介电陶瓷和单片陶瓷电容器转让专利

申请号 : CN200580028204.5

文献号 : CN101006027B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 武藤和夫中村友幸加藤成佐野晴信笹林武久平松隆

申请人 : 株式会社村田制作所

摘要 :

构成陶瓷烧坯的介电陶瓷具有通式100(Ba1-x-ySrxCay)m(Ti1-zZrz)O3+aBaO+bR2O3+cMgO+dMnO+eCuO+fV2O5+gXuOv(式中,R是特定的稀土元素比如La、Ce或Pr;而XuOv是至少含有Si的氧化物组)所示的组成;并且0≤x≤0.05,0≤y≤0.08(优选0.02≤y≤0.08),0≤z≤0.05,0.990≤m,100.2≤(100m+a)≤102,0.05≤b≤0.5,0.05≤c≤2,0.05≤d≤1.3,0.1≤e≤1.0,0.02≤f≤0.15和0.2≤g≤2。使用这种组成,可以制备这样的一种单片陶瓷电容器:即使在因其介电层被进一步变薄而导致被施加高电场强度的电压时,也保持良好的介电特性和温度特性,并且在实现良好的绝缘性质、介电强度和高温负载寿命上具有优异的可靠性。

权利要求 :

1.一种介电陶瓷,其包含通式100(Ba1-x-ySrxCay)m(Ti1-zZrz)O3+aBaO+bR2O3+cMgO+dMnO+eCuO+fV2O5+gXuOv所示的组成,式中,R表示选自由La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y组成的组中的至少一种元素;而XuOv表示至少含有Si的氧化物组,其中,

0≤x≤0.05,0≤y≤0.08,并且0≤z≤0.05;

0.990≤m并且100.2≤(100m+a)≤102;以及

0.05≤b≤0.5,0.05≤c≤2,0.05≤d≤1.3,0.1≤e≤1.0,0.02≤f≤0.15,并且0.2≤g≤2。

2.根据权利要求1的介电陶瓷,其中y为0.02≤y≤0.08。

3.根据权利要求1或2的介电陶瓷,其中所述平均粒度为0.21μm以上,但不超过0.45μm。

4.根据权利要求1的介电陶瓷,其中所述XuOv的组分X含有Si和选自由Li、B、Na、K、Be、Mg、Ca、Sr、Ba、Al、Ga、Ti、和Zr组成的组中的至少一种元素。

5.根据权利要求1的介电陶瓷,其中所述介电陶瓷含有选自由Zr、Ni、Fe、Co、Al、Ag、Mo、Ta、Pd、Zn、Hf、Nb、和W组成的组中的至少一种元素。

6.一种单片陶瓷电容器,其包含由将多个介电层层叠构成的陶瓷层压体形成的陶瓷烧坯、被彼此平行埋入所述陶瓷烧坯中的多个内电极、以及被安置在所述陶瓷烧坯的外表面上的外电极,其中所述陶瓷烧坯是由根据权利要求1至4中任一项的介电陶瓷所形成的。

7.根据权利要求6的单片陶瓷电容器,其中所述内电极包含贱金属材料。

8.根据权利要求6或7的单片陶瓷电容器,其中所述外电极包含贱金属材料。

说明书 :

技术领域

本发明涉及介电陶瓷和单片陶瓷电容器。更具体而言,本发明涉及适于用作尺寸小且容量高的单片陶瓷电容器的介电材料的介电陶瓷,以及涉及采用这些介电陶瓷制备的单片陶瓷电容器。

背景技术

随着电子技术的最新发展,单片陶瓷电容器的尺寸在快速减小,而容量却在迅速增加。
将介电层和内电极交替层叠形成层制品,并将所得层制品进行烧结,就可以制备出单片陶瓷电容器。为了降低单片陶瓷电容器的尺寸并增加其容量,需要降低每一个介电层的厚度。
然而,介电层变薄时,它们变成要承受高电场强度的电压。因此,可能导致相对介电常数εr降低、温度特性恶化,并且可靠性降低。
因此,已经要求介电陶瓷即使在因其厚度降低而导致介电层被施加高电场强度的电压时也要能够高持高的介电常数,并且需要在实现良好的绝缘性、介电强度和耐久性上具有优异的可靠性。
根据这种需求,已有人披露了这样的一种介电陶瓷:在每100重量份并且表示为通式{Ba1-xCaxO}mTiO2+αRe2O3+βMgO+γMnO(式中,Re表示特定的稀土元素)的主要组分中包含0.2~5.0重量份的确定的烧结添加剂(专利文献1)。
在专利文献1中,试图通过将稀土氧化物、MgO和MnO加入到{Ba1-xCaxO}mTiO2所示的主要组分中并且将Ca与Ba之间的摩尔比x、(Ba、Ca)与Ti的摩尔比m以及各种添加组分与主要组分的摩尔比α、β和γ限定在预定范围,以获得具有良好的温度特性和优异可靠性的单片陶瓷电容器。
此外,在另一现有技术中,披露了一种这样的介电陶瓷:其含有通式{Ba1-xCax}mTiO3+α1BaO+α2CaO+βV2O5所示的组分并且以每100重量份的由(Ba1-xCax)mTiO3所示的主要组分计含有0.2~5.0重量份的特定的烧结添加剂(专利文献2)。
在专利文献2中,试图通过将BaO、CaO和V2O5加入到{Ba1-xCax}mTiO3所示的主要组分中并且将Ca和Ba之间的摩尔比x、(Ba、Ca)与Ti的摩尔比m以及各种添加组分与主要组分的摩尔比α1、α2和β限定在预定范围,以得到具有良好温度特性、高的绝缘性和优异可靠性的单片陶瓷电容器。
专利文献1:日本未审查专利申请公开2000-58378
专利文献2:日本未审查专利申请公开2003-165768

