治疗和诊断剂转让专利

申请号 : CN200580030857.7

文献号 : CN101039953B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : S·I·曼纳林L·C·哈里森A·W·珀塞尔N·A·威廉姆森

申请人 : 沃尔特及伊莱萨霍尔医学研究院

摘要 :

本发明总的来说涉及自身免疫性疾病的免疫治疗和免疫诊断的领域。更特别地,本发明提供了由胰岛素原或胰岛素致敏的T细胞识别的或对于其是特异性的试剂。本发明还涉及这些试剂在I型糖尿病的治疗和诊断应用中的用途。

权利要求 :

1.可来源于胰岛素原或胰岛素的A链并且由具有两个相邻半胱氨酸残基的氨基酸序列组成的分离的肽,其中所述两个半胱氨酸残基都参与链内二硫键且使+得该肽能激活对胰岛素原或胰岛素敏感的CD4T细胞,其中所述肽由如下氨基酸序 列 组 成:KRGIVEQCCTSICSL(SEQ ID NO:23);KRGIVEQCCTSISSL(SEQ ID NO:26);

KRGIVDQCCTSICSL(SEQ ID NO:32);或GIVDQCCTSICSL(SEQ ID NO:35)。

2.权利要求1的分离的肽,其中参与链内二硫键的所述两个相邻半胱氨酸残基形成了T细胞表位的一部分。

3.权利要求1的肽,其由KRGIVEQCCTSISSL(SEQ ID NO:26)中所示的氨基酸序列组成。

4.对于权利要求1中所定义的肽的T细胞表位特异的分离的抗体。

5.权利要求4的分离的抗体,其中所述抗体是单克隆抗体。

6.包含和细胞毒性部分结合、融合或缔合的权利1至3中任一项的肽的细胞毒性T细胞靶向试剂。

7.包含权利要求1至3中任一项的肽和一种或多种药物可接受的媒介物和/或稀释剂的药物组合物。

8.包含权利要求4或5的抗体和一种或多种药物可接受的媒介物和/或稀释剂的药物组合物。

9.根据权利要求1的且由KRGIVDQCCTSICSL(SEQ ID NO:32)组成的肽在生产用于预防1型糖尿病发生的药物中的用途。

说明书 :

治疗和诊断剂

[0001] 发明背景发明领域
[0002] 本发明总的来说涉及自身免疫性疾病的免疫治疗和免疫诊断的领域。更特别地,本发明提供了由胰岛素原或胰岛素致敏的T细胞识别的或对于其是特异性的试剂。本发明还涉及这些试剂在I型糖尿病的治疗和诊断应用中的用途。
[0003] 现有技术的描述
[0004] 在本说明书的结尾也汇集了本说明书中参考的出版物的详细目录。
[0005] 本说明书中任何现有技术的参考资料不是,并且不应当被当作承认或任何形式的暗示,即该现有技术在任何国家中形成了公知常识的一部分。
[0006] I型糖尿病(T1D)是因为产生胰岛素的胰腺β细胞的自身免疫破坏而导致的。在临床糖尿病的发生之前,出现了针对胰岛素(原)、谷氨酸脱羧酶(GAD)和酪氨酸磷酸酶样胰岛素瘤抗原-2[IA-2](Verge,等人,Diabetes 47:1857-1866,1998;Harrison,Pediatr Diabetes,2:71-82,2001)的抗体。非肥胖糖尿病(NOD)小鼠,即T1D的自发型模型,中的血清和T细胞转移实验已显示T细胞,而非抗体,介导β细胞的破坏(Kitutani等人,Adv.+
Immunol.,57:285-322,1992)。此外,NOD小鼠中的T1D的发展绝对需要CD4T细胞(Yagi等人,Eur.J.Immunol 22:2387-2393,1992)。许多基因座已和T1D的风险有关,但最大的风险是和主要组织相容性基因座(IDDM 1)相关,特别是和人中的II类HLA基因,明确地和单倍型HLA-DR3-DQ2和HLA-DR4-DQ8(Pugliese等人,Type 1 diabetes.Molecular.cellular,and clinical immumology:134-152,1996;Tait等人,Hum.Immunol,42:116-122,1995)关+
联。II类HLA分子以短肽(>11个氨基酸的)形式给CD4T细胞提供经加工的蛋白抗原,这
+
强调了CD4T细胞在T1D的发展中的重要性。
[0007] 胰岛素原是β细胞的主要蛋白产物,可能除了淋巴样组织中的表达罕见自身抗原的细胞外,其是唯一已知的独有地在β细胞中表达的人胰岛自身抗原。大量不断增加
的证据暗示对胰岛素原的自身免疫反应性为β细胞的破坏的主要机制(Narendran等人,
2004,同上)。针对胰岛素的自身抗体和疾病的早期发生相关联(Ziegler等人,Diabetes
40:709-714,1991),且有趣地和HLA DR4关联(Eisenbarth等人,J.Autoimmun.,5Suppl.A:241-246,1992)。T1D的第二强的遗传易感性基因座IDDM2定位于胰岛素基因上游的可变核苷酸串联重复(VNTR)小卫星序列(Lucassen等人,Nat.Genet,4:305-310,1993)。短的I类VNTR(26-63个重复)等位基因和胸腺中的胰岛素原基因转录的更低水平关联,从而
推测,胰岛素原特异性T细胞的消除越少,则发生T1D的风险增加;相反地,III类(140-210个重复)长等位基因和胸腺内更高的胰岛素原转录关联,岛素原特异性T细胞的消除越多,则T1D的风险越低(Pugliese等人,Nat Genet,15:293-297,1997)。从这些发现推断对胰岛素原的免疫反应对于T1D的发生是至关重要的。
[0008] 人胰岛素原的氨基酸序列示于图1。已报导了刺激人T细胞的来源于胰岛素原 的 肽 (Narendran等 人,Autoimmun.Rev,2:204-210,2003,Lieberman等 人,Tissue Antigens62:359-377,2003),但这些T细胞表位的知识都不系统。已通过三种方法鉴定了+
来源于胰岛素原的T细胞表位:(1)通过克隆胰岛素或胰岛素原特异性CD4T细胞和在体
外分析这些细胞的表位特异性;(2)通过使用和胰岛素原的序列同样的合成的肽在体外从外周血单核细胞(PBMC)恢复T细胞的增殖反应;或(3)通过免疫表达转基因HLA基因的
小鼠,分离对于胰岛素原是特异性的T细胞杂交瘤并在体外分析其特异性。存在少数公开+
的描述人CD4 胰岛素或胰岛素原特异性T细胞的克隆的报导(参见表3)。Schloot等人,
J.Autoimmun 11:169-175,1998在胰岛素的B链中鉴定了HLA-DR限制性表位(B:11-27).Semana等人,J.Autoimmun12:259-267,1999检测到响应胰岛素原的C35-50的T细胞增殖。
分离识别该C肽表位的单个T细胞克隆,尽管该反应较弱。在具有胰岛自身抗体、处于T1D风险的个体中,第一个从合成的肽中鉴定的胰岛素原T细胞表位是B24-C36(Rudy,等人,+
MolMed,1:625-633,1995)。其他人已就其对被NOD小鼠中CD4T细胞识别的B9-23肽作出反应的能力检测了人T细胞(Alleva,等人,J.Clin.Invest.107:173-180,2001)。在来自糖尿病和前糖尿病供者的,但非健康对照的PBMC中检测到对该肽的反应。已使用酶联免疫斑点测定法(ELISpot Assay)检测T细胞对来自健康和糖尿病供者的GAD和胰岛素原肽的
反应(Ott等人,J.Clin.Immunol.24:327-339,2004)。在健康、糖尿病和前糖尿病供者中检测针对表位C18-A1的T细胞反应。具有针对胰岛自身抗原的抗体的供者具有对B11-C24
和C28-A21的反应;具有临床糖尿病的供者具有对B20-C4的反应(Durinovic-Bello等人,J.Autoimmun18:55-66,2002)。使用HLA DRB 1*0401转基因小鼠鉴定HLA DRB1*0401限制性胰岛素原表位[C56-64](Congia等人,Proc.Natl.Acad.Sci USA P5:3833-3838,1998)。
Ra ju等人,Hum.Immunol 58:21-29,1997发现在免疫HLA DQ8转基因小鼠后,前胰岛素原
1-24,整个前导序列和B21-C39是显性表位。在类似的实验中,HLA DQ6转基因小鼠对前导序列14-B9和C60-A5起反应(Raju等人,1997,同上)。总之,已报导了胰岛素原中的几种T细胞表位,但只有两种已使用T细胞克隆鉴定,并且只有HLA限制性已使用HLA转基因小
鼠确定。
[0009] 在mRNA翻译成多肽后发生的氨基酸修饰被称作翻译后修饰(PTM)。PTM例如磷酸化、糖基化和二硫键形成对于正确的蛋白折叠和功能是至关重要的。尽管识别自身肽抗原的T细胞在发育过程中被消除或出生后受调节,但PTM,特别是如果由炎症和/或细胞应激诱导的PTM,可产生可触发T细胞对经修饰的自身产生反应的‘新抗原’,导致自身免疫性疾病(由Doyle and Mamula,Trends.Immunol.22:443-449,2001综述)。PTM产生靶自身抗原的范例非常吸引人,但很少有产生人T细胞表位的PTM的例子。腹部疾病(Coeliac disease),尽管严格地说是食物不耐受性而非自身免疫性疾病,是人疾病的最清楚的实例,其中,靶抗原的PTM导致病原性T细胞反应(Molberg等人,Nat.Med.4:713-717,1998;
Anderson等人,Nat.Med.6:337-442,2000)。谷蛋白麦醇溶蛋白中的谷氨酰胺(Q)残基被组织转谷氨酰胺酶脱酰氨基为谷氨酸(E)残基,然后该谷氨酸残基被病原性T细胞识别。
[0010] 需要鉴定胰岛素原和胰岛素中的主要T细胞表位以发展T1D的治疗性和诊断性试剂。
[0011] 发明概述
[0012] 本发明提供了用于T1D的免疫治疗和免疫诊断方法以及试剂。部分地基于来源于胰岛素原和胰岛素的A链表位的种类来预测本发明,所述表位需要PTM以对胰岛素原或胰+
岛素致敏的T细胞,且特别是CD4T细胞产生完全反应。PTM优选地是两个相邻的半胱氨酸
残基之间的链内二硫键。
[0013] 因此,本发明提供了可来源于胰岛素原或胰岛素的A链的分离的肽或所述肽的同源物,所述肽包含具有两个相邻半胱氨酸残基的氨基酸序列,当所述两个残基参与链内二+硫键时,可使该肽激活胰岛素原或胰岛素致敏的CD4T细胞。
[0014] 该肽或其同源物、类似物、直向同源物(ortholog)、突变体或衍生物代表来自胰岛素原和胰岛素的T细胞表位,该表位需要PTM以和致敏的T细胞完全反应。为简洁起见,该肽或其同源物、类似物、直向同源物、突变体和衍生物都包括在术语“T细胞反应性试剂”或“TCRA”中。
[0015] 因此,本发明涉及用于在受试者中诊断T1D或对于T1D的易感性的方法。本发明还提供了治疗或预防患有T1D或易于发生T1D的受试者的方法。本发明也提供了诊断和治
疗包括预防的试剂,以治疗或帮助预防T1D或至少改善T1D的症状。本发明还涉及用于诊
断和/或预防可攻击移植的胰岛素(原)产生性细胞或组织的免疫T细胞反应的方法。
[0016] 也提供了用于治疗或预防T1D的疫苗和诱导耐受性的组合物。一般地,疫苗或组合物包含本发明的TCRA或能够和其相互作用的试剂。
[0017] 在整个本说明书中,除非另外要求,术语“包含”、或“包括”,将理解为表示包含所述成分或整体或成分或整体的组,但不排除任何其他成分或整体或成分或整体的组。
[0018] 用序列识别号(SEQ ID NO:)来表示核苷酸和氨基酸序列。SEQ ID NO:数字上对应于序列标志符<400>1(SEQ ID NO:1)、<400>2(SEQ ID NO:2)等。在表1中提供了序列标志符的概述。在权利要求之后提供了序列列表。
[0019] 表1序列标志符的概述
[0020]SEQ ID NO: 描述
1 人胰岛素原的氨基酸序列
2-22 列于表3中的人胰岛素原表位
23 合成的A链肽
24 合成的S-9肽
25 合成的S-9肽
26 合成的S-13肽(接受PTM)
27 合成的S-13的鼠类同源物
28 克隆性PCR的正向锚引物
29 TCRα链反向引物
30 TCRβ链反向引物
31 小鼠胰岛素原II氨基酸C53-A7
32 小鼠胰岛素原II氨基酸C64-A13
33 小鼠胰岛素原II氨基酸C64-A13(A6,A7,A11是丝氨酸)
34 来自胰岛素原的T细胞新表位(neoepitope)
35 来自胰岛素原的T细胞新表位
36-54 交叠的人胰岛素原肽
55 合成的半胱氨酸被丙氨酸置换的鼠类胰岛素原A链表位
[0021] 表2中提供了本说明书中所用的缩写的列表。
[0022] 表2
[0023] 缩写
[0024]缩写 定义
APC 抗原呈递细胞
APL 改变的肽配体
CFSE 5,6-羧基荧光素琥珀酰亚胺二乙酯
GAD 谷氨酸脱羧酶
IA-2 酪氨酸磷酸酶样胰岛素瘤抗原
IMDM Iscove’s modified Dulbecco’s培养基
NOD 非肥胖糖尿病小鼠
PTM 翻译后修饰
PBMC 外周血单核细胞
PBS 磷酸缓冲盐溶液
TCEP 三(2-羧乙基)膦盐酸
TCR T细胞受体
TCRA T细胞反应性试剂
T1D I型糖尿病
VNTR 可变的核苷酸串联重复
[0025] 表3中提供了包含表位的人胰岛素原肽的概述。
[0026] 表3
[0027] 人胰岛素原表位概述
[0028]表位# 序列 方法 Ref SEQ ID
NO:
B9-23 SHLVEALYLVCGERG ELISpot和 AHeva,et al.,J. 2

