电路基板、电子设备和电源装置转让专利

申请号 : CN200610101111.7

文献号 : CN100593362C

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 山本真吾石桥广行松田克

申请人 : 欧姆龙株式会社

摘要 :

本发明涉及电路基板、电子设备和电源装置。能够有效地抑制放射噪音。本配线基板(引线框)(10)是将由高导磁率的导电性软磁性膜做成的高频电流抑制材料(18)设置在成为放射噪音源的引线框部分(配线部分)(10a)的近场(磁场支配区域)、最好是在引线框部分(10a)的外周的结构。

权利要求 :

1.一种开关电源,其具有配线基板,在该配线基板上至少安装有开关元件,该配线基板通过由板状金属形成电子回路的配线部分的引线框构成,该开关电源的特征在于, 由导电性的软磁性膜构成的高频电流抑制材料设置在所述引线框的配线部分上、在所述开关元件附近并且为高频电流流过的配线部分上,并覆盖该配线部分的整个外周; 高频电流抑制材料的导磁率为μ′=5~10000、μ″=0~500,其电阻率比引线框的电阻率高,为ρ=2×10-8Ωm~10000×10-8Ωm,高频电流抑制材料的膜厚在0.1μm~100μm的范围内。

2. 如权利要求1所述的开关电源,其特征在于,高频电流抑制材料由具有导电性的多个软磁性膜层叠而成。

3. 如权利要求1所述的开关电源,其特征在于,高频电流抑制材料设置在会成为放射噪音源的配线部分的作为近场区 域的附近5cm以内。

4. 如权利要求1所述的开关电源,其特征在于,高频电流抑制材料经由空间乃至绝缘物体而设置在会成为放射噪音源 的配线部分。

5. —种开关电源,其具有配线基板,在该配线基板上至少安装有开关 元件,该配线基板通过由板状金属形成电子回路的配线部分的引线框构成, 该开关电源的特征在于,由软磁性膜、和电阻率在规定范围内的电阻膜层叠而成的高频电流抑 制材料设置在所述引线框的配线部分上、在所述开关元件附近并且为高频 电流流过的配线部分上,并覆盖该配线部分的整个外周;高频电流抑制材料的导磁率为10000、 W=0~ 500,其电阻率比 引线框的电阻率高,为p=2 x l(T8Qm ~ 10000 x 10-8nm,高频电流抑制材料 的膜厚在0.1pm~ 100|im的范围内。

6. 如权利要求5所述的开关电源,其特征在于, 上述电阻膜是电阻率为p=2x i(T8Qm~ 10000x l(T8Qm的范围内的电阻膜。

7. 如权利要求5所述的开关电源,其特征在于,高频电流抑制材料设置在会成为放射噪音源的配线部分的作为近场区i或的附近5cm以内。

8. 如权利要求5所述的开关电源,其特征在于,高频电流抑制材料经由空间乃至绝缘物体而设置在会成为放射噪音源 的配线部分。

9. 一种电子设备,其特征在于,设有如权利要求1~8任意一项所述 的开关电源。

10. 如权利要求9所述的电子设备,其特征在于,所述高频电流抑制材料设置在会重叠高频噪音的金属物上。

11. 一种电源装置,其特征在于,设有如权利要求1 ~8任意一项所述 的开关电源。

12. 如权利要求11所述的电源装置,其特征在于, 所述高频电流抑制材料设置在会重叠高频噪音的金属物上。

说明书 :