发明内容

本发明要解决的问题
然而,在专利文献1和2所公开的单片陶瓷电容器中,当每一个介电层的厚度都降为约1μm时,降低了绝缘性质和在高电场下的电场强度,并且也降低了高温负载寿命.因此,存在的问题是导致了可靠性的降低.另外,当为提高可靠性而降低陶瓷颗粒的平均粒度时,存在的问题是相对介电常数εr被降低.
本发明是鉴于上述问题而完成的。本发明的目的是提供用于制备单片陶瓷电容器的介电陶瓷,其中所述单片陶瓷电容器即使因其介电层进一步变薄而被施加高电场强度电压时,也能够保持良好的介电特性和温度特性,并且在实现良好的绝缘性质、介电强度和高温负载寿命上具有优异的可靠性。本发明的另一目的是提供由这种介电陶瓷制备的单片陶瓷电容器。
解决问题的方式
本发明人发现,通过将预定量的Cu组分和V组分以及含有Mg组分、Mn组分、稀土氧化物和Si组分的烧结添加剂加入到含有(Ba、Ca)TiO3所示主要组分的介电陶瓷材料中可得到如下的介电陶瓷,该介电陶瓷可以被用于制备这样一种高度可靠的单片陶瓷电容器:其具有良好的绝缘性质、介电强度和高温负载寿命,并且即使在介电层变薄或主要组分包含Sr或Zr的情况下,也能保持良好的介电特性和温度特性。
本发明是基于这种发现而完成的。根据本发明的介电陶瓷包含通式100(Ba1-x-ySrxCay)m(Ti1-zZrz)O3+aBaO+bR2O3+cMgO+dMnO+eCuO+fV2O5+gXuOv(式中,R表示选自La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y中的至少一种元素;而XuOv表示至少含有Si的氧化物组)所示的组成,并且0≤x≤0.05,0≤y≤0.08,0≤z≤0.05,0.990≤m,100.2≤(100m+a)≤102,0.05≤b ≤0.5,0.05≤c≤2,0.05≤d≤1.3,0.1≤e≤1.0,0.02≤f≤0.15和0.2≤g≤2。
从改善高温负载寿命的观点考虑,上述y被优选为0.02≤y≤0.08。
也就是说,在本发明的介电陶瓷中,y被优选为0.02≤y≤0.08。
此外,本发明人对具有上述通式所示组成的介电陶瓷与其平均粒度之间的关系进行了研究,并且发现,通过控制介电陶瓷的制备条件而使其平均粒度调节为0.21~0.45μm,可以进一步改善可靠性。
也就是说,在本发明的介电陶瓷中,平均粒度被优选为0.21~0.45μm。
此外,上述XuOv起着加速低温烧结的烧结添加剂的作用。通过使用硅氧化物(SiO2)与各种玻璃材料之间的任选组合作为烧结添加剂,可以使烧结在低温下完成。
也就是说,在本发明的介电陶瓷中,XuOv的组分X包含Si并且可以包含选自Li、B、Na、K、Be、Mg、Ca、Sr、Ba、Al、Ga、Ti和Zr中的至少一种元素。
此外,本发明人进行了更深入的研究并且发现,所述介电陶瓷中即使不可避免地包含一些杂质,比如Zr、Ni、Fe和Co,也能够在不影响各种特性的情况下实现所需的可靠性。
也就是说,本发明的介电陶瓷可以包含选自Zr、Ni、Fe、Co、Al、Ag、Mo、Ta、Pd、Zn、Hf、Nb和W中的至少一种元素。
此外,本发明的单片陶瓷电容器包括陶瓷烧坯、多个内电极和外电极。陶瓷烧坯是由陶瓷层压体形成的,而所述陶瓷层压体则是将多个由上述介电陶瓷所形成的介电层层叠而成的。内电极以彼此平行的方式埋入陶瓷烧坯中。外电极被安置在陶瓷烧坯的外表面上。
此外,在本发明的单片陶瓷电容器中,内电极优选包含贱金属材料,并且外电极也优选包含贱金属材料.
本发明的有利效果
根据本发明的介电陶瓷具有通式100(Ba1-x-ySrxCay)m(Ti1-zZrz)O3+aBaO+bR2O3+cMgO+dMnO+eCuO+fV2O5+gXuOv(式中,R表示选自La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y中的至少一种元素;而XuOv表示至少含有Si的氧化物组)所示的组成,并且0≤x≤0.05,0≤y≤0.08,0≤z≤0.05,0.990≤m,100.2≤(100m+a)≤102,0.05≤b≤0.5,0.05≤c≤2,0.05≤d≤1.3,0.1≤e≤1.0,0.02≤f≤0.15和0.2≤g≤2。使用这种组成,能够提供可以用于制备这样一种高度可靠的单片陶瓷电容器的介电陶瓷:可实现良好的绝缘性质、介电强度和高温负载寿命,并且即使在介电层进一步变薄或在主要组分中含有Sr或Zr的情况下,也能保持电容的介电特性和温度特性。
此外,当y为0.02≤y≤0.08时,能够进一步改善高温负载寿命。
此外,通过使用包含SiO2以及含有Li、B或Na的金属氧化物的烧结添加剂,可以使烧结在低温下进行。因此,能够易于提供可用于制备高度可靠的单片陶瓷电容器的介电陶瓷。
此外,即使在所述介电陶瓷中含有比如Zr、Ni和Fe的杂质,上述特性也不受影响。因此,能够易于提供可用于制备高度可靠的单片陶瓷电容器的介电陶瓷。
此外,本发明的单片陶瓷电容器包含陶瓷烧坯、以彼此平行的方式埋入所述陶瓷烧坯中的多个内电极以及布置在陶瓷烧坯的外表面上的外电极,其中所述陶瓷烧坯是由将多个介电层层叠得到的陶瓷层压体所形成的。由于该陶瓷烧坯是由上述的介电陶瓷形成的,因此所得的单片陶瓷电容器具有良好的介电特性和良好的电容温度特性,并且在实现良好的绝缘性质和高温负载寿命上表现出优异可靠性。
此外,在本发明的单片陶瓷电容器中,内电极包含贱金属材料,并且外电极也包含贱金属材料。因此,能够以低成本制备具有良好的上述各种特性并且具有优异可靠性的单片陶瓷电容器。

