的装置,并且没有用于从第一热交换器收集被 蒸发的液体的装置。
本发明的另一方面提供一种用于在一种设备中对气体混合物进行低温 分离的方法,该设备包括:洗提单元、所述的热交换器组合件、以及塔系 统,在该设备中,该气体混合物被传送到洗提单元,洗提后的气体混合物 被传送到至少一个第一热交换器主体以在其中被冷却到至少一个压力,洗 提后的气体混合物被传送到至少一个第二热交换器主体以在其中被冷却到 至少一个压力,在第一热交换器主体中冷却的气体混合物被传送到塔系统, 在第二热交换器主体中冷却的气体混合物被传送到塔系统,至少一种流体 被从塔系统传送到至少一个第一热交换器主体,至少一种流体被从塔系统 传送到至少一个第二热交换器主体,其特征在于,第一热交换器主体(第 一热交换器主体中的至少一个)包括循环流体,该循环流体中的至少一种 处于高于阈值的压力,第二热交换器主体(第二热交换器主体中的至少一 个)包括仅处于低于该阈值的压力的循环流体。
至少一个第一热交换器主体位于一个第二热交换器主体的上方。优选 地,所有第一组热交换器的热交换器主体都位于所有第二组热交换器的热 交换器主体的上方。
本发明的另一方面提供一种用于在一种设备中对气体混合物进行低温 分离的方法,该设备包括:洗提单元、所述的热交换器组合件、以及塔系 统,在该设备中,该气体混合物被传送到洗提单元,洗提后的气体混合物 被传送到至少一个第一热交换器主体以在其中被冷却到至少一个压力,洗 提后的气体混合物被传送到至少一个第二热交换器主体以在其中被冷却到 至少一个压力,在第一热交换器主体中冷却的气体混合物被传送到塔系统, 在第二热交换器主体中冷却的气体混合物被传送到塔系统,至少一种流体 被从塔系统传送到至少一个第一热交换器主体以在其中被加热,并且至少 一种流体被从塔系统传送到至少一个第二热交换器主体以在其中被加热, 其特征在于,第一热交换器主体(第一热交换器主体中的至少一个)仅包 括被冷却的循环气体和/或至少一种循环液体,并且第二热交换器主体(第 二热交换器主体中的至少一个)包括至少一种循环流体,该循环流体源于 塔系统,并在该第二热交换器主体中蒸发。
至少一个第一热交换器主体位于一个第二热交换器主体的上方。优选 地,所有第一组热交换器的热交换器主体都位于所有第二组热交换器的热 交换器主体的上方。
本发明的另一方面提供一种用于在一种设备中对气体混合物进行低温 分离的方法,该设备包括:洗提单元、包括一个第一热交换器和一个第二 热交换器的热交换器组合件、以及塔系统,其中,该气体混合物被传送到 洗提单元,洗提后的气体混合物被传送到至少一个第一热交换器主体以在 其中被冷却到至少一个压力,洗提后的气体混合物被传送到至少一个第二 热交换器主体以在其中被冷却到至少一个压力,在第一热交换器主体中冷 却的气体混合物被传送到塔系统,在第二热交换器主体中冷却的气体混合 物被传送到塔系统,至少一种流体被从塔系统传送到至少一个第一热交换 器主体,至少一种流体被从塔系统传送到至少一个第二热交换器主体,第 一热交换器主体(第一热交换器主体中的至少一个)包括循环流体,该循 环流体中的至少一种处于一高于阈值的压力,并且第二热交换器主体(第 二热交换器主体中的至少一个)包括全部处于低于该阈值的压力的循环流 体,其特征在于,第一热交换器位于第二热交换器的上方。