电路基板、电子设备和电源装置

技术区域

本发明涉及配线基板、电子设备以及开关电源等电源装置,可抑制受 配线产生的放射噪音。

该电子设备包括所有产生高频放射噪音的电子设备。

该电源装置,代表性的是开关电源,包括AC/DC转换器、DC/AC转换 器、变换器(Y乂A—夕)、不间断电源(UPS)等具备电力转换部的其他 的电源装置。

背景技术

在进行高频动作的电子设备中,伴随着其处理速度的高速化,放射噪 音也随着增大,更有效地抑制由此产生的电磁故障的技术开发的呼声高涨。
特别是,由于近年来电子设备在国内外的普及度极度提高,由这些设 备的放射噪音引起的该设备以及其他的设备的误动作等给工业社会带来的 影响也非常大,国际性的CISPR (国际无线故障特别委员会)等正在严格 管理规定这些电磁故障。
这样的电磁故障,问题多产生在试作评价的阶段,深刻地影响到电路 设计的返工和开发周期的长期化等,开发能够不用变更电路设计等而简单 地抑制噪音的技术成为众所期望。
因此一直以来开发了很多抑制此种放射噪音的技术,作为这些技术的 一种,例如专利文献l中所示的在绝缘性基板表面上设置铁素体层的方案。 此特许文献1中揭示的抑制放射噪音的技术是在基板的表面设置由铁素体 层构成的噪音抑制体。
这样的放射噪音抑制技术不仅仅特定在作为噪音源的配线部,而为基 板的表面覆盖铁素体层而得的,因此能广泛用在跨越电子部件或配线等的 极广泛的区域里,抑制放射噪音范围广,并且变为这样的抑制,即抑制在 表示噪音抑制体的损失成分的导磁率的虚部p"为高的值即100MHz-数 GHz情况下的噪音,在数10MHz带的抑制效果困难,而为解决此课题往往
4会诱发由于遮板或电子部件的增加等而产生的费用增加和电子设备的结构 变更等其他的新的课题。
特许文献l :特开2005-129766号公报。 发明内容
因此,本发明是针对作为放射噪音发生源的配线部分,能有效地抑制 放射噪音的发生,以解决上述的课题。
本发明的配线基板是在安装电子部件的配线基板上,由导电性的软磁 性膜做成的高频电流抑制材料设置成至少与能成为放射噪音源的配线的导 体部分局部物理接触的状态。
上述配线基板包括在绝缘基板上印刷铜等金属材料的配线而成的第一 基板、或者在绝缘基板上设置具备了所要的电路图案的引线框作为配线的 第二基板、在引线框上安装了电子部件,将引线框的一部分作为配线的整 体树脂模制而得的第三基板等各种基板等各种基板。
如果是第一基板,可以在印刷配线上设置软磁性膜。如果是第二、第 三基板,可以在引线框上设置软z磁性膜。另外也可以在配线部使用诸如跳 线之类的部件,在此跳线上形成软磁性膜后安装在第一、第二、第三基板 上。设置软^t性体的配线形状没有特別限定。
另外对将软磁性体设置在配线上呈膜状的方法也不作限定。
虽然作为软磁性体没有限定其种类,但是作为高导磁率的值更高的好。 导石兹率可表示为JH"。以p'为导磁率的实部,以p〃为导磁率的虛部来表 示损失成分。
作为可以提供这样的导磁率的值的软磁性体,例如铁镍合金、铁镍硼 合金、铁镍钼合金、铁镍硅合金、铁镍铜合金、铁镍铬合金、铁镍铜钼合 金、铁镍铌合金等铁镍导磁合金、铁钴合金、铁钴镍合金、钴锆铌合金等。
另外,除上述软》兹性体以外,还有作为最好为粉末状的软磁性体,例 如铁铝硅合金、(商标名:山达斯特合金〔ir乂夕、、7卜〕)、羟基铁、锰锌类 铁素体、镍锌类铁素体等。