附图说明

图1所示为根据一个实施方案的单片陶瓷电容器的横截面图,并且该电容器是使用本发明的介电陶瓷制备的。
标记数字
1陶瓷烧坯(介电陶瓷)
2(2a~2f)内电极
3a、3b  外电极
实施本发明的最佳方式
接着,详细描述根据本发明的实施方案。
根据本发明的介电陶瓷具有下列通式(A)所示的组成:
100(Ba1-x-ySrxCay)m(Ti1-zZrz)O3+aBaO+bR2O3+cMgO+dMnO+eCuO+fV2O5+gXuOv。(A)
在这个通式中,R表示选自La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y中的至少一种稀土元素;而XuOv表示至少含有Si的氧化物组。
换言之,根据本发明的介电陶瓷包含由作为主要组分的(Ba1-x-ySrxCay)m(Ti1-zZrz)O3构成的具有钙钛矿晶体结构的复合氧化物(通式ABO3),而且包含作为添加组分并且以每100摩尔主要组分计为预定摩尔量的BaO、R2O3、MgO、MnO、CuO、V2O5和XuOv。
将主要组分中的各种元素的摩尔比x、y、z和m以及各个添加组分以每100摩尔主要组分计的摩尔量a、b、c、d、e、f和g都调节为满足下列表达式(1)~(11):
(1)0≤x≤0.05;
(2)0≤y≤0.08;
(3)0≤z≤0.05;
(4)0.990≤m;
(5)100.2≤(100m+a)≤102;
(6)0.05≤b≤0.5;
(7)0.05≤c≤2.0;
(8)0.05≤d≤1.3;
(9)0.1≤e≤1.0;
(10)0.02≤f≤0.15;以及
(11)0.2≤g≤2。
在本发明的介电陶瓷中,通式(A)满足表达式(1)~(11)。因而,使用这种介电陶瓷制备的单片陶瓷电容器即使在介电层被进一步变薄以及介电层被施加高电场强度的电压的情况下,也能够保持良好的介电特性和温度特性,并且其在实现良好的绝缘性质、介电强度和高温负载寿命上具有优异的可靠性。尤其是,可以增加介电常数,并且通过用Ca组分代替BaTiO3中的部分Ba组分以及将Cu组分和V组分同时加入该介电陶瓷中,可以改善在高电场下的高温负载寿命。
下面,详细解释将各种元素在主要组分中的摩尔比x、y、z和m以及各种添加组分的摩尔量a、b、c、d、e、f和g限定在上述范围的原因。
(1)摩尔比x
在根据本实施方案的介电陶瓷中,即使在制备过程中,少量的Sr不可避免地作为杂质固溶在(Ba,Ca)TiO3的A位置上,也能够实现良好的绝缘性质和介电强度,而不会损害介电特性和温度特性。因此,可以保证所需的可靠性。当Sr在A位置上的摩尔比x高于0.05时,高温负载寿命降低,这种情况会导致可靠性降低。
因此,在本实施方案中,通过控制制备条件,将摩尔比x调节为0≤x≤0.05。
(2)摩尔比y
根据需要,用Ca替换BaTiO3中的一部分Ba,可以改善介电陶瓷的可靠性。然而,当Ca的摩尔比y高于0.08时,可能降低相对介电常数εr。
因此,在本实施方案中,通过控制Ca组分的量,以将摩尔比y调节为0≤y≤0.08。
尤其是,通过将Ca固溶在A位置上,可以进一步改善高温负载寿命。因此,从这种观点考虑,Ca的摩尔比y优选为0.02以上,即,摩尔比y的优选范围为0.02≤y≤0.08。
(3)摩尔比z
在根据本实施方案的介电陶瓷中,即使在制备过程中,将zr固溶在(Ba,Ca)TiO3的B位置上,也能够实现良好的绝缘性质和介电强度,而不损害介电特性和温度特性.因此,可以确保所需的可靠性.当Zr在B位置上的摩尔比z高于0.05时,可能降低高温负载寿命.
因此,在本实施方案中,通过控制制备条件,以将摩尔比z调节为0≤z≤0.05。
(4)摩尔比m
当作为A位置组分的(Ba1-x-ySrxCay)与作为B位置组分的(Ti1-zZrz)之间的摩尔比m小于0.990时,介电强度和高温负载寿命被显著降低。
因此,在本实施方案中,通过控制A位置组分与B位置组分的混合量,以将摩尔比m调节为0.990≤m。
(5)摩尔量a
通过将BaO加入主要组分(Ba1-x-ySrxCay)m(Ti1-zZrz)中来控制A位置组分和B位置组分的摩尔量,可以得到具有良好特性的介电陶瓷。然而,当Ba组分在介电陶瓷中的总摩尔量(100m+a)低于100.2时,电容的温度特性恶化,并且温度稳定性令人不满意。电容的温度特性需要与EIA(美国电子工业协会)所规定的X7R特性一致。此处,术语X7R特性表示这样的一种特性:当采用+25℃下的电容作为基准时,电容在-55℃至+125℃的温度范围内的变化ΔC/C25在±15%之内。
然而,Ba组分在介电陶瓷中的总摩尔量(100m+a)低于100.2时,电容变化增加,因此,X7R特性是不满意的。因而,温度稳定性变得令人不满意。
此外,在这种介电陶瓷中,高温负载寿命降低,这样可能导致可靠性降低。
另一方面,当Ba组分在介电陶瓷中的总摩尔量(100m+a)高于102时,相对介电常数εr可能被降低。
因此,在本实施方案中,将BaO加入主要组分中,并使得Ba组分在介电陶瓷中的总摩尔量(100m+a)被调节为100.2≤(100m+a)≤102。
(6)摩尔量b
通过将特定的稀土氧化物R2O3加入介电陶瓷中,可以改善比如绝缘性质和高温负载寿命的可靠性。然而,当稀土氧化物R2O3的摩尔量b以每100摩尔的主要组分计为低于0.05摩尔时,降低高温负载寿命,因而可能导致可靠性的降低。
另一方面,当摩尔量b高于0.5摩尔时,温度特性恶化成不满足X7R特性。
因此,在本实施方案中,将特定的稀土氧化物R2O3加入介电陶瓷中,以使以每100摩尔的主要组分计的摩尔量b为0.05≤b≤0.5。
(7)摩尔量c
在本实施方案中,Mg组分以MgO形式加入主要组分中。MgO的摩尔量c以每100摩尔的主要组分计为低于0.05摩尔时,温度特性恶化成不满足X7R特性。此外,高温负载寿命降低,因而导致可靠性降低。
另一方面,当MgO的摩尔量c以每100摩尔的主要组分计为高于2.0摩尔时,不利地导致相对介电常数εr的降低。