3H-胸苷 Clin.Invest.
107:173-180.
2001
B24-C36 FFYTPKTRREAED 3H-胸苷 Rudy,et al., 3
Mol Med,
1:625-633,1995
B14-C37 AI.YLVCGERGFFYTPKTRREAEDL 3H-胸苷 Narendran et al.,4
Autoimmun.
Rev,2:204-210,
2003
C56-A7 LALEGSLQKRGIVEQCC 3H-胸苷 Rudy,et al., 5

Mol Med,
d:625-633,1995
B11-27 LVEALYLVCGERGFFYT 3H-胸苷 Durinovic-Bello 6
et al.,J.
Autoimmun
18:55-66,2002
B20-34 GERGFFYTPKTRREA 3H-胸苷 Durinovic-Bello 7
et al.,J.
Autoimmun
18:55-66,2002
B30-C44 TPKTRREAEDLQVGQVEL 3H-胸苷 Durinovic-Bello 8
et al.,J.
Autoimmun
18:55-66,2002
C38-C54 QVGQVELGGGPGAGSLQ 3H-胸苷 Durinovic-Bello 9
et al.,J.
Autoimmun
18:55-66,2002
C58-A11 LEGSLQKRGIVEQCCTSIC 3H-胸苷 Durinovic-Bello 10
et al.,J.
Autoimmun
18:55-66,2002
[0029]表位# 序列 方法 Ref SEQ ID
NO:
A7-A2 CTSICSLYQLENYCN 3H-胸苷 Durinovic-Bello 11
et al.,J.
Autoimmun
18:55-66,2002
B11-B27 LVEALYLVCGERGFFYT T细胞克隆 Schloot et al.,J. 12
Autoimmun
11:169-175,
1998
C35-50 EDLQVGQVELGGGPGA T细胞克隆 Scmana et al.,J. 13
Autoimmun
12:259-267.
1999
L1-24 MALWMRLLPLLALLALWGPDPAAA HLADQ8 Raju et al., 14
小鼠 llum.Immunol
58:21-29,1997
B19-C36 CGERGFFYTPKTRREADLQ HLADQ8 Raju et al., 15
小鼠 Hum.Immunol
58:21-29,1997
L11-B8 LALWGPDPAAAFVNQHLCG HLADQ6 Raju et al., 16
小鼠 Hum.Immunol
58:21-29,1997
B19-C38 CGERGFFYTPKTRREADLQ HLADQ6 Raju et al., 17
小鼠 Hum.Immunol
58:21-29,1997
C9-A3 GAGSLQPLALEGSLQKRGIV HLADQ6 Raju et al., 18
小鼠 Hum.Immunol
58:21-29,1997
L11-B2 LALLALWGPDPAAAFV HLADR4 Congia et al., 19
小鼠 Proc.Natl.
Acad.Sci USA
95:3833-3838,
1998
L21-B12 PAAAFVNQHLCGSHLV HLADR4 Congia et al., 20
小鼠 Proc.Natl.
Acad.Sci USA
95:3833-3838,
1998
[0030]表位# 序列 方法 Ref SEQ ID
NO:
C49-A GAGSLQPLALEGSLQRRG HLA DR4 Congia et al. 21
小鼠 Proc.Natl.
Acad.Sci USA
95:3833-3838,
1998
CG-A12 SLQKRGIVEQCCTSICS HLA DR4 Congia et al., 22
小鼠 Proc.Natl.
Acad.Sci USA
95:3833-3838,
1998
[0031] #B=胰岛素B链;C=胰岛素原连接(C)肽;A=胰岛素A链;L=胰岛素原前导序列
[0032] 表4中提供了三字母和单字母氨基酸缩写的列表。
[0033] 表4
[0034] 单和三字母氨基酸代码
[0035]
[0036] 附图概述
[0037] 图1是人胰岛素原的氨基酸序列(SEQ ID NO:1)的图表。
[0038] 图2是表位存在于胰岛素A链的前12个氨基酸序列中的图解说明。检测抗对应+
于人胰岛素原的序列的肽组的胰岛素原特异性CD4T细胞克隆。(A)初步的表位作图。将
具有3个氨基酸偏移的15mer肽(其构成胰岛素原的完整序列)分成8组,每组3-4个肽。
4 4
在经照射的自体PBMC(5x10/孔)和各肽组存在的情况下培养T细胞克隆(5x10/孔)。单
种肽的终浓度为5μg/ml,重组人胰岛素原为10μg/ml。(B)精细表位作图。分别在5μg/ml的终浓度上检测组成组8的三种肽。其他条件和上述(A)中的条件相同。(C)在抗原不
存在或存在10μg/ml胰岛素原或10μg/ml重组人胰岛素的情况下培养克隆的T细胞。以
5μg/ml终浓度加入抗HLA DR单克隆抗体(L243)。通过在72小时的培养的最后18小时
3
加入0.5μCi/孔 H胸苷来测量所有实验中的增殖(三个重复的平均值+/-SD)。显示5个
克隆中的一个代表。
[0039] 图3是显示T细胞克隆识别天然胰岛素的图表说明。(A)在经过挑选的人胰岛或人脾脏冻融裂解物的稀释物中培养胰岛素特异性T细胞克隆。胰岛素(10μg/ml)和抗原
不存在的情况下的细胞分别用作正对照和负对照。使用两种其他胰岛素特异性克隆获得相似的结果。(B)在抗原不存在的情况下或在1/400稀释的胰岛裂解物或10μg/ml的胰岛素
存在的情况下培养胰岛素特异性T细胞克隆。以5μg/ml的终浓度包含抗HLA DR(L243,
IgG2a)或抗HLA DQ(SPV-L3,IgG2a)。
[0040] 图4是显示T细胞克隆的反应是HLA-DR4-限制性的图表说明。(A)在抗原不存在(无抗原)或在10μg/ml胰岛素原存在的情况下将胰岛素特异性T细胞克隆和经照
5
射的自体PBMC(1x10/孔)一起温育。以5μg/ml的终浓度加入对于HLA DR(L243)、HLA
DQ(SPV-L3)或HLA DP(B7/21)是特异性的抗体。使用3种其他的胰岛素特异性克隆获得
了类似的结果。(B)将胰岛素特异性T细胞克隆和经照射的(50Gy)、经HLA转染的BLS系
一起温育,用100μM A链肽(KRGIVEQCCTSICSL)或等体积的溶剂脉冲所述BLS系。将经肽
4 4
脉冲的BLS细胞(1x10/孔)和2.5x10 胰岛素特异性T细胞克隆/孔一起培养。减去在
T细胞不存在的情况下的BLS细胞的增殖(1,000-5,000cpm)。使用3种其他胰岛素特异性
克隆获得了相似的结果。
[0041] 图5是显示需要相邻半胱氨酸刺激T细胞克隆的图表说明。研究了用丝氨酸置换各半胱氨酸的效应。(A)在10至0.001μM的A链表位或用丝氨酸(S)置换了各半胱氨
4
酸(C)的变体存在的情况下培养胰岛素特异性T细胞克隆(2.5x10 细胞/孔)。经置换
的氨基酸以粗体字型显示。使用三种其他的胰岛素特异性克隆获得了相似的结果。(B)在独立的实验中,将对天然序列(KRGIVEQCCTSICSL;SEQ ID NO:23)和更有效的变体(S-13,KRGIVEQCCTSISSL;SEQ ID NO:26)的反应和鼠类同源物(KRGIVDQCCTSICSL;SEQ ID NO:
27)的进行比较。
[0042] 图6是显示A链表位包含链内二硫键的图表说明。(A)为鉴定经修饰的表位,在37℃下在包含血清的培养基中温育S-13肽1小时。通过RP-HPLC分离该混合物并收集
0.5ml的级分。该图显示214nm的吸光率。实心长条显示对各级分(1/400稀释度)作出反
应的胰岛素特异性T细胞克隆的增殖。将表达HLA DRB1*0404的经多聚甲醛固定的B细胞
4 3
系用作APC(1x10/孔)。通过在72小时培养的最后18小时期间的 H胸苷的整合测量增
殖。(B)亲本肽(KRGIVEQCCTSISSL;SEQID NO:26)和来自(A)中培养基改进的实验的活性级分(#7)的MALDI-QTOF质谱分析。所述活性级分包含比S-13肽少2道尔顿的单一肽种
类,这和A6和A7之间的半胱氨酸之间的链内二硫键一致。
[0043] 图7是显示还原破坏表位的图表说明。用新配制的TCEP处理S-13肽(终浓度4
为1μM)并将其稀释至显示的终浓度。各孔包含经照射的自体PBMC(5x10)和T细胞克隆
4
(2.5x10/孔)。类似地制备PHA(1.25μg/ml)、IL-2(2.5U/ml)和单独的溶剂。
[0044] 图8是显示来自临床前I型糖尿病供体的T细胞克隆识别相同表位的图表说明。11种胰岛素原特异性克隆中的3种响应胰岛素而进行增殖。(A)在胰岛素原(10μg/ml)
或胰岛素(10μg/ml)存在或不存在抗原的情况下培养胰岛素原特异性T细胞克隆。显示
了三种胰岛素特异性克隆中的一种。(B)在37℃下用S-13肽(100μM)或单独的溶剂脉冲
4
用所示的HLA基因转染的经照射的(50Gy)B细胞系并进行洗涤。各孔包含2.5x10T细胞
4
和2.5x10BLS细胞系。(C)将经多聚甲醛固定的用HLA DRB1*0404转染的B细胞系和用于
4
鉴定被第一系列克隆识别的表位的修饰的RP-HPLC级分的样品一起培养。各孔包含1x10
经HLADRB1*0404转染的B细胞,各级分的1/100的稀释物和来源于临床前糖尿病供者的
4
2.5x10 个克隆的胰岛素特异性T细胞。