根据本发明的配线基板,导电性的软磁性膜作成的高频电流抑制材料 设置在发生放射噪音的配线的导体部分,所以根据表皮效应可以只极有效 地衰减流过配线部分的表皮的高频电流,另一方面,对直流的或者低频的
5电流呈低电阻,不阻害流经配线的直流或者低频的电流成分。
综上所述,相对于现有技术中设置覆盖包括从配线基板上安装的众多
的电子部件和配线等到放射噪音源在内的整个基板表面的遮板或抑制体来 抑制放射噪音,在本发明中,在成为放射噪音源的配线的导体部分直接设 置由导电性的软磁性膜作成的高频电流抑制材料的构造可以极其容易,并
且低成本并有效地抑制从数10MHz到数GHz的放射噪音的发生。
并且,为更好地衰减高频电流,抑制放射噪音的发生,使高频电流抑 制材料的膜厚要厚于配线的表皮的厚度。
根据本发明,在成为放射噪音源的配线的导体部分的外周面直接或者 近场区域即5cm以内薄膜状地设置高频电流抑制材料,所以放射噪音扩大 之前,就可以极有效地抑制放射噪音的发生。
另外,在本发明中的电子设备的情况中,即使或多或少存在开口部或 者间隙,与现有技术不同,放射噪音泄漏到外部去的情况没有了,可以一 举解决上述的课题。
特别是,在本发明中,无需在配线基板侧如现有技术那样配置特别的 放射噪音抑制部件,所以配线基板的组装更加容易,并且实现低成本化。
将上述的配线基板搭载在个人电脑等电子设备上的情况下,如前所述, 可以抑制高频电流产生的放射噪音,得到可以减少放射噪音的电子设备。
另外,将上述的配线基板搭载在开关电源等电源装置上的情况下,如 前所述,可以抑制高频电流产生的放射噪音,得到可以减少放射噪音的电 源装置。这种电源装置中,在开关电源中可以在高频变压器的一次侧或者 二次侧的高频电流流经的电流通路上设置高频电流抑制材料。
特别的,在本发明中,高频抑制材料设置在近场、即波动阻抗小、磁 场为支配性的配线附近,所以虽然在配线附近覆盖着遮》兹板,由软》兹性体 的膜作成的高频电流抑制材料仍可以有效地抑制高频磁场减少放射噪音。
另外,将构成高频电流抑制材料的软磁性体粉末状地混入有机结合剂 中,设置在能成为放射噪音源的配线部分的情况下,能够成为处理性优异 的构造,可以在发生放射噪音的配线部分的外周适当并容易地设置。
在开关电源中,因为伴随着开关晶体管的开关动作的高次高频产生的 放射噪音功率很强, 一直以来,虽然提出了很多针对此种放射噪音的抑制 对策,但是重量增加,成本增加,放射噪音泄漏等的课题一直没有得到解
6决。发明效果:在本发明中,在作为放射噪音源的配线部分的附近的磁场 支配区域里设置由软磁性体作成的高频电流抑制材料,所以可以简单地并 且低成本地完成抑制构造的构成,另外可以有效地抑制放射噪音,实用性 极高。附图说明图1是本发明的实施方式的作为配线基板的引线框的平面图; 图2是开关电源的电气回路的局部概略图;图3是用于在图5的引线框部分流动的高频的环路电流产生的磁场和 电场的i兌明图;图4是波动阻抗的说明图;图5是在本发明的实施方式的配线基板即引线框上环路电流流动的引 线框部分(配线部分)的剖面图;图6(a)、 (b)是在引线框上作为高频电流抑制材料的软磁性膜的磁性 镀金的情况下和未磁性镀金的情况下的放射噪音发生状态在磁场强度测定 器画面上的比较图;图7是在引线框上作为高频电流抑制材料的软磁性膜的磁性镀金的情 况下和未》兹性镀金的情况下的峰值点的频谱波形图;图8是在图5的引线框部分设置由粉末作成的高频电流抑制材料的说明图;图9(a) ~ (c)是图5的高频电流抑制材料设置在引线框部分的一部 分的说明图;图IO是导磁率的频率特性表示图;图11 (a) ~ (q)是表示多个磁性膜层叠成的高频电流抑制材料说明图;图12是高频电流抑制材料经由空间乃至绝缘物设置在? j线框上的说明图;图13 (a) ~ (d)是高频电流抑制材料设置在电子部件的端子或散热 片,金属筐架上的说明图;图14是解析模型上使用的环状金属体的立体图;7图15 (a) ~ (c)是表示使用图14的环状金属体的高频电流抑制材料 的放射噪音的测定结果的说明图;图16 (a) ~ (c)是表示使用图14的环状金属体的高频电流抑制材料 的电阻率的变化产生的电流密度分布图;图17 ( a )、 ( b )是是表示使用图14的环状金属体的多个^F兹性膜组成的 高频电流抑制材料的放射噪音的测定结果的说明图。附图标记说明10引线框;10a引线框部分;12高频变压器(电子部件);14铝电 解电容(电子部件);16开关晶体管(电子部件);18高频电流抑制材料; 20用于使引线框IO立体交叉的电子部件。具体实施方式以下参照附图详细地说明本发明实施方式的配线基板以及配备了该配 线基板的电子设备(电源装置)的一例即开关电源。参考图1至图3说明本发明实施方式的配线基板以及配备其的开关电 源。搭载了这种开关电源的电子设备例如在30MHz ~ lGHz的范围内被严格 地管理电^?兹故障。图1是表示该配线基板和其上安装的电子部件的概略图,在此图上, 配线基板是对应于开关电源的电子部件安装图案的引线框10构成的。在此实线表示的引线框IO上连接固定有构成电源的安装电子部件。图 l中为简略化,以矩形包围的虚线表示了作为电子部件的代表:高频变压器 12、作为高频变压器12的一次那侧的电子部件即平滑用的铝电解电容14、 作为开关元件的开关晶体管16和为使引线框10立体交叉而安装的电子部 件20。引线框10配备有为了安装电子部件的引线框部分和用于电子部件间的 配线的引线框部分。图1中放射噪音发生区域(例如环路电流流过的区域) 用双点划线包围的区域A1〜A3表示。在此区域中在高频变压器12的一次 侧和二次侧分别表示着放射噪音发生区域。 一次侧和二次侧的界限用点划线表示。图2只是概略地表示与这些电子部件12、 14、 16对应的开关电源的电 气回路的一部分。图2的开关电源的电气回路构成众所周知,所以省略其8说明。在图1中所示的区域Al是表示在高频变压器12的一次侧流动的环路 电流LC的区域。图3表示上述开关电源中流有环路电流LC的引线框部分10a的一部分 的立体图。如图3所示,由在引线框部分10a流动的环路电流LC在引线框 10a的周围产生磁场Hl,由此磁场Hl的变化产生电场El,进而由此电场 El的变化产生磁场H2,接着此-兹场H2的变化进而又产生电场E2,如此磁 场H1、 H2、 H3…和电场E1、 E2、...交替产生。在此关系中,如果环路电流LC增大的话,磁场的强度就增大,此磁场 的强度增大的同时电场的强度也增大。另外,环路电流LC的频率高速化的 同时^f兹场的变动也会增大,电场的强度也增大。并且,如果引线框部分10a上有环路电流LC流动,则磁场和电场交替 地传播开去,产生放射噪音。在此种情况下,在引线框部分10a的附近(近 场)磁场Hl呈支配性。在图4中表示波动阻抗Z的变化。在图4中横轴表示的是距离引线框 部分10a的距离D,纵轴表示的是波动阻抗Z (=任意位置的电场E/任意位 置的》兹场H)。如图4所示,距离引线框部分10a近的区域是近场NF;远的区域是远 场FF。在近场NF是磁场Hl处于支配性,可与磁场Hl相近似。