因此,在本实施方案中,将MgO加入介电陶瓷中,以使以每100摩尔的主要组分计的摩尔量c为0.05≤c≤2.0。
(8)摩尔量d
由于Mn组分起着改善介电陶瓷的耐还原性的作用,因此,在本实施方案中,Mn组分以MnO形式加入主要组分中.当MnO的摩尔量d以每100摩尔的主要组分计为小于0.05摩尔时,绝缘性质和高温负载寿命被显著降低,因而可靠性降低.
另一方面,当MnO的摩尔量d以每100摩尔的主要组分计高于1.3摩尔时,绝缘性质也被降低,此外,相对介电常数εr被降低。
因此,在本实施方案中,将MnO加入介电陶瓷中,使得摩尔量d以每100摩尔的主要组分计为0.05≤d≤1.3。
(9)摩尔量e
通过将Cu组分与V组分一起加入介电陶瓷中,可以改善在高电场下的相对介电常数εr和高温负载寿命。因此,在本实施方案中,Cu组分以CuO形式加入主要组分中。当CuO的摩尔量e以每100摩尔的主要组分计为低于0.1摩尔时,Cu组分的添加效果不充分,并且可靠性没有得到改善。
另一方面,当CuO的摩尔量e以每100摩尔的主要组分计为高于1.0摩尔时,CuO的摩尔量e过量,使高温负载寿命降低,因而可能导致可靠性降低。
因此,在本实施方案中,将CuO加入介电陶瓷中,要使得以每100摩尔的主要组分计的摩尔量e在0.1≤e≤1.0的范围内。
(10)摩尔量f
通过将V组分与Cu组分一起加入介电陶瓷中,可以改善在高电场下的相对介电常数εr和高温负载寿命。因此,在本实施方案中,V组分以V2O5形式加入主要组分中。当V2O5的摩尔量f以每100摩尔的主要组分计为低于0.02摩尔时,V组分的添加效果不充分,并且可靠性没有得到改善。
另一方面,当V2O5的摩尔量f以每100摩尔的主要组分计为高于0.15摩尔时,V2O5的摩尔量f过量,导致绝缘性质退化。
因此,在本实施方案中,将V2O5加入介电陶瓷中,要使得以每100摩尔的主要组分计的摩尔量f是在0.02≤f≤0.15的范围内。
(11)摩尔量g
由于至少含有Si并且表示为通式XuOv的氧化物组起着低温烧结用的烧结添加剂的作用,因此,将该氧化物组加入介电陶瓷中。然而,当XuOv的摩尔量g以每100摩尔的主要组分计为低于0.2摩尔时,可以降低高温负载寿命,因此,可以降低可靠性。
另一方面,当XuOv的摩尔量g以每100摩尔的主要组分计为高于2摩尔时,温度特性恶化,并且X7R特性可能令人不满意。
因此,在本实施方案中,将XuOv加入介电陶瓷中,以使以每100摩尔的主要组分计的摩尔量g在0.2≤g≤2的范围内。
除SiO2外,可以任选使用Li2O、B2O3、Na2O、K2O、BeO、MgO、CaO、SrO、BaO、Al2O3、Ga2O3、TiO2和ZrO2作为XuOv。
此外,介电陶瓷的平均粒度优选为0.21μm以上,但是不超过0.45μm。
也就是说,增加介电陶瓷的平均粒度,可以增加相对介电常数εr。为了得到所需的高的相对介电常数,优选平均粒度为0.21μm以上。
然而,当平均粒度高于0.45μm时,每一个介电层的陶瓷颗粒数降低,因此,介电强度和高温负载寿命被降低,因而可能使可靠性退化。
因此,如上所述,介电陶瓷的平均粒度优选为0.21μm以上,但不超过0.45μm。
因此,在本实施方案中,介电陶瓷的组成由组成通式(A)表示,并且将其制备成摩尔比x、y、z和m以及摩尔量a至g都满足表达式(1)~(11)。因此,能够提供可用于制备高度可靠单片陶瓷电容器的介电陶瓷,即,所述陶瓷电容器即使在介电层变薄时也能够保持其介电特性和温度特性,并且具有良好的绝缘性质、介电强度和高温负载寿命。
接着,详细描述使用上述介电陶瓷制备的单片陶瓷电容器。
图1所示为示意性表示单片陶瓷电容器的横截面图,并且该单片陶瓷电容器是根据一个使用本发明介电陶瓷的实施方案进行制备的。
在这个单片陶瓷电容器中,在由本发明的介电陶瓷形成的陶瓷烧坯1中埋有内电极2(2a~2f);在陶瓷烧坯1的两侧上安置有外电极3a和3b;以及分别在外电极3a和3b的表面上安置有第一电镀膜4a和4b,并且分别在第一电镀膜4a和4b上安置有第二电镀膜5a和5b。
具体地,内电极2a~2f是彼此平行布置在层叠方向上的。内电极2a、2c和2e与外电极3a电连接,而内电极2b、2d和2f与外电极3b电连接。因此,在反向面对的内电极2a、2c和2e与内电极2b、2d和2f之间形成电容。
现在,将详细描述制备单片陶瓷电容器的方法。
称量陶瓷原料,即Ba化合物比如BaCO3、Ti化合物比如TiO2,以及必要时的Ca化合物比如CaCO3,以使它们满足上述表达式(1)~(4)。然后,将这些称量的原料放置在含研磨介质比如部分稳定的锆(PSZ)的球磨机中,并且进行湿混合和粉碎。然后,将这些材料在1000℃以上的温度下进行加热,以得到(Ba1-x-ySrxCay)m(Ti1-zZrz)O3所示并且平均粒度为0.21~0.45μm的主要组分。
此外,主要组分中可能包含Sr和Zr,原因是陶瓷原料中含有的少量Sr化合物和Zr化合物与研磨介质(PSZ)不可避免地因在湿粉碎过程中的合成反应而混合进入主要组分中。
适当确定制备条件比如湿粉碎时间,可以容易地控制主要组分粉末的平均粒度。
然后,制备BaCO3、MgCO3、MnCO3、CuO和V2O5。此外,制备选自La2O3、Ce2O3、Pr2O3、Nd2O3、Sm2O3、Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3和Y2O3组成的组中的至少一种稀土氧化物。此外,制备SiO2和烧结添加剂比如Li2O或B2O3。
然后,称量这些添加组分原料,以使它们以每100摩尔的主要组分计时满足表达式(5)~(11)。将这些添加剂放入带有主要组分的球磨机中,然后,进行蒸发干燥,得到混合物。
然后,将所得混合物放入带有粘合剂和有机溶剂的球磨机中,并进行湿混合,以制备陶瓷浆状物。用刮刀法,将陶瓷浆状物形成陶瓷印刷电路基板(ceramic green sheet)。