[0045] 图9是显示来源于健康受试者的克隆不识别A1-13表位的图解说明。
[0046] 图10是显示A1-13肽在NOD小鼠中预防糖尿病的图解说明。
[0047] 优选的实施方案的详述
[0048] 在详细地描述本发明之前,要理解除非另外指出,本发明不限定于特定的组分的制剂、生产方法、剂量或诊断方案等,因为这些是可变化的。也要理解此处所用的术语只是用于描述特定实施方案的目的,其不受到限定。
[0049] 除非上下文明确地指出,单数形式“a”、“an”和“the”包括复数方面。因此,例如,“肽”包括单个肽,和2个或多个肽;“T细胞”包括单个T细胞和2个或多个T细胞;“TCRA”包括单个TCRA和2个或多个TCRA等。
[0050] 在描述本发明和请求保护本发明的权利中,根据下面所示的定义使用下列术语。
[0051] 术语“肽”、“化合物”、TCRA、“活性试剂”、“化学试剂”、“药理学活性试剂”、“药剂”、“活性物质”和“药物”在此可互换使用,表示诱导想要的药理学和/或生理学效应的TCRA。术语“TCRA”也包括TCRA的激动剂和拮抗剂。该术语也包括此处明确提到的这些活性试剂的药物可接受的和药理学活性的成分,包括但不限于盐、酯、酰胺、前体药物、活性代谢物、类似物等。当使用术语“肽”、“化合物”、TCRA、“活性试剂”、“化学试剂”、“药理学活性试剂”、“药剂”、“活性物质”和“药物”时,那么要理解这包括活性试剂自身和药物可接受的、药理学活性的盐、酯、酰胺、前体药物、代谢物、类似物等。
[0052] “肽”、“化合物”、TCRA、“活性试剂”、“化学试剂”、“药理学活性试剂”、“药剂”、“活性物质”和“药物”包括两种或多种活性成分例如两种或多种肽的组合。“组合”也包括多部分例如两部分组合物,在所述组合物中,将所述试剂分开地提供和分开地给予或分发或在施用之前混合在一起。
[0053] 例如,多部分药物包装可具有两种或更多种分开保存的TCRA或TCRA和免疫抑制剂。
[0054] 此处所用的试剂的“有效量”和“治疗有效量”是指足以提供想要的治疗或预防效果或结果(包括想要的免疫结果(例如免疫耐受性))的试剂(例如TCRA)的量。不想要的效果,例如,副作用,有时和想要的治疗效果一起表现;因此,医生在确定什么是合适的“有效量”要平衡潜在的益处和潜在风险。所需的试剂的确切剂量将随受试者的不同而不同,依赖于受试者的人种、年龄和一般状况、施用的模式等。因此不可能给出明确的“有效量”。然而,本领域技术人员只使用常规的实验可确定任何个案情况下的合适的“有效量”。
[0055] “药物可接受的”媒介物、赋形剂或稀释剂是指由不是生物学的或其他不想要的材料组成的药物媒介物,即可将所述材料和选择的活性试剂一起施用而不导致任何或显著的不利反应。媒介物可包含赋形剂和其他添加剂例如稀释剂、去垢剂、着色剂、湿润剂或乳化剂、pH缓冲剂、防腐剂等。
[0056] 类似地,此处提供的化合物的“药物可接受的”盐、酯、酰胺、前体药物或衍生物是非生物学的或不是不想要的。
[0057] 此处所用的术语“治疗”是指减轻T1D的症状的严重度和/或频率、消除症状和/或背后的病因、预防T1D的症状的发生和/或其背后的原因以及改善或补救或减轻患T1D后的损伤。
[0058] “治疗”受试者可包括在易感受试者中预防T1D或其他不利生理学事件以及通过改善T1D的症状治疗具有临床症状的受试者。
[0059] 此处所用的“受试者”是指可受益于本发明的药物制剂和方法的动物,优选地哺乳动物和更优选地人。对可受益于目前描述的药物制剂和方法的动物的类型没有限定。可将无论人或非人动物的受试者称为个体、患者、动物、宿主或接受者以及受试者。本发明的化合物和方法用于人药物、兽药以及一般地驯养的或野生的畜牧业。
[0060] 如上面所指出的,优选的动物是人或其他灵长类动物例如猩猩、大猩猩、狨猴、家畜动物、实验室试验动物、伴侣动物或捕获的野生动物。
[0061] 实验室试验动物的示例包括小鼠、大鼠、兔子、豚鼠和仓鼠。兔子和啮齿动物例如大鼠和小鼠,提供了方便的试验系统或动物模型。家畜动物包括绵羊、牛、猪、山羊、马和驴。
[0062] 本发明鉴定了胰岛素原或胰岛素的A链中的表位,该表位包含对胰岛素原或胰岛+素致敏的CD4T细胞的T细胞反应性部分。该表位合宜地存在于肽或所述肽的同源物、类
似物、直向同源物、突变体或衍生物(此处统称为T细胞反应性试剂或TCRA)上。因此,所述肽或功能性等同物是T细胞表位或具有T细胞表位的能力。因此,本发明提供了T细胞
前表位(pre-epitope),所述前表位通过PTM从胰岛素原和胰岛素形成T细胞新表位。
[0063] 本说明书中的“新表位”是指其是新形成的表位。新表位形成自前表位。在优选的实施方案中,PTM将T细胞前表位转化成能够刺激胰岛素原或胰岛素致敏的T细胞特别+
是CD4T细胞的活性的T细胞新表位。
[0064] 在优选的实施方案中,PTM是两个相邻半胱氨酸之间的二硫键的形成。因而所述二硫键是链内二硫键。然而,本发明扩展至无论是天然发生的还是人工诱导的其他PTM。
[0065] 因此,本发明提供了分离的肽或所述肽的同源物、类似物、直向同源物、突变体或衍生物,所述肽在长度上包含了至少10个氨基酸残基,形成了基本上和人胰岛素原或胰岛素或其哺乳动物同源物的氨基酸残基1至21内的至少10个连续氨基酸同源的序列,其中所述氨基酸序列包含两个相邻的半胱氨酸残基,当所述半胱氨酸残基参与相互之间的二硫键形成时,使得该肽能够刺激胰岛素原或胰岛素致敏的T细胞。
[0066] “基本上同源”包括这样的状况,在所述状况中,在胰岛素原或胰岛素中的同源氨基酸序列内,序列包含一个或多个氨基酸置换、加入或缺失。
[0067] 本发明的肽被当作T细胞表位,当两个相邻的半胱氨酸残基参与二硫键形成时所+述表位和胰岛素原或胰岛素致敏的T细胞,特别是CD4T细胞反应。在二硫键形成之前,肽(或其功能性等同物)被认为是T细胞前表位。所述肽和其同源物、类似物、直向同源物、突变体和衍生物被称为“TCRA”。
[0068] “T细胞表位”的概念表示蛋白的抗原/免疫原序列,所述序列产生T细胞的激活和根据本发明包含T细胞表位的主要序列(primarysequence)或(抗原性)多肽或蛋白或抗原(其包含T细胞表位的至少一种主要序列)的主要序列。T细胞识别通常以结合至MHC
分子,特别是II类MHC分子的肽的形式存在的该刺激物。T细胞表位也可在某些情况下只
产生部分激活,在所述情况下,和T细胞激活相关的各种过程的解偶联可发生。完全或部分的T细胞的激活可导致调节物质(例如细胞因子)的释放。
[0069] 受试肽的同源物、类似物、直向同源物、突变体或衍生物也包括改变的肽配体(APL)。本发明的APL包括单个或多个氨基酸替代、肽内的氨基酸残基的缺失或加入或PTM的改变。PTM的改变包括引入或除去特定的糖基化模式、共价键、离子键、二硫键或其他基团例如不饱和或饱和脂肪酸部分或链的引入。
[0070] 因此,本发明提供通过PTM产生的分离的T细胞新表位,其特征在于:
[0071] (i)包含具有基本上和胰岛素原或胰岛素的A链的氨基酸序列同源的氨基酸序列的至少10个氨基酸的肽主链;
[0072] (ii)其中所述肽的氨基酸序列包含至少2个相邻的半胱氨酸残基,其中至少一个对应于人胰岛素原或胰岛素A链或其非人哺乳动物等同物中的Cys6或Cys7;
[0073] (iii)当充当胰岛素原或胰岛素致敏的CD4+T细胞的T细胞表位时,所述两个半胱氨酸残基参与相互之间的二硫键形成;
[0074] 或所述肽的同源物、类似物、直向同源物、突变体或衍生物。
[0075] 本发明的优选的T细胞表位包含SEQ ID NO:26中所示的氨基酸序列。然而,本发明扩展至包含至少2个相邻的半胱氨酸残基的许多胰岛素A链的片段,只要至少一个半胱氨酸对应于Cys6或Cys7,尽管最优选地两个都对应于Cys6和Cys7。
[0076] 例如,所述肽可包含人胰岛素原或胰岛素A链或其非人哺乳动物等同物或同源物的氨基酸1至20、2至20、3至20、4至20、5至20或2至19、2至18、2至17、2至16、2至15、2至14、2至13、2至12、2至11、2至10、2至9、2至8或3至19、3至18、3至17、3至
16、3至15、3至14、3至13、3至12、3至11、3至10、3至9或4至19、4至18、4至17、4至
16、4至15、4至14、4至13、4至12、4至11、4至10、4至9、4至8或5至19、5至18、5至
17、5至16、5至15、5至14、5至13、5至12、5至11、5至10、5至9、5至8或6至19、6至
18、6至17、6至16、6至15、6至14、6至13、6至12、6至11、6至10、6至9或6至8。
[0077] 如上所述,由SEQ ID NO:26定义的多肽以及其同源物、类似物、直向同源物、突变体和衍生物是最优选的。上面的“TCRA”包括在最佳比对后和SEQ ID NO.26具有至少80%的相似性的肽,只要其存在至少2个相邻的半胱氨酸残基,其中至少一个对应于人胰岛素原或胰岛素的A链或其非人哺乳动物的等同物的Cys6或Cys7。至少80%包括80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100%。
[0078] 如上所表明的,根据本发明,PTM产生了胰岛素原或胰岛素致敏的CD4+T细胞的新表位,其中PTM是Cys6和Cys7之间的二硫键的形成。本发明扩展至导入非天然发生的氨基酸残基以促进与通过Cys6和Cys7之间的二硫键施加的相同的构象限制。可选择地,可
使用非天然发生的氨基酸以稳定用于体外或体内诊断或治疗检测的肽。
[0079] “类似物”通常是化学类似物,且包括,但不限于,对侧链的修饰、在肽、多肽或蛋白合成期间非天然氨基酸和/或其衍生物的整合以及对肽施加构象限制的交联剂和其他方法的使用。