近场NF和远场FF的交界是电磁波波长、的(1/2tt ),也就是大约A/6。 远场FF能够捕捉到电场和磁场综合在一起的电磁波。因为近场的概念是A/2兀,所以在30MHz~ lGHz的放射噪音的情况下, 近场的区域是1.7m~5cm,所以作为^f兹场成分更强的近场区域,优选在距 离配线部分5cm以内设置高频电流抑制材料。参照表示了在配线的导体部分的外周直接设置了导电性的软磁性膜构 成的高频电流抑制材料的构造的图5说明配线基板以及具备其的开关电源。在图5中表示了流动有环路电流LC的引线框部分(配线部分)10a的 断面。如图5所示,为了最有效率地抑制来自引线框部分的放射噪音,高 频电流抑制材料18直接、物理地接触在引线框部分10a的外周面全体上, 以均等的膜厚设置成薄膜状。此高频电流抑制材料18设置在流动着环路电 流LC的引线框部分10a上。在18的引线框部分不设置高频电流抑制材料18,而可以减少材料的成本。如图5所示,在高频变压器12的一次侧,流动着环路电流LC的引线 框部分10a上形成有高频电流抑制材料18,高频电流抑制材料18是由数 10MHz ~数GHz的高导磁率的导电性软磁性膜作成的。作为形成高频电流抑制材料18的软磁性体,例如铁镍合金、铁镍硼合 金、铁镍钼合金、铁镍硅合金、铁镍铜合金、铁镍铬合金、铁镍铜钼合金、 铁镍铌合金等强磁性铁镍合金、铁钴合金、铁钴镍合金、钴锆铌合金等。软磁性体并没有限定为薄膜状的设置方式,例如可用电解镀金、无电 解镀金、溅镀、蒸镀、压延复合材料等将软磁性体形成薄膜状。在图6(a)、 (b)表示了从上面观测图1所示的配线基板的情况下的放 射噪音的峰值点。图6 (a)是在引线框部分10a上没有设置高频电流抑制 材料18的情况,图6(b)是在引线框部分10a上设置高频电流抑制材料18 的情况,为了在图6(a)、 (b)中示意地表示磁场强度测定器的彩色显示画 面,将磁场强度高的区域以粗二重交叉影线,磁场强度中等的区域以一重 交叉影线,磁场强度低的区域以虚线影线表示。如图6(a)、 (b)所示,在引线框部分10a上设置了高频电流抑制材料 18的情况下,大幅地抑制了放射噪音。另外,因为上述的彩色显示画面中 很难判明,所以为判断铝电解电容和高频变压器等的部件的位置用虛线表 示。图6的测定用的引线框部分的材料是铜,作为高频电流抑制材料18的 软^磁性体是铁镍合金,其膜厚是5(Him。放射噪音是用(日本)/4X研究 所社制作的电磁波解析测定系统(ESV-3000 )测定的。测定频率是30MHz ~ 300MHz。磁场强度高的区域的峰值点在图6 (a)是90.4dBpV,在图6 (b)是 87.7dBpY,在本实施方式中约3dB磁场强度小,所以因为高频电流抑制材 料18而具有放射噪音抑制效果。理论说明放射噪音降低的理由。高频电流因为表皮效应在引线框部分10a的表皮流动。此种情况下的 表皮厚度5在电阻率p、导磁率[x、频率f中表示为s=VC^7)。如此表皮 厚度S的式子所示,作为高频电流抑制材料18,导磁率高能够有效地抑制 高频电流。10例如,引线框部分10a是铜,高频电流抑制材料18是铁镍合金类的情 况下,引线框部分10a的电阻率p为p=1.7x l(r8Qm,高频电流抑制材料18 的电阻率p为p=2 x l(T8Qm,高频电流抑制材料18的电阻率p高。因此,高导磁率p和高电阻率p的软磁性体即高频电流抑制材料18因 为高导磁率ili所以表皮厚度5变得更薄,并且由于高电阻率p可以有效地 抑制高频电流,从而可以抑制放射噪音。