然后,使用内电极用的导电膏,通过丝网印刷在每一个陶瓷印刷电路基板的表面上形成具有预定图案的导电膜。
从降低成本的观点考虑,包含在内电极用的导电膏的导电材料优选为其主要组分为Ni、Cu或其合金的贱金属材料。
然后,将多个其上具有导电膜的陶瓷印刷电路基板以预定方向进行层叠.将层叠的陶瓷印刷电路基板安插在不含导电膜的陶瓷印刷电路基板之间,并且进行按压-粘合,然后切割成预定尺寸,以得到陶瓷层压体.使陶瓷层压体在300~500℃的温度下除去粘合剂,然后在还原气氛即氧分压被控制为10-9~10-12MPa的H2-N2-H2O气体以及1000~1200℃的温度下烧结约2小时。通过这种工艺,将导电膜和陶瓷材料烧结在一起,以得到其中埋入有内电极2的陶瓷烧坯1(介电陶瓷)。
然后,将外电极用的导电膏涂敷在陶瓷烧坯1的两侧上,并且进行烘焙,以形成外电极3a和3b。
从降低成本的观点考虑,包含在外电极用的导电膏内的导电材料也优选为其主要组分为Ni、Cu或其合金的贱金属材料。
此外,通过将外电极用的导电膏涂敷在陶瓷层压体的两侧上,再将该导电膏与陶瓷层压体一起烧结,可以形成外电极3a和3b。
最外,通过电镀,分别在外电极3a和3b的表面上形成由Ni、Cu或Ni-Cu合金构成的第一电镀膜4a和4b,再分别在第一电镀膜4a和4b的表面上形成由焊料或锡构成的第二电镀膜5a和5b。从而,制备得到单片陶瓷电容器。
由于这样得到的单片陶瓷电容器是使用本发明的介电陶瓷进行制备的,因此,能够提供这样的一种单片陶瓷电容器:其即使在介电层进一步变薄时也能保持介电特性和温度特性并且在表现良好的绝缘性质和高温负载寿命上具有优异可靠性。
具体地,可以提供一种这样的高度可靠单片陶瓷电容器:其具有高介电常数,比如相对介电常数εr为3000以上;电容变化满足X7R特性;表示绝缘性质的CR乘积即电容C和绝缘电阻R的乘积为100Ω·F以上;表示介电强度的击穿电场强度为100kV/mm以上;在125℃的高温下,其耐久性为1000hr以上。
然而,本发明并不限制于上述的实施方案。例如,在上述单片陶瓷电容器的制备工艺中,可以在晶粒或晶粒边界内,混合有杂质,比如Zr、Ni、Fe、Co、Al、Ag、Mo、Ta、Pd、Zn、Hf、Nb和W。然而,这些杂质不影响单片陶瓷电容器的电性质。
内电极组分可以在单片陶瓷电容器的烧结过程中扩散进入晶粒或晶粒边界上。然而,在这种情况下,单片陶瓷电容器的电性质也不受影响。
此外,在上述实施方案中,使用Ba化合物、Ca化合物和Ti化合物作为起始原料,并且通过固相法制备出主要组分(Ba1-x-ySrxCay)m(Ti1-zZrz)O3。然而,主要组分可以通过水解法、水热合成法或共沉淀法进行制备。此外,Ba化合物、Ca化合物和Ti化合物并不是限制于碳酸盐或氧化物的形式。这些化合物可以根据合成反应形式任选为硝酸盐、氢氧化物、有机酸盐、醇盐或螯合化合物的形式。
接着,具体表述本发明的实施例。
实施例1
制备BaCO3、SrCO3、CaCO3、TiO2和ZrO2,以作为陶瓷原料,并且进行称重,以使主要组分具有表1和2所示的组成。将每一种已称重的原料混合物都放入含PSZ的球磨机中,进行湿混合并粉碎24小时。然后,在1100~1180℃的温度下,加热混合物,以得到主要组分(Ba1-x-ySrxCay)m(Ti1-zZrz)O3。
在这个实施例中,为了评价包含在(Ba,Ca)TiO3中的Sr组分和Zr组分的影响,有目的地将Sr组分和Zr组分加入主要组分中。
然后,每一种主要组分的原料粉末都采用扫描电子显微镜(SEM)进行图像分析,以测量出每一种粉末的300个颗粒的粒度。如表1和2所示,平均粒度为0.2~0.5μm。
然后,制备BaCO3、MgCO3、MnCO3、CuO、V2O5和SiO2,以作为添加组分材料。此外,制备La2O3、Ce2O3、Pr2O3、Nd2O3、Sm2O3、Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3和Y2O3,以作为稀土氧化物(R2O3)。
然后,将添加组分材料进行称重,以使每一种添加组分的摩尔量以每100摩尔的主要组分计都如表1和2所示。将每一种已称重的原料混合物与主要组分一起放入球磨机中,进行湿混合并且粉碎24小时。然后,将混合物进行蒸发干燥,以制备出实例1~38以及比较例1~23中每一个的混合物。
然后,将实例1~38以及比较例1~23的每一种混合物都与聚乙烯醇缩丁醛粘合剂和作为有机溶剂的乙醇一起放入球磨机中,并且进行湿混合,以制备出陶瓷浆状物。该陶瓷浆状物进一步通过刮刀法处理,以制备出矩形陶瓷印刷电路基板。
然后,使用含作为主要组分的Ni的导电膏,通过丝网印刷在每一个陶瓷印刷电路基板的表面上形成导电膜。
然后,将多个每一个其上都具有导电膜的陶瓷印刷电路基板层叠在预定方向上。将层叠的陶瓷印刷电路基板安插在不含导电膜的陶瓷印刷电路基板之间,并且进行加压-粘合,然后切割成预定大小,以得到陶瓷层压体。将该陶瓷层压体在氮气氛和300℃的温度下,进行脱除粘合剂,然后在氧分压被控制为10-10MPa的H2-N2-H2O气体的还原气氛和1200℃的温度下烧结2小时,以得到其内埋入有内电极的陶瓷烧坯。
然后,将含B2O3-Li2O-SiO2-BaO玻璃组分的Cu膏状物涂敷在陶瓷烧坯的两侧上,并且在氮气氛和800℃的温度下进行烘焙,以形成外电极。这样,制备出实例1~37和比较例1~23的单片陶瓷电容器。
每一个单片陶瓷电容器的外部尺寸是高为1.2mm、宽为2.0mm以及厚为1.0mm。安插在内电极之间的每一个介电陶瓷层的厚度都为1μm。有效介电陶瓷层的数量为100,并且每层中相反电极的面积为1.4×10-6m2。
然后,在烧结之后,将每一个实例和比较例的300个颗粒用SEM进行图像分析,以计算平均粒度。
表1示出了实例1~38的主要组分的组成、添加组分的摩尔量以及烧结后的平均粒度。表2示出了比较例1~23的主要组分的组成、添加组分的摩尔量以及烧结后的平均粒度。