[0080] 本发明涉及的侧链修饰的实例包括氨基的修饰,例如通过和醛反应,然后用NaBH4还原的还原性烷化产生的修饰;使用甲基乙酰亚胺基的脒基化(amidination);使用乙酸酐的酰化;使用氰酸的氨基的氨甲酰化;使用2,4,6-三硝基苯磺酸(TNBS)的氨基的三硝基苯甲基化;使用琥珀酸酐和四氢邻苯二甲酸酐的氨基的酰化;和使用吡哆醛-5-磷酸然后用NaBH4还原的赖氨酸的吡哆醇化。
[0081] 可通过用试剂例如2,3-丁二酮、苯乙二醛和乙二醛形成杂环缩合产物来修饰精氨酸残基的胍基。
[0082] 可通过O-酰基异脲的形成,然后衍生成例如对应的酰胺而通过碳二亚氨激活来修饰羧基。
[0083] 巯基可通过下列方法进行修饰:使用碘乙酸或碘乙酰胺的羧甲基化;过甲酸氧化形成半胱磺酸;使用其他硫醇化合物形成混合的二硫化合物;和马来酰亚胺、马来酸酐或其他取代的马来酰亚胺反应;使用4-氯汞苯甲酸、4-氯汞苯磺酸、苯基氯化汞、2-氯
汞-4-硝基酚和其他汞制剂形成汞衍生物;在碱性pH下使用氰酸进行甲氨酰化。
[0084] 通过例如使用N-溴代琥珀酰亚胺的氧化或使用2-羟基-5-硝基溴化苄或磺酸苯基卤化物的吲哚环的烷化来修饰色氨酸残基。另一方面可通过使用四硝基甲烷的硝化改变酪氨酸残基以形成3-硝基酪氨酸衍生物。
[0085] 可通过使用碘乙酸衍生物的烷化或使用焦碳酸二乙酯的N-乙酯化来实现组氨酸残基的咪唑环的修饰。
[0086] 在肽合成过程中整合非天然氨基酸和衍生物的实例包括,但不限于,正亮氨酸、4-氨基丁酸、4-氨基-3-羟基-5-苯基戊酸、6-氨己酸、叔丁基甘氨酸、正缬氨酸、苯基甘氨酸、鸟氨酸、肌氨酸、4-氨基-3-羟基-6-甲基庚酸、2-噻吩基丙氨酸和/或氨基酸的D-异构体的使用。此处涉及的非天然氨基酸的目录示于表5中。
[0087] 表5
[0088]
[0089]
[0090]
[0091]
[0092] 可通过使用同双功能交联剂例如具有(CH2)n间隔基团(n=1至n=6)的双功能亚氨基酯、戊二醛、N-羟基琥珀酰亚胺酯和通常包含氨基反应性部分例如N-羟基琥珀酰亚胺和另一种基团特异性反应性部分例如马来酰亚胺或二硫基部分(SH)或碳二亚胺(COOH)
的异双功能试剂,将交联剂用于例如稳定3D构象。此外,可通过例如Cα和Nα-甲基氨基酸的整合、氨基酸的Cα和Cβ原子之间的双键的引入和环肽或类似物的形成在构象上限制肽,所述环肽或类似物是通过引入共价键例如在N和C末端之间、两个侧链之间或侧链和N或
C末端之间形成酰胺键而形成。
[0093] 本发明还涉及能够用作T细胞表位肽或其他TCRA的拮抗剂或激动剂的受试多肽的化学类似物。化学物类似物可不一定来源于本发明肽,但可共有某些构象相似性。可选择地,可特异性地设计化学类似物以模拟受试肽T细胞表位的某些物化特性。可通过化学方法合成化学类似物,或可在例如天然的产物筛选或化学物质文库的筛选之后检测其。后者是指从各种环境来源例如河床、珊瑚、植物、微生物和昆虫中鉴定的分子。
[0094] 如果给个体施用或用作诊断试剂,这些类型的修饰对稳定受试TCRA是非常重要的。
[0095] 本发明涉及的其他衍生物包括许多PTM例如糖基化和硫键的改变。
[0096] TCRA的模拟物的设计是基于前导化合物例如由SEQ ID NO.26定义的肽的药物制剂的开发的已知方法。当活性肽化合物难以合成或合成成本非常高,或当其不适合于特定的施用方案,所述模拟物可能是想要的,例如肽通常不是口服组合物的合适的活性剂,因为其倾向于被消化道中的蛋白酶快速降解。通常使用模拟物的设计、合成和检测以避免就靶特性随机地筛选大量的分子。
[0097] 在从具有给定的靶性质的化合物设计模拟物中存在几个共同采用的步骤。首先,确定在决定靶性质中是关键和/或重要的化合物的特定部分。在肽的情况下,可通过例如依次置换各残基系统性地改变肽中的氨基酸残基来进行该步骤。通常使用肽的丙氨酸扫描以精确定义该肽基元。组成化合物的活性区域的这些部分或残基被称为其“药效基团”。
[0098] 当药效基团已被发现后,根据其物理性质例如立体化学、成键、大小和/或电荷性质,使用来自广泛来源的数据,例如分光镜技术、X射线衍射数据和NMR数据建立其结构模型。可在该建模过程中使用计算机分析、相似性作图(对药效基团的电荷和/或体积而不是原子间的键合建模)和其他技术。
[0099] 在该方法的变体中,确定II类MHC分子或肽的三维结构。当MHC分子和/或肽在结合时改变构象时,这可以是特别有用的,其允许该模型在模拟物的设计中考虑该现象。可使用建模产生和线性序列或三维构象相互作用的抑制剂。
[0100] 然后选择可将模拟药效基团的化学基团移植至其上的模板分子。可方便地选择模板分子和移植至其上的化学基团以使模拟物容易合成,使其可能是药物可接受的,且不在体内降解,同时保持前导化合物的生物学活性。可选择地,可通过使肽环化,增加其刚性来获得稳定性。然后可筛选通过该方法获得的模拟物以观察其是否具有靶性质,或其表现该靶性质的程度。然后进行进一步的最优化或修饰以获得用于体内或临床试验的一个或多个最终模拟物。
[0101] 推理性药物设计的目标是产生目的生物学活性多肽的或和其相互作用以塑造药物(其是例如该多肽的更具活性或稳定的形式)的小分子(例如激动剂、拮抗剂、抑制剂
或增强子)的结构类似物,所述小分子在体内例如增强或干扰多肽的功能。参见,例如
Hodgson(BioTechnology 9:19-21,1991)。在一个方法中,人们通过X射线晶体学,通过计算机建模或最通常地通过方法的组合首先确定目的蛋白的三维结构。也可通过基于同源蛋白的结构建模获得有关多肽的结构的有用信息。推理性药物设计的实例是HIV蛋白酶抑制剂的开发(Erickson等人,Science 249:527-533,1990)。此外,可通过丙氨酸扫描分析靶分子(Wells,Methods Enzymol.202:2699-2705,1991)。在该技术中,由丙氨酸取代氨基酸残基并确定其对多肽的活性的影响。以该方式分析肽的每一个氨基酸残基以确定该肽的重要区域。
[0102] 也可能分离通过功能测定法选择的肽特异性抗体,然后解析其晶体结构。原则上,该方法产生随后的药物设计可依据的药效基团。通过产生针对功能性药理学活性的抗体的抗独特型抗体(抗-id)可能完全绕开蛋白质晶体学。作为对映体的镜像,可预期抗-id的结合位点是原始受体的类似物。从而可使用抗-id从化学地或生物学地产生的肽库中鉴定和分离肽。然后可将选择的肽用作药效基团。
[0103] 双杂交筛选也用于鉴定和靶关联的生物化学或遗传学途径的其他成员。双杂交筛选方便地使用啤酒酵母(Saccharomyces cerevisiae)和粟酒酵母(Saccharomyces
pombe)。可使用酵母双杂交系统进行靶相互作用和抑制剂的筛选,所述酵母双杂交系统利用由两个物理上可分开的、功能性结构域组成的转录因子。最常使用的是由DNA结合结构域和转录激活结构域构成的酵母GAL4转录激活因子。使用两种不同的克隆载体分别产生
GAL4的结构域与编码潜在的结合蛋白的基因的融合物。共表达融合蛋白,将其靶向细胞核,如果发生相互作用,那么报告基因(例如,lacZ)的激活产生可检测的表型。例如,在本情况下,用表达cDNA GAL4激活结构域融合物的文库或载体和表达holocyclotxin-GAL4结合结构域融合物的载体共转化啤酒酵母。如果lacZ用作报告基因,融合蛋白的共表达将产生蓝色。和靶相互作用的小分子或其他候选化合物将导致细胞的颜色丧失。可参照Munder等
人(Appl.Microbiol.Biotechnol.52:311-320,1999)和Young等人(Nat.Biotechnol.16:
946-950,1998)所公开的酵母双杂交系统。然后在动物细胞中重新检测通过该系统所鉴定的分子。
[0104] 药物筛选的另一种技术提供了具有对靶的合适的结合亲和力的化合物的高通量筛选,且详细地描述于Geysen(国际专利公开号WO84/03564)。简单地说,在固体基质例如塑料针或一些其他表面上合成大量不同的小肽受试化合物。将所述肽受试化合物和靶反
应,然后洗涤。然后通过本领域内熟悉的方法检测结合的靶分子。本方法可适合筛选非肽、化学实体。因此,该方面扩展至筛选靶拮抗剂或激动剂的组合方法。
[0105] 可将纯化的靶直接包被在板上以用于前述的药物筛选技术。然而,也可使用靶的非中和抗体将靶固定在固相上。
[0106] 本发明也涉及竞争性药物筛选测定法的用途,在该测定法中,能够特异性地结合靶的中和抗体和受试化合物竞争结合靶或其片段。通过该方式,可使用抗体检测与靶具有一个或多个相同抗原决定簇的任何多肽的存在。
[0107] 如上所述,TCRA具有广泛的诊断和治疗用途。
[0108] 可使用任何数目的方法检测对受试T细胞表位敏感的T细胞。免疫检测是筛选由特定的II类MHC分子‘限制’的T细胞的一个特定的方法。因此,本发明扩展至针对或优
选地特异于T细胞表位或二硫键或其结合性II类MHC分子的抗体和其他免疫试剂。所述
抗体可以是单克隆的或多克隆的或可包含Fab片段或合成的形式。
[0109] 可使用特异性抗体筛选受试T细胞表位和其片段。此处涉及的用于测定法的技术在本领域内是已知的,包括,例如,夹心分析法和ELISA。
[0110] 包含针对上面提及的第一抗体的任何第二抗体(单克隆的、多克隆的或抗体的片段或合成的抗体)在本发明的范围之内。所述第一和第二抗体都可用于检测测定法或第一抗体可和商购可获得的抗免疫球蛋白抗体一起使用。此处涉及的抗体包括对于T细胞表位处的或附近的肽的任何区域是特异性的任何抗体。
[0111] 单克隆抗体和多克隆抗体都可通过使用受试肽或更大的形式例如A链或II类MHC分子和肽之间的复合物进行免疫接种来获得,且任一类型可用于免疫测定法。获得两种类型的抗体的方法在本领域是熟知的。多克隆血清是较不优选的,但可通过用有效量的受试多肽或其抗原性部分注射合适的实验动物,从动物收集血清并通过已知的免疫吸附技术中的任一技术分离特异性血清来相对容易地制备。尽管通过该方法产生的抗体几乎可用于任何类型的免疫测定法,但因为产物的潜在的不均一性,其通常是较不优选的。