在图7中,在整个频镨表示了高频电流抑制材料18的放射噪音降低效 果。图7是横轴为频率(Hz),纵轴为磁场强度(dB|iV/m)的表示峰值点 (最大磁场强度的地方)的频谱波形的说明图。另外,表示测定结果的数据线1是作为高频电流抑制材料18即软磁性 体在引线框部分10a上未磁性镀金的情况下;数据线2是作为高频电流抑制 材料18的软磁性体在引线框部分10a上磁性镀金的情况,测定频率范围是 30固z ~ 300 MHz。如上述说明,在高频电流流动的地方的引线框部分(配线部分)10a 上,最好直接设置高频电流抑制材料18,由此可以抑制磁场的产生,防止 放射噪音的泄漏。另外高频电流抑制材料18也可以是由粉末制成的软^磁性体18a直接、 乃至利用混练分散等方式混入有机结合剂18b中而成的图8的构造。粉末形状有球形状,破碎形状(扁平状、针状等),由于粉末形状为扁 平状,针状所以产生高导^f兹率。另一方面,如果粉末形状是球形状的话没 有导》兹率的各向异性,不必考虑配向性。作为这些粉末状的软磁性体18a,例如可以举出高频导磁率大的铁镍硅 合金(商标名:山达斯特合金〔ir y夕、'7卜〕)、羰基铁、锰锌类铁素体、 镍锌类铁素体等。软磁性体18a可以是一种、也可以是多个种类组成的复合 软f兹性体。作为有机结合剂18b,例如可举出ABS树脂、聚酯类树脂、聚氯乙烯 类树脂、聚乙烯丁缩醛树脂、聚亚安酯树脂、纤维素类树脂、腈丁二烯类 橡胶、苯乙烯丁二烯系橡胶等热可逆转性树脂或者这些的共聚体。另外,作为其他的有机结合剂18b,可以举出环氧树脂、苯酚树脂、酰 胺类树脂、酰亚胺类树脂等热固性树脂。粉末状的高频电流抑制材料18的形成方法为印刷、分配、喷射涂布等,ii形成薄片状粘贴,或者冲型成薄片后接着,或者涂上粉末,或者冲压成型 等,其方法没有被限定。
图9(a)、 (b)、 (c)表示了由软^^性体组成的高频电流抑制材料18的 构造例。如图9(a)、 (b)、 (c)所示,高频电流抑制材料18也可以仅仅设 置在引线框部分10a的一部分上。
图9 (a)是引线框部分10a的两面都设置有高频电流抑制材料18的构 造,图9(b)是引线框部分10a的单面设置有高频电流抑制材料18的构造, 图9 (c)是引线框部分10a的单面和侧面设置有高频电流抑制材料18的构 造。高频电流抑制材料18在引线框部分10a是圆形的情况下,可以是外周 整体或者仅仅一部分设置的构造。
另外高频电流抑制材料18也可以如图10所示的由导磁率不同的多个 磁性膜a、 b层叠而成。在图10中表示了导磁率不同的磁性膜a和磁性膜b 的频率特性。磁性膜a有高达数GHz的频率特性,磁性膜b有数10MHz 特别高的频率特性。
图11 (a) ~ (q)表示了在引线框部分10a上设置由磁性膜a和b构 成的高频电流抑制材料18。磁性膜a对数10MHz的高频电流的抑制效果低, 因为磁性膜b正好相反,对数10MHz的高频电流的抑制效果高,所以由于 由J兹性膜a和b层叠而成,所以可以得到在数10MHz〜数G他的广泛区域 内抑制放射噪音的效果。此时,数GHz的电流越流动,表皮效应越显著, 将在数GHz都有高导磁率的磁性膜a设置在更加作为表面的引线框的外侧 更佳。图11 (a) - (q)是导磁率不同的磁性膜a、 b层叠而成的高频电流 抑制材料18的组合的一个例子,其层数和组合方法未作限定。