此外,在1kHz的频率、0.5Vrm的有效电压以及25℃的温度下,使用自动桥式计测量电容C和介电损耗tanδ。由这样测得的电容,计算相对介电常数εr。
然后,采用绝缘电阻计,测量在125℃下施加10V的直流电压1分钟时的绝缘电阻R.此外,通过将电容C乘以绝缘电阻R,计算出CR乘积.
通过以100V/s的速率增加电压,以测试击穿电场强度,并且评价对于直流电压的介电强度。
通过基于+25℃下的电容测量-55℃~+125℃范围内的最大电容变化(ΔC/C25)max,以评价温度特性。如果电容变化(ΔC/C25)是在±15%之内,它表示满足EIA所规定的X7R特性。
高温负载寿命是通过进行高温负载试验进行评价的。具体地,使用每个实例和比较例中的100个试验片。在125℃的高温下,向每一个试验片中施加10V(10kV/mm)或20V(20kV/mm)的电压,同时测量依时间变化的绝缘电阻。然后,在试验开始之后的1000小时,将其绝缘电阻R已经降低到200kΩ以下的试验片确定为不合格。计算不合格的数量,以评价高温负载寿命。
表3示出了实例的结果,表4示出了比较例的结果。
[表3]

[表4]

在表2和4中明显的是,在比较例1中,Sr组分在A位置的摩尔比x为0.1的高值。尽管不合格试验片的数量为每100个试验片有1个,但是即使在高温负载试验中所施加的电压为10kV/mm,在这些试验片中也有不合格的。因而,证实,将导致制备产率降低。
在比较例2中,由于Ca组分在A位置的摩尔比y为0.09的高值,因此,尽管绝缘性质、介电强度和高温负载寿命都良好并且电容的温度特性满足X7R特性,但是相对介电常数εr被降低到低于3000,即,为2910,并且介电特性退化。
在比较例3中,由于Zr组分在B位置上的摩尔比z为0.1的高值,因此,如比较例1那样,尽管不合格的试验片的数量为每100个试验片有1个,但是即使在高温负载试验中所施加的电压为10kV/mm,在这些试验片中也有不合格的。因而,证实,将导致制备产率降低。
在比较例4中,由于在主要组分的A位置和B位置之间的摩尔比为0.986的低值,因此,DC击穿电场强度为64kV/mm的低值。因此,证实,高温负载寿命被显著降低,并且可靠性差。
在比较例5中,由于Ba组分的总摩尔量(100m+a)为低值100.0,因此基于温度变化的最大电容变化(ΔC/C25)max为-15.6%,该变化没有满足X7R特性。此外,但在高温负载试验中所施加电压为10kV/mm时,100个试验片中有2个不合格,而当施加电压为20kV/mm时,100个试验片中有21个不合格。因而证实,将导致制备产率降低。
在比较例6中,绝缘性质、介电强度和高温负载寿命良好,并且电容的温度特性满足X7R特性。然而,由于Ba组分的总摩尔量(100m+a)为102.5的高值,因此,相对介电常数εr被降低至低于3000,即,为2950,因而,导致介电特性退化。
在比较例7中,由于稀土氧化物Yb2O3的摩尔量b以每100摩尔的主要组分计为0.03摩尔的低值,因此当高温负载试验中的施加电压为10kV/mm时,100个试验片中有10个不合格,而当施加电压为20kV/mm时,100个试验片中有41个不合格。因而证实,将导致制备产率降低。
在比较例8中,由于稀土氧化物Yb2O3的摩尔量b以每100摩尔的主要组分计为0.6摩尔的高值,因此基于温度变化的最大电容变化(ΔC/C25)max为-15.7%。因而证实,X7R特性没有得到满足。
在比较例9中,由于MgO的摩尔量c以每100摩尔的主要组分计为0.02摩尔的低值,因此,基于温度变化的最大电容变化(ΔC/C25)max为-16.2%。因而证实,X7R特性没有得到满足。此外,当高温负载试验中施加电压为10kV/mm时,100个试验片中有5个不合格,而当施加电压为20kV/mm时,100个试验片中有24个不合格。因而证实,将导致制备产率被降低。
在比较例10中,绝缘性质、介电强度和高温负载寿命都良好,并且电容的温度特性满足X7R特性。然而,由于MgO的摩尔量c以每100摩尔的主要组分计为0.7摩尔的高值,因此,相对介电常数εr被降低至低于3000,即为2840,因而导致介电特性退化。
在比较例11中,由于MnO的摩尔量d以每100摩尔的主要组分计为0.02摩尔的低值,因此,CR乘积为30Ω·F的低值,并且高温负载寿命被显著降低。因而证实,绝缘性质和可靠性被降低。
在比较例12中,由于MnO的摩尔量d以每100摩尔的主要组分计为2.4摩尔的高值,因此,CR乘积为90Ω·F的低值,从而降低了绝缘性质。此外,相对介电常数εr被降低至低于3000,即为2910,从而导致介电特性退化。
在比较例13中,由于既没有包含CuO,也没有包含V2O5,因此,DC击穿电场强度为73kV/mm的低值,因而降低了介电强度,并且CR乘积为80Ω·F的低值,因而降低了绝缘性质。此外,证实了,高温负载寿命低,从而降低了可靠性。
在比较例14中,已证实,虽每100摩尔的主要组分计包含有0.05摩尔的V2O5,但由于不含CuO,因此,CR乘积为40Ω·F的低值,从而降低了绝缘性质。此外,当高温负载试验中的施加电压为10kV/mm时,100个试验片中有9个不合格,而当施加电压为20kV/mm时,100个试验片中有43个不合格。因而证实,将导致制备产率降低。