本发明的另一方面提供一种用于在一种设备中对气体混合物进行低温 分离的方法,该设备包括:洗提单元、包括一个第一和一个第二热交换器 的热交换器组合件、以及塔系统,其中,该气体混合物被传送到洗提单元, 洗提后的气体混合物被传送到至少一个第一热交换器主体以在其中被冷却 到至少一个压力,洗提后的气体混合物被传送到至少一个第二热交换器主 体以在其中被冷却到至少一个压力,在第一热交换器中冷却的气体混合物 被传送到塔系统,在第二热交换器中冷却的气体混合物被传送到塔系统, 至少一种流体被从塔系统传送到至少一个第一热交换器以在其中被加热, 并且至少一种流体被从塔系统传送到至少一个第二热交换器以在其中被加 热,第一热交换器(第一热交换器中的至少一个)只包括循环气体(和/ 或至少一种在其中被冷却的循环液体),并且第二热交换器(第二热交换 器中的至少一个)包括至少一种从塔系统中流出的循环流体,该循环流体 在该第二热交换器中被蒸发,其特征在于,第一热交换器位于第二热交换 器的上方。
根据其它可选的方面:
-气体混合物是空气或含有空气的气体或一种主要组分为氢和/或一 氧化碳和/或甲烷和/或氮的气体混合物;
-该气体混合物是空气,塔系统包括热连接在一起的至少一个中压塔 和一个低压塔,并且液氧在至少一个第二热交换器主体中蒸发以形成氧气, 可选地,不在任一个第一热交换器主体中蒸发;
-液氧在至少一个第一热交换器主体中被冷却,可选地,不在任一个 第二热交换器主体内冷却;
-尽管液体也可能在某些地方水平流动,但在第一和/或第二热交换器 主体中液体流动方向基本上是垂直的。
热交换器占用的占地面积总体大于全套塔装置。一个限制这个妨碍到 “包装”方式的面积的方法是将能被容纳而不妨碍到蒸馏的热交换器,典 型地如气体热交换器,放置在那些不能被容纳的热交换器,典型地如液体 或液体蒸发的热交换器的上方。这样,占地面积明显减小。
如果包括塔和热交换器的单包装方式不可实施,叠置的热交换器的独 立包装可能有利。
不采用上述包装概念而仅仅为了减小空气或气体如H2/CO的低温分 离单元的占地面积,也能采用这种方式。

附图说明

参照图1-6详细说明本发明。
图1-3从不同角度示出根据本发明的组合件;
图1示出该组合件的前部,图2示出图1被转到一不同角度的组合件, 图3示出与图1相同的组合件的后部;
图4更详细地示出图1中的组合件的下部的正视图,图5示出图4的 后部;
图6示出根据本发明的结合体,该结合体由前述附图示出的组合件结 合在一空气分离设备中而形成。

具体实施方式

图1-3示出根据本发明的热交换器组合件,该热交换器组合件包括两 组热交换器1、2,第一组热交换器1位于地面上至少10米或15米,第二 组热交换器2位于第一组热交换器下面。
第一组热交换器1放置在一不锈钢框架3上,该框架的腿坐落在冷箱 包装的底部上,第二组热交换器位于框架内部或者第一组热交换器下部, 同时支承第一组热交换器。如果由第一组热交换器形成的热交换器块与由 第二组热交换器形成的热交换器块之间能够更有效地进行绝热,则由第一 组热交换器形成的热交换器块也能放置在由第二组热交换器形成的热交换 器块上,这是因为第一组热交换器的最冷部分与第二组热交换器的最热部 分相对地设置,在工作时,其中一个在大约环境温度,而另一个处于低温。 冷箱包装填充有绝热材料I。
两个第一热交换器主体5组成第一组热交换器1的成行排列的热交换 器主体。这两个基本上相同的热交换器主体5是板式热交换器类型,包括 多个具有基本上相似轮廓的金属板,这些金属板沿着第一方向或长度和第 二方向或宽度延伸,沿着第三方向或厚度彼此间隔地、相互平行地设置。 密封装置与上述板一起限定扁平通道,形成四种类型的通道,这些通道不 沿热交换器主体的整个长度延伸。对每种类型的通道,分配于每一个通道 的密封装置在该通道的两端形成一个流体进口和一个流体出口。在每一个 第一热交换器主体5的热端的第一进口E1连接到一用于待冷却的中压空 气的输送管道D AIR MP,在每一个第一热交换器主体的中间位置的第一 出口S1连接到一用于冷却后的中压空气的集流管道C AIR MP。在每一个 第一热交换器主体5的中间位置的第二进口E2连接到一用于待加热的废 氮的输送管道DNR,在每一个第一热交换器主体5的热端的第二出口S2 连接到一用于加热后的废氮的集流管道CNR。