另外,高频电流抑制材料18也可以是磁性膜和电阻率高的电阻膜的层 叠构造。仅由磁性膜构成的高频电流抑制材料18中,虽然要求磁性膜有高 导磁率和高电阻率,但是将高频电流抑制材料18的构成分离为磁性膜和电 阻膜,由此能够有效地抑制放射噪音。由磁性膜和电阻膜构成的高频电流 抑制材料18与图11 (a) ~ (q)表示的层叠构造一样,因为其层数和组合 方法没有被限定,所以在此省略其概略图。电阻膜是铝(p-2.75x l(T8Qm), 锌(p-5.9x l(T8Qm)、镍(p-7.24x 10-8Dm)、锡(p-11.4x l(T8Qm)、铬(p-17 xl(T8Qm)、镍铬合金(p-109x l(T8Qm)、其他的高电阻的材料以及有机物 或氧化物,还有添加了P或B、 Mo等的复合材料,其材料的种类不定。另外,电阻膜还可以是由机械研磨或者利用化学反应的蚀刻等粗化形成的。
如图12所示的高频电流抑制材料18也可以是经由空间乃至绝缘物20 设置在引线框10a上。因为根据磁性膜的导磁率在引线框10a上流动的高频 电流的表皮厚度可以变薄,所以可以得到与将磁性膜直接设置在SI线框上 的情况下同样的噪音抑制效果。
高频电流抑制材料18加在这样的板状金属形成电子回路的配线部分的 引线框上,也可以设置在将绝缘基板上的铜等金属材料进行印刷配线而得 的印刷基板上。
高频电流抑制材料18也可以设置在开关晶体管等、产生高频噪音的电 子部件的端子或其附近的金属物、例如图13所示的电子部件的端子22和 散热片24、金属筐架26上。图13 (a)、 ( b)表示的是高频电流抑制材料 18设置在电子部件的端子22上的情况,图13 (c)表示的是高频电流抑制 材料18设置在散热片24上的情况,图13 (d)表示的是高频电流抑制材料 18设置在金属箧架26上的情况,将电子部件的端子22连接在引线框部分 10a上,将散热片24和金属篋架26接向为使电位稳定的接地,因此会产生 导致放射噪音的原因的高频电流的流动,将高频电流抑制材料18设置在这 些地方同样可以抑制放射噪音。
图14和图15表示与抑制放射噪音有关的解析模型。图14是流有高频 的环路电流LC的环状金属28的立体图。图15 ( a)是在环状金属28上未 设置高频电流抑制材料18的情况,图15 (b)是在环状金属28上设置了高 频电流抑制材料18的情况,图15 (c)表示的是在环状金属体28的外周面 整体上设置了高频电流抑制材料18的情况下放射噪音的解析结果。
比较图15 (a)、 (b)、 (c)的解析结果得知,将高频电流抑制材料18 设置在环状金属体28的外周面整体上的情况下,可以最大限度地抑制放射 噪音。高频电流抑制材料18的厚度为10pm,解析频率为30MHz。
高频电流抑制材料18的磁性膜虽然是导磁率更高的好,作为可以抑制 放射噪音的范围举例为p'=5 ~ 10000, W=0 ~ 500。
在图16 (a)、 (b)、 (c)中表示了在图15 (c)的构造中,变化高频电 流抑制材料18的电阻率时的电流密度分布。图16( a )是电阻率p=2 x l(T8Qm, (b )是p=100 x 10-8Qm, ( c )是p=10000 x l(T8Qm时的电流密度变化。如 图16(a)、 (b)、 (c)所示,如果电阻率增大,则由于高频电流抑制材抖18
13中难有电流流动,作为高频电流抑制材料18的电阻率p最好限定在p=2 x l(T8Qm ~ 10000 x l(T8Qm的范围内。