在比较例15中,已证实,虽然加入了CuO,但是由于CuO含量低,即,以每100摩尔的主要组分计为0.05摩尔,因此,CR乘积为70Ω·F的低值,从而降低了绝缘性质,此外,当高温负载试验中的施加电压为10kV/mm时,100个试验片中有3个不合格,而当施加电压为20kV/mm时,100个试验片中有29个不合格.因而证实,将导致制备产率降低.
在比较例16中,CuO的摩尔量e以每100摩尔的主要组分计为1.5摩尔的高值。因此,当高温负载试验中的施加电压为10kV/mm时,100个试验片中有3个不合格,而当施加电压为20kV/mm时,100个试验片中有6个不合格。因而证实,将导致制备产率降低。
在比较例17中,已证实,虽然100摩尔的主要组分中含有0.5摩尔的CuO,但是由于不含V2O5,因此,DC击穿电场强度为71kV/mm的低值,从而降低了介电强度。此外,当高温负载试验中的施加电压为10kV/mm时,100个试验片中有11个不合格,而当施加电压为20kV/mm时,100个试验片中有55个不合格。因而证实,将导致制备产率降低。
在比较例18中,已证实,虽然加入了V2O5,但是由于V2O5的含量低,即以每100摩尔的主要组分计为0.01摩尔,因此DC击穿电场强度为75kV/mm的低值,从而降低了介电强度。此外,当高温负载试验中的施加电压为10kV/mm时,100个试验片中有7个不合格,而当施加电压为20kV/mm时,100个试验片中有43个不合格。因而证实,将导致制备产率降低。
在比较例19中,已证实,由于V2O5的摩尔量f以每100摩尔的主要组分计为0.18摩尔的高值,因此,CR乘积为50Ω·F的低值,从而降低了绝缘性质。
此外,如比较例13~19所示,当没有加入CuO或加入量太小时,CR乘积低,因而绝缘性质被降低。当没有加入V2O5或加入量太小时,DC击穿电场强度低,因而介电强度被降低。如下所述,通过同时加入CuO和V2O5,可以同时改善绝缘性质和介电强度。因此,可以改善在高电场下的高温负载寿命。
在比较例20中,SiO2的摩尔量g较低,即,以每100摩尔的主要组分计为0.05摩尔。因此,当高温负载试验中的施加电压为10kV/mm时,100个试验片中有3个不合格,而当施加电压为20kV/mm时,100个试验片中有4个不合格。因而证实,将导致制备产率降低。
在比较例21中,SiO2的摩尔量g较高,即,以每100摩尔的主要组分计为2.5摩尔。因此,基于温度变化的最大电容变化(ΔC/C25)max为-16.1%。因而证实,X7R特性没有得到满足,从而使温度特性恶化。
在比较例22中,已证实,由于陶瓷烧坯(介电陶瓷)的平均粒度为0.2μm,这种粒度太小,因而相对介电常数εr被降低至低于3000,即为2760,从而导致介电特性降低。
在比较例23中,已证实,由于陶瓷烧坯(介电陶瓷)的平均粒度为0.6μm,这种粒度太大,因而使每一个介电层的陶瓷颗粒数量降低,因此,DC击穿电场强度为78kV/mm的低值,从而降低了介电强度。此外,当高温负载试验中的施加电压为10kV/mm时,100个试验片中有7个不合格,而当施加电压为20kV/mm时,100个试验片中有26个不合格。因而证实,将导致制备产率降低。
另一方面,表1和3中明显的是,在实例1~38的每一个中,有0≤x≤0.05,0≤y≤0.08,0≤z≤0.05,0.990≤m,100.2≤(100m+a)≤102,0.05≤b≤0.5,0.05≤c≤2,0.05≤d≤1.3,0.1≤e≤1.0,0.02≤f≤0.15和0.2≤g≤2;并且平均粒度在0.21~0.45μm的范围内。因此,相对介电常数εr为3000以上,电容变化(ΔC/C25)max满足X7R特性,DC击穿电场强度为100kV/mm以上,CR乘积为140Ω·F以上,并且即使在125℃的高温下施加10kV/mm电压,高温负载寿命也是1000小时以上.因而证实,能够提供在介电特性、温度特性、介电强度、绝缘性质和可靠性上优越的单片陶瓷电容器.
从实例1~36与实例37和38之间的比较可明显看出,由于在实例37和38中的介电陶瓷组成中没有包含Ca或Ca的摩尔比y太小(0.01),因此,虽然当高温负载试验中的施加电压为10kV/mm时高温负载寿命是令人满意的,但是当施加电压为20kV/mm时,在实例37和38的100个试验片中分别有6和9个不合格。另一方面,在实例1~36的每一个中,由于Ca在介电陶瓷中的含量被控制在使摩尔比y为0.02≤y≤0.08,因此即使在施加20kV/mm电压时,也实现了1000hr以上的持续时间。因此,已证实,通过将摩尔比y调节为0.02≤y≤0.08,能够进一步改善高温负载寿命。
在根据实例1~38的陶瓷烧坯中,已证实,可以忽略因烧结导致的颗粒生长,并且陶瓷烧坯的平均粒度与主要组分几乎一样。
实施例2
制备Li2O、B2O3、CaO、Al2O3、MgO、BaO、K2O、BeO、SrO、GaO、TiO2和ZrO2。制备根据实例41~52的单片陶瓷电容器,除SiO2的位置之外,使每一个单片陶瓷电容器的组成都与[实施例1]中作为标准样品的实例3的组成相同。调节SiO2位置,以使其具有表5所示的组分组成。
表5示出了在实例3和实例41~52中的烧结添加剂、烧结添加剂的摩尔量、烧结后的平均粒度以及烧结温度。
[表5]