[0112] 可通过许多方法例如Western印迹法和ELISA法检测本发明的T细胞表位的存在。广泛的免疫测定技术是可获得的,如可通过参考美国专利号4,016,043、4,424,279和
4,018,653看到的。
[0113] 本发明的T细胞表位和其新表位在治疗中具有广泛的用途。
[0114] 例如,可在治疗中使用TCRA诱导免疫耐受性。这可通过各种方法实现,包括通过致耐受性途径(例如通过粘膜)或以致耐受性形式(例如通过未成熟树突细胞)施用肽,将胸腺暴露于肽,使用肽通过例如在T细胞中刺激编程性细胞死亡或通过将细胞毒性部
分偶联至肽来诱导缺失耐受性(deletional tolerance)或诱导T细胞无反应性(T-cell
anergy)。也可使用TCRA产生对于TCRA是特异性的抗体或其他免疫反应性分子。
[0115] 因此,本发明的另一个方面涉及预防或减少受试者中T1D的发生的风险,所述方法包括将诱导T细胞耐受性的有效量的肽导入所述受试者,所述肽具有下列特征:
[0116] (i)包含具有基本上和胰岛素原或胰岛素的A链的氨基酸序列同源的氨基酸序列的至少10个氨基酸的肽主链。;
[0117] (ii)其中肽的氨基酸序列包含至少两个相邻的半胱氨酸残基,其中至少一个对应于人胰岛素原或胰岛素的A链或其非人哺乳动物的等同物中的Cys6或Cys7;
[0118] (iii)当用作胰岛素原或胰岛素致敏的CD+T细胞的T细胞表位时,所述两个相邻的半胱氨酸残基参与相互之间的二硫键的形成;
[0119] 或所述肽的同源物、类似物、直向同源物、突变体或衍生物。
[0120] 在可选择的方法中,使用所述肽诱导胰岛素原或胰岛素致敏的CD4+T细胞的选择性排除。在这点上,将本发明的T细胞表位肽或其他TCRA以及其新表位形式和细胞毒性分子融合或和其结合,所述细胞毒性分子包括细胞凋亡分子(apoptotic molecule)或放射性同位素。
[0121] 在另外的选择中,产生特异性靶向所述二硫键的催化抗体。在这点上,尽管不希望将本发明限定于任一假说,但存在的两个相邻的残基之间形成的二硫键可能在蛋白的主链中导致充分弯曲的形成。该弯曲的Ω扭角可在从180度至负130度的范围内变化。肽主链的该弯曲的结果可能产生对于该构象是特异性的抗体例如催化抗体。
[0122] 因此,本发明的另一个方面提供了肽:
[0123] (i)包含具有基本上和胰岛素原或胰岛素的A链的氨基酸序列同源的氨基酸序列的至少10个氨基酸的肽主链;
[0124] (ii)其中肽的氨基酸序列包含至少两个相邻的半胱氨酸残基,其中至少一个对应于人胰岛素原或胰岛素的A链或其非人哺乳动物的等同物中的Cys6或Cys7;
[0125] (iii)当用作胰岛素原或胰岛素致敏的CD+T细胞的T细胞表位时,所述两个相邻半胱氨酸残基参与相互之间的二硫键的形成;
[0126] 或所述肽的同源物、类似物、直向同源物、突变体或衍生物。
[0127] 其中将所述肽和细胞毒性部分融合或和其结合。
[0128] 该肽在此处被称为细胞毒性T细胞靶向试剂,但也包含在术语TCRA内。
[0129] 因此,本发明的另一个方面提供了用于治疗患有T1D或对于相同疾病的发生具有+易感体质的受试者的方法,所述方法包括给所述受试者施用足以对CD4T细胞产生细胞毒
性的量的肽,其中所述肽的特征在于:
[0130] (i)包含具有基本上和胰岛素原或胰岛素的A链的氨基酸序列同源的氨基酸序列的至少10个氨基酸的肽主链;
[0131] (ii)其中肽的氨基酸序列包含至少两个相邻的半胱氨酸残基,其中至少一个对应于人胰岛素原或胰岛素的A链或其非人哺乳动物的等同物中的Cys6或Cys7;
[0132] (iii)当用作胰岛素原或胰岛素致敏的CD+T细胞的T细胞表位时,所述两个相邻的半胱氨酸残基参与相互之间的二硫键的形成;
[0133] 或所述肽的同源物、类似物、直向同源物、突变体或衍生物。
[0134] 本发明还涉及用于诊断和/或预防可攻击移植的胰岛素(原)生产性细胞或组织的免疫T细胞反应的方法。
[0135] 在另一个方面,本发明预期II类MHC分子载有包含受试T细胞表位的肽。该肽通常被载入由α和β1结构域形成的结合沟中,且通过非共价相互作用结合至II类MHC分
子。所述肽在长度上可以是从大约9至10至大约20个氨基酸或更多个氨基酸。
[0136] 方便地合成地产生本发明的肽,但序列来源于胰岛素原或胰岛素。
[0137] 可通过许多方法制备肽。例如,可使用自动化肽合成仪合成肽。也可通过人工合成肽(Haunkapiller等人,Nature 370:105-11,1984,Stewart和Young,Solid Phase PepTlDe Synthesis,第2版,PierceChemical Co.,Rockford III,1984,Houben-Weyl,Methoden derorganischen Chemie.第15/1和15/2卷,Bodanszky,Principles ofPepTlDe Synthesis,Springer Verlag1984)。可选择地,可通过蛋白水解断裂(例如,通过胰蛋白酶、胰凝乳蛋白酶、木瓜蛋白酶、V8蛋白酶等)或特异性化学断裂(例如溴化氰)合成肽。
也可通过交叠的核苷酸序列在体内或体外的表达来合成肽,各核苷酸序列编码特定的肽。
[0138] 可任选地在和II类MHC分子接触之前分离和纯化肽。合适的方法包括,例如,层析(例如离子交换层析、亲和层析、大小柱层析、高压液相色谱等)、离心、差异溶解性differential solubility或通过用于肽或蛋白的纯化的任何其他合适的技术。在某些
实施方案中,可标记(例如用放射性标记、发光标记、亲和标记等)肽以帮助肽的纯化(下文)。
[0139] 通常不将肽和II类MHC分子交联。在其他实施方案中,任选地可将肽和II类MHC分子的结合沟交联。例如,可使用双功能交联剂(例如异双功能、同双功能交联剂等)共
价地将肽连接至II类MHC分子(Kunkel等人,Mol.Cell.Biochem.34:3,1981)。合适的交联剂包括,例如,二甲基辛二亚胺酸(suberimidate)、戊二醛、琥珀酰亚胺基氧羰基-α-甲基-α-(2-吡啶基二硫基)-甲苯(SMTP)、N-琥珀酰亚胺基3-(2-吡啶基二硫基--丙酸
(SPDP)、磺基琥珀酰亚胺基4-(N-马来酰亚胺甲基)环己烷-1-羧酸(磺基-SMCC)、间-马
来酰亚胺苯甲酰-N-羟基琥珀酰亚胺酯(MBS)、间-马来酰亚胺苯甲酰-N-羟基磺基琥珀酰
亚胺酯(磺基-MBS)、N-琥珀酰亚胺基(4-碘乙酰基)氨基苯甲酸酯(SIAB)、N-磺基琥珀酰
亚胺基(4-碘乙酰基)氨基苯甲酸酯(磺基-SIAB)、琥珀酰亚胺基-4-(对-马来酰亚胺苯
基)丁酸(SMPB)、磺基琥珀酰亚胺基-4-(对-马来酰亚胺苯基)丁酸(磺基-SMPB)、1-乙
基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)、二硫基二琥珀酰亚胺基丙酸(DSP)、3,
3′二硫基二(磺基琥珀酰亚胺基丙酸)(DTSSP)等(PierceChemical Co.Pierce Immuno
Technology Catalog and Handbook,1990)。在一个实施方案中,可将肽的一个或多个锚残基和II类MHC分子交联。在其他实施方案中,可将肽的任何合适的残基和II类MHC分子
交联。
[0140] 可选择地,可将肽制备为和可溶性II类MHC β亚基的融合蛋白。例如,编码肽或肽的混合物的核酸可表达为包含肽、间隔子或连接体区域(例如10至20个氨基酸的连接体)、可溶性II类MHC亚基和配体结合性结构域的融合蛋白。将肽连接至例如II类MHC分
子β亚基的氨基末端。在一个实施方案中,从表达盒表达融合蛋白。表达盒可包含,例如,相对于转录的方向,以5′至3′的方向有效地和编码多接头克隆区的核酸、编码间隔区的核酸和编码II类MHC β亚基的核酸连接的启动子。该表达盒可在任何合适的宿主生物体
中表达,且可以是表达载体的部分。在另一个实施方案中,通过将简并、半简并或非简并核酸插入表达盒例如上述的表达盒的多接头区来制备II类MHC/肽融合蛋白对的库集。可选
择地,可将编码单个肽的核酸插入多接头区。
[0141] 可将II类MHC分子和肽形成多聚体II类MHC复合物。如此处所用,形成多聚体II类MHC/肽复合物可包括从II类MHC分子/肽对形成多聚体II类MHC/肽复合物和/或
从可载有肽的II类MHC分子形成多聚体II类MHC分子。
[0142] 多聚体复合物可包含2、3、4或更多个II类MHC/肽复合物。可通过II类MHC分子上的配体和多价结合伴侣之间的相互作用形成这些复合物。如此处所用的,短语“配体-配体结合伴侣对”是指能够相互识别和结合的配体和其配体结合伴侣。术语“多价”是指具有至少两个结合位点,通常三个或四个配体结合位点的配体结合伴侣。配体和配体结合伴侣可以是能够相互识别和结合以形成多聚体复合物的任何部分。此外,配体和结合伴侣可通过第三媒介物质的结合相互作用。一般地,组成配体-结合伴侣对的配体和配体结合伴侣是进行相互之间的特异性非共价相互作用的结合分子。配体和配体结合伴侣可以是天然发生的或人工产生的,且任选地可和其他分子聚集。
[0143] 结合伴侣可以是在溶液中游离的或可附着至固体支持物。合适的固体支持物的例子包括小珠(例如磁珠)、膜、微量滴定板等。支持物可以是玻璃、塑料(例如聚苯乙烯)、多糖、尼龙、硝酸纤维素、PVDF等。连接至固体支持物的结合伴侣可用于识别多聚体II类MHC分子和结合的肽的T细胞(例如,来自PBMC的群体)的固定和/或分离。
[0144] 在示例性实施方案中,II类MHC亚基中的一个包含修饰位置(例如BirA识别序列);BirA催化蛋白底物的生物素化。然后将生物素化的II类MHC分子结合至多价结合伴