由于第一组热交换器1的每一个热交换器主体5还具有过冷器的功能, 特别是每一个热交换器主体5的最冷部分,在每一个第一热交换器主体5 冷端的第三进口E3连接到一用于待冷却的液氧的输送管道DOL,第一热 交换器主体的第三出口S3连接到一用于冷却后的液氧的集流管道COL, 在每一个第一热交换器主体5冷端的第四进口E4连接到一用于待冷却的 富氮液体的输送管道DLL,第一热交换器主体的第四出口S4连接到一用 于冷却后的富氮液体的集流管道CLL。
容易理解的是,第一组热交换器的至少一个热交换器主体能够执行过 冷器的功能,因而使得该组合件更紧凑。事实上,在第一组热交换器的热 交换器主体不执行上述功能的情况,过冷器可由至少一个独立的、优选地 放置在第一组热交换器和第二组热交换器之间的热交换器构成。对上述设 备来说也可以不包括过冷器。
还应该明白,第一组热交换器的热交换器不必相同,并且特别是,并 不是都流过相同的流体。
四个第二热交换器主体7组成具有成行排列的热交换器主体的第二组 热交换器2,该第二组热交换器由框架3支承在冷箱包装的底部的略微上 方。这四个基本相同的热交换器主体7中的每一个都是板式热交换器类型, 包括多个具有基本上相似轮廓的金属板,这些金属板沿着第一方向或长度 和第二方向或宽度延伸,沿着第三方向或厚度彼此间隔地、相互平行地设 置。密封装置与上述板一起限定扁平通道,形成五种类型的、沿热交换器 主体整个长度延伸的通道。对每种类型的通道,分配于每一个通道的密封 装置在其两端形成一个流体进口和一个流体出口。在每一个第二热交换器 主体7的热端的一个第一进口E1’连接到一用于将空气冷却到第一高压的 输送管道D1 AIR HP,在每一个第二热交换器主体7的冷端的第一出口S1’ 连接到一用于冷却后的高压空气的集流管道C2 AIR HP。在每一个第二热 交换器主体7的热端的第二进口E2’连接到一用于将空气冷却到第二高压 的输送管道D2 AIR HP,在每一个第二热交换器主体的冷端的第二出口S2’ 连接到一用于冷却后的高压空气的集流管道C1 AIR HP。在每一个第二热 交换器主体7的冷端的第三进口E3’连接到一用于待加热的废氮的输送管 道DNR’,在每一个第二热交换器主体7的热端的第三出口S3’连接到一用 于加热后的废氮的集流管道CNR’。
不像第一组热交换器,第二组热交换器的热交换器主体7连接到一氮 气输送管道和一液氧管道。在每一个第二热交换器主体7冷端的第四进口 E4’连接到一用于待加热的氮气的输送管道DN,在每一个第二热交换器主 体7热端的第四出口S4’连接到一用于加热后的废氮的集流管道CN。在每 一个第二热交换器主体7冷端的第五进口E5’连接到一用于待蒸发的液氧 的输送管道DOL,在每一个第二热交换器主体7热端的第五出口S5’连接 到一用于蒸发后的氧的集流管道COG。
还应明白,第二组热交换器的热交换器主体不必相同,特别是,不是 都流过相同的流体。
第一组热交换器的热交换器主体和第二组热交换器的热交换器主体之 间的两个主要区别在于:
第一,任一待蒸发的流体被送到至少一个,优选地是所有的第二组热 交换器的热交换器主体。这样,第一组热交换器的热交换器主体包括至少 一种类型的用于将液氧蒸发例如到几个压力的通道。它们也可以包括用于 蒸发液氮的通道。
第二,在高于给定阈值的压力下待冷却或加热的任一流体被送到第二 组热交换器中。该第二组热交换器明显也能接收较低压力的流体,但这些 热交换器主体旨在供高压下使用。该阈值可以是30bar abs、20bar abs或 15bar abs。