如表5明显看出,在实例41~52中,有利的是,烧结后的平均粒度为0.21~0.45μm。此外,已证实,可以在比实例3的温度低的温度下进行烧结。
接着,对于实例41~52,如在[实施例1]中那样,测量相对介电常数εr、介电损耗tanδ、最大电容变化(ΔC/C25)max、DC击穿电场强度和CR乘积,并且进行高温负载试验(20kV/mm)。
表6示出了这些结果以及实例3的结果。
[表6]

从表5和6可明显看出,即使在实例41~52中,将烧结添加剂和Si组分组合使用,相对介电常数εr也在3000以上,电容变化(ΔC/C25)max也满足X7R特性,DC击穿电场强度也在100kV/mm以上,CR乘积也是140Ω·F以上,并且即使当在125℃下施加20kV/mm的电压时,持续时间也为1000hr以上。因此,证实,能够提供具有良好的介电特性、温度特性、介电强度和绝缘性质的高度可靠的单片陶瓷电容器。
实施例3
接着,除了以每100摩尔的主要组分计的如表7所示的预定摩尔量加入预定杂质之外,以与在[实施例1]中作为标准样品的实例3相同的方法和工艺制备与[实施例2]类似的实例61~70的单片陶瓷电容器。
表7示出了在实例61~70以及实例3中的杂质组分。
[表7]

从表7明显看出,在实例61~70中也证实,有利地,烧结后的平均粒度为0.21~0.45μm。
然后,对于实例61~70,如[实施例1]中那样,测量相对介电常数εr、介电损耗tan δ、最大电容变化(ΔC/C25)max、DC击穿电场强度和CR乘积,并且进行高温负载试验(20kV/mm)。
表8示出了这些结果以及实例3的结果。
[表8]

从表7和8可明显看出,即使介电陶瓷包含有杂质,相对介电常数εr也在3000以上,电容变化(ΔC/C25)max也满足X7R特性,DC击穿电场强度也在100kV/mm以上,CR乘积也是140Ω·F以上,并且即使当在125℃下施加20kV/mm的电压时,持续时间也为1000hr以上。因此证实,能够提供具有良好的介电特性、温度特性、介电强度和绝缘性质的高度可靠的单片陶瓷电容器。
实施例4
接着,以与在[实施例1]中作为标准样品的实例3相同的方法和工艺制备与[实施例2]类似的实例81~85的单片陶瓷电容器,以使只有如表9所示那样的介电层厚度是不相同的。
然后,对于实例81~85,如[实施例1]中那样,测量相对介电常数εr、介电损耗tan δ、最大电容变化(ΔC/C25)max、DC击穿电场强度和CR乘积,并且进行高温负载试验(20kV/mm)。
表9示出了这些结果以及实例3的结果。

从表9可明显看出,当介电层的厚度为1μm以上时,相对介电常数εr为3000以上,电容变化(ΔC/C25)max满足X7R特性,DC击穿电场强度为100kV/mm以上,CR乘积为140Ω·F以上,并且当施加20kV/mm的电压时,持续时间为1000hr以上。因此证实,可以提供在介电特性、温度特性、介电强度、绝缘性质和可靠性上优越的单片陶瓷电容器。