侣(例如链霉抗生物素或抗生物素蛋白),生物素以极高的亲和力与所述结合伴侣结合。然后可贮存多聚体直至需要。
[0145] 通常通过在37℃下,在0.2%正辛基-D-吡喃型葡糖苷(OG)存在的情况下,在微酸性pH(例如100mM磷酸钠,pH6.0)的磷酸缓冲液中温育,将肽载入II类MHC分子。任选
地向混合物中加入蛋白酶抑制剂。合适的肽加载时间在从大约48至大约72小时的范围内
变动,但更长和更短的时间也在本发明的范围之内。合适的肽:MHC类分子的摩尔比例超过
10:1,但更大和更小的比例在本发明的范围之内。可使用其他缓冲液和pH,如本领域技术人员将认识到的。
[0146] 在某些实施方案中,标记多聚体II类MHC/肽复合物。如此处所用的,术语“标记”或“经标记的”是指当将所述标记整合入或附着至多肽例如II类MHC分子或多价结合伴侣时可提供可检测的信号的分子或分子的基团。例如,可用放射性分子、发光分子、荧光分子、化学发光分子、酶或通过生物素基部分标记多肽或多价结合伴侣。标记多肽和结合伴侣的方法在本领域是熟知的。可检测的标记的实例包括但不限于下列:放射性同位素(例
3 14 32 35 125 131
如 H、C、P、S、 I、I 等)、荧光分子(例如异硫氰酸荧光素(FITC)、罗丹明、藻红蛋
白(PE)、藻蓝蛋白、别藻蓝蛋白、邻苯二甲醛、荧光胺、多甲藻(黄)素-叶绿素a(PerCP)、Cy3(indocarbocyanine)、Cy5(indodiacarbocyanine)、镧系元素无机发光材料等)、酶(例如辣根过氧化物酶、β-半乳糖苷酶、荧光素酶、碱性磷酸酶)、生物素基团等。在一些实施方案中,通过不同长度的间隔臂附着可检测的标记以减少潜在的空间位阻效应。
[0147] 在特定的实施方案中,可标记结合伴侣。例如,可用标记的抗生物素蛋白或链霉抗生物素(例如包含荧光分子的链霉抗生物素或由酶活性产生的可通过光学或比色法检测的有色分子)检测生物素化的II类MHC分子。可选择地,可用例如标记的抗体或其他可特
异性结合多聚体II类MHC复合物的其他结合试剂检测II类MHC分子。合适的标记包括上
述标记或本领域技术人员已知的标记。
[0148] 在另一个方面,将多聚体II类MHC/肽复合物和T细胞接触以确定该复合物是否以表位特异性的方式结合T细胞。在某些实施方案中,可使用多聚体II类MHC/肽复合物
染色或可检测地标记T细胞。如此处所用的,“染色”是指多聚体II类MHC/肽复合物可检测地标记可以表位特异性的方式结合所述复合物的T细胞。
[0149] 可从来自人受试者的新鲜样品、来自人受试者的细胞的体外培养物、细胞的冷冻样品等分离人T细胞。合适的样品可包括,例如,血液、淋巴、淋巴结、脾脏、肝脏、肾、胰腺、扁桃体、胸腺、关节、滑膜和可从其分离T细胞的其他组织。一般地,以外周血单核细胞(PBMC)的形式分离T细胞。可通过例如离心(例如从棕黄层)、通过密度梯度离心(例如通过Ficoll-Hypaque)、通过淘洗、亲和分离、细胞分选(例如使用对于一种或多种细胞表面标记物是特异性的抗体)和提供PBMC和/或T细胞的富集的其他技术部分地纯化PBMC。
[0150] 在一个示例性实施方案中,通过标准的Ficoll-Hypaque法从血液样品中分离PBMC。用肝素处理血液样品并用Ficoll溶液支持样品。离心后,可在PBS或T细胞培养基
(例如补充以2mLL-谷氨酰胺、100μg/ml青霉素/链霉素、1mM丙酮酸钠和15%混合的人
血清、AIM-V等的RPMI1640)中洗涤回收的细胞。可将经洗涤的细胞重悬浮于T细胞培养
基中等。
[0151] 可将多聚体II类/肽复合物和T细胞接触以鉴定预定的抗原的一种或多种II类MHC表位。可根据包含α和β亚基的II类MHC分子的特异性确定表位。
[0152] 一般地,将多聚体II类/肽复合物和目的T细胞的样品接触。在一些实施方案中,在预定的抗原存在的情况下,将T细胞在T细胞培养基中培养大约1至10天或更多天数以刺激对于该抗原是特异性的T细胞的增殖。任选地可用用于T细胞培养和/或生存的其他
成分(例如血清、抗生素、细胞因子、共刺激受体激动剂等)补充培养基。在另一个实施方案中,在无抗原刺激和/或培养的情况下将T细胞和多聚体II类/肽复合物接触(例如以
进行患者的监控)。
[0153] 在合适的结合条件下将T细胞和多聚体II类MHC/肽库集接触。在一个实施方案中,结合条件为37℃下任何合适的T细胞培养基(例如RPMI1640或AIM-V)、磷酸缓冲盐溶
液、Dulbecco氏磷酸缓冲盐溶液、Dulbecco’s Modified Eagle Medium、Iscove′s培养基等中。可用用于T细胞的培养和/或生存的组分(例如血清、抗生素、细胞因子等)补充
培养基。一般地将多聚体复合物和T细胞接触至少大约5分钟,通常在大约1至2小时的
范围内。可通过滴定确定多聚体复合物的合适的浓度。
[0154] 确定结合T细胞的多聚体复合物的量。例如,如果T细胞基本上是均一的,那么则为标记的多聚体的量。
[0155] 本发明的另一个方面提供了用于诱导耐受性或无反应性的方法。这可通过许多方法实现,所述方法包括提供II类MHC/T细胞表位复合物,将所述T细胞表位导入胸腺,提供亚最优水平的T细胞表位和提供T细胞表位-TCR相互作用的拮抗剂。合适的拮抗剂的实例是抗体或其重组体形式或嵌合体形式或衍生物。
[0156] 可将本发明的方法中所用的T细胞表位肽或其同源物、类似物、直向同源物、突变体和衍生物(即TCRA)或抗体、II类MHC复合物或T细胞受体-TCR拮抗剂(此处也称作“活性化合物”)整合入适合用于给受试者例如人施用的药物组合物中。这些组合物一般也包含药物可接受的媒介物。如此处所用的,术语“药物可接受的媒介物”意在包括和药物的施用相容的任何和所有溶剂、分散介质、包衣、抗菌剂和抗真菌剂、等渗剂和吸收延迟剂等。
药物活性物质的这些介质和试剂的用途在本领域是熟知的。只要介质或试剂和活性化合物相容,这些介质可用于本发明的组合物。也可将补充的活性化合物整合入组合物。
[0157] 配制本发明的药物组合物以使其和想要的施用途径相容。施用途径的实例包括肠胃外途径,例如静脉内、皮内、皮下、口服(例如吸入)、经皮(局部)、经粘膜和直肠施用。用于胃肠外、皮内或皮下施用的溶液或悬浮液可包括下列组分:无菌稀释剂例如用于注射的水、盐溶液、非挥发性油、聚乙二醇、甘油、丙二醇或其他合成的溶剂;抗菌剂例如苯甲醇或甲基对羟基苯甲酸酯;抗氧化剂例如抗坏血酸或亚硫酸氢钠;螯合剂例如乙二胺四乙酸;缓冲剂例如醋酸盐、柠檬酸盐或磷酸盐以及用于渗透压调节的试剂例如氯化钠或葡萄糖。
可用酸或碱,例如盐酸或氢氧化钠调节pH。可将胃肠外制剂封装在玻璃或塑料制造的安瓿、一次性使用注射器或多剂药瓶中。
[0158] 适合注射使用的药物组合物包括无菌水溶液(当为水溶性时)或分散体和用于无菌注射液或分散体的临时配制的无菌粉末。对于静脉内施用,合适的媒介物包括生理盐水、抑菌水、Cremophor EL.TM.(BASF,Parsippany,NJ.)或磷酸缓冲盐溶液(PBS)。在所有情况下,组合物必需是无菌的,且应当具有达到容易注射的程度的流动性。其在生产和贮存条件下必须是稳定的并且必须防止微生物例如细菌和真菌的污染行为。所述媒介物可以是包含例如水、乙醇、多元醇(例如,丙三醇、丙二醇和液体聚乙二醇等)和其合适的混合物的溶剂或分散介质。例如可通过使用包衣例如卵磷脂、通过在分散体的情况下保持所需颗粒大小或通过使用表面活性剂来保持恰当的流动性。可通过各种抗菌剂和抗真菌剂例如对羟苯甲酸酯、氯丁醇、苯酚、抗坏血酸、硫柳汞等来实现微生物行为的预防。在许多情况下,优选地在组合物中包含等渗剂,例如,糖类、多元醇例如甘露醇、山梨糖醇、氯化钠。可通过在组合物中包含延缓吸收的试剂例如单硬脂酸铝和明胶来产生可注射组合物的长时吸收。
[0159] 可通过将活性化合物(例如小分子、核酸分子或肽)以所需要的量和所需的上面列举的一种成分或成分的组合整合入合适的溶剂,然后过滤灭菌来制备无菌注射液。一般地,通过将活性化合物整合入包含基本分散介质和所需的来自上面列举的成分的其他成分的无菌媒介物中来制备分散体。在用于无菌注射液的制备的无菌粉末的情况下,优选的制备方法是真空干燥和冷冻干燥,所述方法产生活性成分加任何额外想要的成分的粉末,所述额外成分来自其前面经过滤灭菌的溶液。
[0160] 口服组合物通常包含惰性稀释剂或可食用的媒介物。可将其封装在明胶胶囊中或压制成片剂。为了口服治疗施用,可将活性化合物和赋形剂整合并以片剂、锭剂或胶囊的形式使用。也可使用用作漱口剂的流体媒介物制备口服组合物,其中经口施用流体媒介物中的化合物,并在口中搅动,吐出或吞咽。可包含药物可相容的结合剂和/或佐剂物质作为组合物的部分。片剂、丸剂、胶囊剂、锭剂等可包含下列成分或相似性质的化合物中的任一种:粘合剂例如微晶纤维素、西黄蓍胶或明胶;赋形剂例如淀粉或乳糖、崩解剂如褐藻酸、Primogel或玉米淀粉;润滑剂例如硬脂酸镁或Sterotes;助流剂例如二氧化硅胶体;甜味剂例如蔗糖或糖精;或增香剂例如薄荷、甲基水杨酸或柑橘味香料(orange flavoring)。
[0161] 为了通过吸入施用,以喷雾剂的形式从包含合适的推进剂例如气体如二氧化碳的加压容器或分配器或喷雾器递送化合物。
[0162] 也可通过经粘膜或经皮肤的方法进行全身性施用。对于经粘膜或经皮肤施用,在制剂中使用适合要穿过的屏障的渗透剂。这些渗透剂一般在本领域中熟知,包括,例如,对于经粘膜施用,去垢剂、胆汁盐和夫西地酸衍生物。经粘膜施用可通过使用鼻腔喷雾或栓剂来实现。对于透皮给药,可将活性化合物配制成本领域内众所周知的油膏、软膏、凝胶或乳膏。
[0163] 也可以栓剂(例如和常规的栓剂基质例如可可脂和其他甘油酯一起)或用于直肠递送法的滞留型灌肠剂的形式制备化合物。