对于第一组热交换器1和第二组热交换器2,热交换器主体5和7以 及它们的分配和集流管道必须通过珍珠岩或岩棉I保温。每组热交换器可 放置在只包括热交换器和至少一些集流、输送管道的单个冷箱4中,或者 两组热交换器可放置在共同的、只包括热交换器主体和它们的集流、输送 管道的冷箱中,或者两组热交换器可连同空气分离塔系统放置在共同的冷 箱中。
图4和图5更详细地示出组合件的下部。
如EP-A-1 230 522中描述的,一种用于在低压氧的情况下蒸发中压氮 的双空气分离塔(double air separation column)的再沸器-冷凝器可布置 在塔外面。这种情况下,上述再沸器-冷凝器可以像两组热交换器1和2 那样放置在同一冷箱4中位于第一组热交换器1的上方或者位于两组热交 换器之间。以这种方式,由同一制造厂家提供的所有元件(热交换器、再 沸器-冷凝器)放置在单个包装内,该包装可直接被提供到安装地。可以 理解的是,每一元件(上部热交换器、底部热交换器和,可选的,再沸器) 都能在一个独立的冷箱内被隔热,或者这些元件中的几个可放置在共同的 冷箱内。
如前述附图示出的组合件适用于结合到如附图6所示的低温蒸馏空气 分离设备中。这里,热交换器组合件示为包括第一组热交换器1和第二组 热交换器2的单个元件12。
图6示出根据本发明的空气分离设备,特别地,如前面所述的热交换 器组合件结合在使用双塔的低温蒸馏空气分离设备中。应该明白,本发明 并不局限于这种双塔设备,而是可应用于单塔设备、三塔设备和使用其它 类型塔如氩气塔或混合物塔的设备。
图6只是示意性的,特别地,没有准确示出示为两个热交换器块的组 合件1和2中的流体进口和出口。部分1包括至少一个热交换器主体,部 分2包括至少一个热交换器主体。对于该实施例,应考虑到每一部分包括 一系列的基本上相同的热交换器主体。
待分离的空气在一主压缩机MAC中被压缩到中压以形成中压空气 AIR MP。该空气剩余部分的压力先在增压压缩机S1中被增压到一第一高 压以形成高压流1 AIR HP,并且该空气剩余部分的压力在增压压缩机S2 中被增压到一第二高压以形成流2 AIR HP。中压流AIR MP被送到热交 换器组合件的位于地面上至少几十米的部分1中,而高压流1 AIR HP和2 AIR HP被送到位于地面上至少1米的下部部分2中。中压空气流的一部 分可被送到下部部分2中。
中压空气在第一组热交换器1的热交换器主体中被冷却到一中间点, 然后被送到双空气分离塔的中压塔MP的腔室中。
应该理解,为了简化附图没有示出用于吸热的装置。所述用于吸热的 装置可以是一个向空气分离塔排入的中压空气涡轮或氮气涡轮,当需要时 通过液体注入来补充。
高压空气在第二组热交换器的热交换器主体中被液化,然后被送到双 塔的一个或所有塔中。
液氧从低压塔的腔室中流出,被分成两股流。一部分OL被送到第一 组热交换器的热交换器主体的最冷部分中以在被送到储存器S之前被过 冷。其余部分被抽吸以形成在至少20bar abs或至少30bar abs压力下的流 OLP。该流OLP在第二组热交换器的热交换器主体中蒸发以产生流OG。
中压氮气N在中压塔的顶部流出,被送到第二组热交换器的热交换器 主体中,在该热交换器主体中被加热以形成产品N。
在低压塔的顶部流出的氮被分成两股流,一部分NR被送到第一组热 交换器1中,而剩余部分NR’被送到第二组热交换器2中。这两股流被加 热,然后被送去回收利用或排进大气。
中压富氮液体流LL在第一组热交换器1的热交换器主体中的最冷部 分中过冷,然后被送到低压塔的顶部以用作回流。