图17(a)、 (b)表示的是由2种磁性膜构成的高频电流抑制材料18的 抑制放射噪音的解析结果。图17( a )是导磁率p为400,电阻率p=20 x l(r8Qm 的磁性膜a组成的高频电流抑制材料以2pm设置。图17 (b)是磁性膜a 和导磁率p为1000,电阻率p=20 x l(T8Qm的磁性膜b构成的高频电流抑制 材料18设置在引线框部分10a上。图17 ( b)的磁性膜a和b的膜厚一共 为l(am。解析频率为30MHz。
比较图17 (a)、 (b)的结果得知,多个磁性膜层叠可以更有效地抑制 高频噪音。
此解析模型使用的高频电流抑制材料18沿环状金属体28的环状面设 置。环状金属体28的尺寸是1.5mm(D,放射噪音是通过「日本総合研究所」 社制造的电磁场解析工具(JMAG-Studio )解析的。
下述抑制放射噪音的高频电流抑制材料18所必需的特性。 表皮厚度5用电阻率p、导磁率p、频率f表示为^V(^Z^),所以电 阻率p越厚,表皮厚度S也越厚。在此将表皮厚度5考虑为配线部分的剖面 积S的话,作为配线所具有的电阻值R为R=px ( l/S ) x l ,伴随
着导磁率p以及电阻率p的增加有增大的倾向。L是配线的长度。也就是说 配线部分的导;兹率p和电阻率p的增加,配线的电阻值R乃至是电阻Z也 可以增大。
由软磁性膜制成的高频电流抑制材料18的导磁率虽然更高的好,根据 "电析法的高比电阻Ni-Fe类软磁性膜的制作(表面技术 Vol.49,No.3,1998)",使用FeNi的软磁性膜在数10MHz以上的带域里,导 石兹率在上述文献中,ja'最大到1000, W-500左右,通过添加二乙基色胺(DET) 等,可以抑制在30MHz以上的频率带的导磁率的衰减。
另外根据"无电解镀敷法的软磁性NiFeB/NiPC/NiFeB层叠膜的制作(第 23次日本应用不兹力学会学术演讲概要集1999),,, FeNi中添加了 B的NiFeB 的导f兹率也同样地在数10MHz以上的带域里,为上述最大ji'=1000, jx"=500 的导》兹率。
表皮厚度S用电阻率p、导》兹率p、频率f表示为5=V^Z^)々,在这 里记述导磁率『1000、电阻率p=2xl(T8Qm的特性的磁性膜和有导磁率
14『10、电阻率p=1000x l(r8Qm的特性的磁性膜的表皮厚度S。当频率为 30MHz的时候,前者的磁性膜的表皮厚度5为0.4pm,后者的磁性膜的表 皮厚度S为91.9pm。另外当频率为lGHz的时候,前者的磁性膜的表皮厚 度5为0.07)im,后者的磁性膜的表皮厚度5为15.9pm。高频电流抑制材料 18的厚度最好在使30MHz ~ 1 GHz的高频电流收敛于膜中的0.1 jam ~ 1 OO(am 的范围内。
在由多个磁性膜乃至电阻膜组成的高频电流抑制材料18中,最好将与 表皮厚度相对应的膜厚设置在各层中。
如上所述将高频电流抑制材料18直接设置在有高频电流流过的引线框 部分10a上,可以抑制电流的产生防止放射噪音的泄漏。
将上述的配线基板搭载在个人电脑等电子设备的情况下,如上述可以 得到抑制由于高频电流产生的放射噪音的发生,可以降低放射噪音的电子 设备。
将上述的配线基板搭载在开关电源等电源装置的情况下,如上述可以 得到抑制由于高频电流产生的放射噪音的发生,可以降低放射噪音的电源 装置。可以在此电源装置的开关电源中高频变压器的 一次侧和二次侧的高 频电流流经的电流经路上设置高频电流抑制材料18。
本发明不仅限于上述的实施方式,也包含在技术方案部分记载的范围 中的各种变更和变形。