[0164] 在一个实施方案中,用媒介物制备活性化合物,所述媒介物将保护化合物免受从身体的快速清除,例如控制释放制剂,包括埋植剂和微囊化递送系统。可使用生物可降解的、生物相容性聚合物,例如乙烯乙酸乙酯、聚酐、聚乙醇酸、胶原、聚原酸酯和聚乳酸。用于制备这些制剂的方法对于本领域技术人员来说是显而易见的。也可从AlzaCorporation和Nova Pharmaceuticals,Inc.商购获得所述材料。也可将脂质体混悬剂(包含用抗病毒抗原的抗体靶向感染的细胞的脂质体)用作药物可接受的媒介物。可根据本领域技术人员已知的方法,例如,如美国专利号4,522,811中所描述的方法制备这些物质。
[0165] 以单位剂量形式配制口服或胃肠外施用的组合物对于施用的便利性和剂量的一致性是特别有利的。此处所用的单位剂量形式是指适合作为接受治疗的受试者的单一剂量的物理上分开的单位;各单位包含经计算产生想要的治疗效果的预先确定的量的活性化合物和所需的药物媒介物。本发明的单位剂量形式的说明书依据和直接依赖于活性化合物的独特特性和要达到的特定治疗效果以及调制用于个体治疗的该活性化合物的技术中的固
有限制。
[0166] 通过下列非限定性实施例进一步描述本发明。
[0167] 实施例1
[0168] 血液供者和PBMC分离
[0169] 通过静脉穿刺获得血液。供者HLA型显示于表6中。在Ficoll/Hypaque(Amersham Pharmacia Biotech AB.Uppsala Sweden)上分离PBMC并在PBS中洗涤2次。将细胞培养在Iscove′s ModifiedDulbecco′s培养基(IMDM)(Gibco,Rockville,MA,USA)中,该
培养基补充有5%v/v的混合的男性人血清、2mM谷氨酰胺(Glutamax,Gibco,Rockville,-5
MA,USA)、5x10 M 2-巯基乙醇(Sigma,St Louis,MO)、青霉素(100U/ml)、链霉素(100μg/ml)(Gibco,Rockville,MA,USA)和100μM非必需氨基酸(Gibco,Rockville,MA,USA)。
从Tom MandelMemorial Islet Transplantation Program,St Vincent′s Institute,Melbourne,Australia获得胰岛和脾脏样品。通过胶原蛋白酶的导管灌注、消化和如所述的梯度离心分离胰岛(Shapiro等人,N Engl.J.Med.343:230-238,2000)。
[0170] 表6
[0171] 血液供体的临床详情
[0172]供体 临床状况 HLA DR HLA DQ
1 1型糖尿病 B1*0301,0404 B1*0201,0302
2 临床前1型糖尿病 B1*0301,0404 B1*0201,0302
[0173] 实施例2
[0174] 抗原
[0175] 用于本研究的肽显示于表7中。通过公开的实验方案(Cowley和Mackin,FEBS Lett 402:124-130,1997)的改进方案产生重组人胰岛素原。简而言之,在阴离子交换层析,重折叠和反相HPLC纯化后,蛋白在基质辅助激光解析/电离飞行时间质谱仪
中进行解析为正确分子量的单一品种。通过鲎溶解物测定法(Limulus lysate assay)
(BioWhittaker,Walkerville,MD)测量的胰岛素原母液的内毒素浓度为0.51EU/mg/ml。合成的肽购自Mimotopes(Clayton,Victoria,Australia)或Auspep(Parkville,Victoria,Australia)并在0.5%v/v乙酸,40%v/v乙腈-水中复水至5mM,将其等分并在-70℃下
贮存。临床等级的重组人胰岛素是HUMULIN(Novo,Nordisk,Copenhagen,Denmark)。从100个仔细挑选的胰岛制备人胰岛细胞裂解物,将所述胰岛重悬浮于0.5ml不含血清的IMDM,然后冷冻、解冻并超声处理3次来制备所述细胞裂解物。以相似的方法制备来自相同供者的脾裂解物。
[0176] 表7
[0177] 用于本研究的肽
[0178]
[0179] 实施例3
[0180] CFSE染色和T细胞克隆
[0181] 为了用染料5,6-羧基荧光素二乙酸琥珀酰亚胺酯(CFSE)(Molecular Probes,7
Eugene,Or)进行染色,在37℃下将PBS中的1x10/ml的PBMC和附图的概述中指定的CFSE
浓度一起温育5分钟。通过加入包含5%的混合的人血清的培养基终止染色,在PBS/1%
6 5
混合的人血清中洗涤细胞并以2x10/ml重悬于培养基中。将经染色的细胞(2x10/孔,
100μl)培养在具有单独的培养基或具有破伤风类毒素或胰岛素原的96孔圆底板(Becton Dickinson Labware,Franklin Lakes,NJ,USA)中。所有的实验中都包括未染色的细胞并将其用于在流式细胞仪上设置调整值。
[0182] 在7-10天的培养后,将各抗原浓度的细胞混合,在PBS中洗涤细胞并在冰上用抗人CD4-PE(IgG2a,克隆RPA-T4),(BD Pharmingen,San Diego,Ca)进行染色。基于未染色的和单一染色的样品确定各实验的最佳调整值和增益值(gain setting)。使用碘化丙啶dim +
排除死细胞。将单一的CFSE 、CD4、碘化丙啶阴性细胞分选入96孔板的除了外侧孔以外
5
的所有孔中。各孔包含1x10 来自两个无关供者的新制备的、经照射的(20Gy)、同种异体
4
PBMC和5x10、经照射的(50Gy)JYEpstein Barr病毒转化的B细胞系(EBV)、IL-2(10U/ml)、IL-4(5ng/ml)和植物凝集素(PHA)(2.5μg/ml),至100μl的终体积。在7和14天的培养
后加入新配的IL-2和IL-4。2-3周后可看到培养的克隆并将其转移至48孔板中,提供细
胞因子并就抗原特异性对其进行筛选。为进行筛选,在具有或不具有胰岛素原的情况下将
3
细胞和经照射的自体PBMC一起培养并通过实施例4中描述的 H胸苷整合测量增殖。
[0183] 实施例4
[0184] 增殖测定法
[0185] 在96孔圆底板中在5%的PHS/IMDM中进行所有测定。抗原呈递细胞(APC)th
是(i)经照射的(20Gy)自体或HLA匹配的PBMC(新制备的或解冻的)、(ii)来自9
International HLA Typing Workshop的HLA型的EBV转化的B细胞系或(iii)用不同的
HLA基因转染的经EBV转化的B细胞系(来自具有Bare Lymphocyte Syndrome的供者)。
在50Gy下照射EBV系。在一些实验中,在室温下用1%v/v多聚甲醛固定APC20分钟,在
PBS中洗涤两次,并在用于增殖测定法之前在培养基中洗涤一次。
[0186] 实施例5
[0187] 克隆TCR基因和测定其序列
[0188] 用RNAeasy柱(Qiagen,Maryland,USA)从1-5x106个克隆的胰岛素特异性T细胞分离总RNA。用寡聚(dT)引物和MMLV逆转录酶(Promega,Wisconsin,USA)进行第一链合
成,使用硅纯化cDNA,加入5’poly-G锚和末端转移酶(Promega,Wisconsin,USA)。使用正向锚引物(cac tcg agc ggc ccc ccc ccc ccc cc;SEQ ID NO:28)和α链(cag caa cgt ctc tgt ctc tg;SEQ ID NO:29)或β链(gct ctagcg tcg acg gct gct cag gca gta tct gga;SEQ ID NO:30)反向引物扩增TCR基因。纯化PCR产物,将其克隆入pGEM并通过Big Dye测序。在各克隆的各方向上对几个克隆进行测序。
[0189] 实施例6
[0190] HPLC分级分离和质谱测定法
[0191] 向1.8ml的血清中加入1.8mg的肽的等分,在37℃下温育1小时。然后使用配备有多波长可协调的UV检测器和Frac 950级分收集器的AKTA Basic HPLC(Amersham
Biosciences)通过RP-HPLC分级分离混合物。使用缓冲液A(0.1%v/v TFA)至60%v/
v B(乙腈/0.09%v/vTFA;0.86%/分钟)的线性梯度,以1ml/分钟的流速在
4.6x250mm Vydac蛋白和肽C18柱子上分离蛋白。收集级分(500μl),且将1μl等分
和1μl2,5-二羟苯甲酸(Agilent)混合并在样品台上干燥以通过MALDI-QTOF质谱仪
(Applied Biosys tems QSTAR pulsar i)进行分析。将选择的离子接受进一步的MSMS分
析。基于已知的亲本肽序列和序列中已鉴定的经修饰的氨基酸残基,人工地分配通过该方法产生的片段离子。
[0192] 实施例7
[0193] 胰岛素原A链表位的鉴定
[0194] 如实施例1中所描述的,从具有已确定的T1D的供者的外周血分离15个胰岛素原+
特异性CD4T细胞克隆。针对15-mer肽的交叠组(各肽偏移3个氨基酸)对表位进行作
图。首先,将所述克隆的各克隆和8个肽组一起温育,各肽组包含3-4个肽。15个克隆中有
5个克隆识别组8中的肽(图2A)。其余的克隆不对任何肽产生反应。第二步,当分别检测
组8中的3个肽时,包含胰岛素的C肽的最后2个氨基酸(下划线标示的)和A链的前13
个氨基酸的肽(KRGIVEQCCTSICSL;SEQID NO:23)和组8或重组胰岛素原刺激所述克隆(图
2B)。表位存在于胰岛素的A链内,如临床级胰岛素能够刺激克隆。使用成组的肽确定了所述表位在胰岛素的A链的前12个氨基酸内。最后,对胰岛素的反应是由于抗原特异性识别造成的,因为其可被抗HLA DR特异性mAb阻断(图2C)。
[0195] 实施例8
[0196] 针对A链表位的T细胞克隆识别天然的胰岛素
[0197] 为验证T细胞克隆识别来源于天然人胰岛素的表位,检测其响应人胰岛裂解物的增殖的能力。显示了来自两个克隆的结果(图3A)。两者都响应胰岛裂解物而增殖,但不响应来自相同供者的脾脏裂解物。其他实验(图3B)显示,该响应被对于HLA DR但非HLA
DQ是特异性的抗体阻断。
[0198] 实施例9
[0199] A链表位由HLA DRB1*0401、0404、0405呈递
[0200] 供者的HLA型显示于表5中。在两个步骤中确定呈递表位至克隆的HLA分子。第一步,使用HLA-同种型-特异性抗体的阻断表明,所有克隆的增殖被抗HLA-DR特
异性mAb(L243),但非被HLA DQ(SPV-L3)-或HLA DP(B7/21)-特异性抗体(图4A)阻
止。第二步,使用成组的用HLAβ链基因转染的B细胞系验证HLA限制性(图4B)。用
DRB1*0401(DR4)、DRB1*0404(DR4)或DRB1*0405(DR4)转染的细胞都能够呈递本肽,然而用DRB4*0101(DR52)、DQB1*0201(DQ2)、DQB1*0302(DQ8)转染的细胞不能呈递该激动肽。使用成组的HLA型EBV转化的B细胞系获得类似的结果。因此,HLA限制是HLA DRB1*0401、
0404-05。
[0201] 实施例10
[0202] 需要A链表位的所有克隆都使用相同的Vα Jα和Vβ Jβ序列
[0203] 确定A链表位特异性T细胞克隆的TCR利用(表8)。一个克隆使用Vα13-1*02,而其他三个使用Vα13-2*01。相同的Jα4*01由所有克隆表达。所有克隆都使用Vβ7-8*01
和Jβ1-1*01。除了具有不同的Vα和Vβ CDR3序列的克隆4.19外,对于所有克隆CDR3
序列都相同。
[0204] 表8
[0205] 通过胰岛素特异性T细胞克隆进行的TCR Vα和Vβ基因利用的分析
[0206]克隆 Vα CDR3 Jα
4.11 13-2*01 C A-D S R A F S G G Y N K L I-F G 4*01
4.19 13-1*02 C A-A P I L F S G G Y N K L I-F G 4*01
5.25 13-2*0 C A-D S R A F S G G Y N K L I-F G 4*01
6.1-1 13-2*01 C A-D S R A F S G G Y N K L I-F G 4*01
[0207]克隆 Vβ CDR3 Jβ
4.11 7-8*01 C A S S-L Y P G D L P E A F-F G 1-1*01
4.19 7-8*01 C A S S-L I G S A T E A F-F G 1-1*01
5.25 7-8*01 C A S S-L Y P G D L P E A F-F G 1-1*01
6.14 7-8*01 C A S S-L Y P G D L P E A F-F G 1-1*01
[0208] 实施例11
[0209] A链表位需要相邻的半胱氨酸
[0210] 检测其中半胱氨酸被丝氨酸置换的肽以确定半胱氨酸在产生由A链特异性克隆识别的表位中的作用。用丝氨酸置换相邻半胱氨酸(A-6和A-7)中的任一个都完全消除了
该肽在至多50μM的肽浓度上刺激T细胞克隆中的任一克隆的能力(图5A)。令人惊奇的
是,在位置A11上用丝氨酸置换半胱氨酸将肽的活性增加了100倍。对应于小鼠胰岛素II
中的序列的合成的肽,其在位置A4上用天冬氨酸置换了谷氨酸,比人肽的效力低10倍(图
5B)。
[0211] 实施例12
[0212] A链表位中的相邻半胱氨酸形成链内二硫键
[0213] 据认为由T细胞克隆识别的表位需要位置A6和A7上的半胱氨酸的PTM。为研究该现象,比较经多聚甲醛固定的和未固定的APC呈递表位(合成的肽)至T细胞克隆的能
力。固定不影响对肽的反应。因此,得出修饰自发地在培养基中发生。为更准确地确定修饰,在培养基中温育在残基13(A-11)上用丝氨酸置换了半胱氨酸的肽(称为S-13),然后使用RP-HPLC分离该组分。就其刺激克隆的增殖的能力检测所得的级分。单一级分(#7,图
6A)能够刺激T细胞克隆的增殖。当使用在位置A-6上用丝氨酸置换了半胱氨酸的肽时,
没有级分刺激增殖。通过质谱进行的活性级分的分析(表6B)显示,其包含比亲本S-13肽
小2道尔顿的单一组分。这和2个氢原子的丢失相一致。MS/MS分析显示该2道尔顿的损
失产生自相邻的半胱氨酸残基(表9)。由此,得出由T细胞克隆识别的相关表位包含位置
A-6和A-7上的两个相邻半胱氨酸之间的链内二硫键。
[0214] 表9
[0215] 经修饰的S-13肽的b系列离子的分配
[0216]
[0217]b系列离子 预期质量 实测质量 差别
b1
129.10 129.10 0.00
b2
285.20 285.21 0.01
b3
342.22 342.24 0.02
b4
455.31 455.32 0.01
b5
554.38 554.40 0.02
b6
683.42 683.44 0.02
b7
811.48 811.50 0.02
b8
914.49 912.49 -2.00
b9
1017.50 1015.50 -1.99
b10
1118.54 1116.56 -1.98
b11
1205.58 1203.59 -1.99
b12
1318.66 1316.71 -1.95
b13
1405.69 1403.73 -1.96
b14
1492.72 1490.76 -1.97
b15
1605.81 1603.84 -1.97
[0218] 实施例13
[0219] A链表位的识别被二硫键的还原阻断
[0220] 为验证链内二硫键是T细胞克隆的刺激所必需的,检测二硫化物还原剂三(2-羧乙基)膦盐酸盐(TCEP)对T细胞克隆作出对肽S-13的反应的影响。随着TCEP浓度增加,
观察到其对T细胞克隆对S-13的反应的剂量依赖性抑制(图7)。增殖的减少不是由于毒
性造成的,因为对PHA或IL-2的反应没有减少,相反地通过TCEP略有增加。
[0221] 实施例14
[0222] 分离自具有临床前T1D的健康供者的针对A链表位的T细胞克隆
[0223] 从可能发生T1D的胰岛自身抗体呈阳性HLA DR4+供者分离11个胰岛素原特异性+
CD4T细胞克隆。所述克隆中的三个克隆响应胰岛素原和胰岛素两者而增殖(参见例如图
8A)。这些克隆识别和HLA DRB1*0404-0405结合的S-13肽(图8B)。反应被靶向具有链内
二硫键的A链表位,因为来自RP-HLC柱子的该级分是刺激该克隆的唯一级分(图8C)。因
此,对于翻译后修饰的A链表位是特异性的T细胞克隆分离自处于T1D的高风险、从未暴露于外源胰岛素的供者。
[0224] 实施例15
[0225] 用于I-Ag7结合实验的方法
[0226] I-Ag7的纯化。通过从OX-6小鼠单克隆抗体解吸附从4G4.7B细胞杂交瘤细胞的去垢剂裂解物中亲和纯化I-Ag7蛋白。通过聚乙二醇(PEG)诱导的排除T细胞的NOD小鼠
脾细胞和HAT敏感性A20.2J淋巴瘤系的融合产生4G4.7B细胞杂交瘤。OX-6是抗大鼠Ia
的恒定决定簇的小鼠单克隆IgG1抗体,其也识别I-Ag7但不识别I-Ad。首先将大约15mg
的OX-6抗体给合4ml的A蛋白-Sepharose 4 Fastflow(Pharmacia,Uppsala,Sweden),然后用硼酸钠缓冲液,pH9.0中的二甲基庚二亚胺二盐酸(Sigma Chemical Co.,St.Louis,MO)将其化学交联至A蛋白。在室温(RT)下进行60分钟后,通过在室温下在0.2M乙醇
胺,pH8.0中温育Sepharose60分钟来终止反应。充分地在PBS中洗涤悬浮物并将其贮存
在PBS,0.02%叠氮化钠(NaN3)中。
[0227] 通过离心收获4G4.7细胞,在PBS中洗涤细胞,以108个细胞/ml重悬浮于裂解缓冲液中,然后让其在4℃下放置120分钟。裂解缓冲液是0.05M磷酸钠,pH7.5,包含0.15M NaCl、1%(体积/体积)NP40去垢剂和下列蛋白酶抑制剂:1mM苯甲基磺酰氟、5mM氨基-正辛酸和各10μg/ml的大豆胰蛋白酶抑制剂、抗蛋白酶、胃酶抑制剂、亮抑蛋白酶肽和胰凝乳蛋白酶。通过在27,000g下离心30分钟清除裂解物的细胞核和碎片,且如果不立即进行进一步处理将其就此贮藏。向去核后(postnuclear)上清液中加入0.2倍体积的5%去氧
胆酸钠(DOC)。在4℃下混合10分钟后,在4℃、100,000g下离心上清液120分钟,小心地
10
倒出上清液,并将其通过0.45-μm的尼龙膜。将5x10 4G4.7细胞的裂解物和4ml OX6-A
蛋白-Sepharose在4℃下轻轻地混合过夜,然后将上清液倒入柱子中并用至少50倍体积
各缓冲液A、B和C洗涤。缓冲液A是0.05M Tris、pH8.0、0.15M NaCl、0.5% NP40、0.5% DOC、10%甘油和0.03% NaN3;缓冲液B是0.05M Tris、pH9.0、0.5M NaCl、0.5% NP-40、
0.5% DOC、10%甘油和0.03% NaN3;缓冲液C是2mM Tris、pH8.0、1%辛基-D-吡喃型葡糖苷(OGP)、10%甘油和0.03% NaN3。用50mM的0.15M NaCl、1mM EDTA、1% OGP、10%甘油和0.03% NaN3中的二乙胺HCl、pH11.5洗脱结合的I-Ag7,并立即用1M Tris中和。
[0228] 肽合成。利用多重肽合成仪(396型;Advanced ChemTech,Louisville,KY),使用Fmoc化学和固相合成在Rink Amide树脂上合成肽。使用三倍过量的激活的Fmoc氨基酸完成所有酰化反应,并使用20分钟的标准偶联时间。各Fmoc氨基酸至少被偶联2次。通过
用90%的三氟乙酸、5%苯甲硫醚、2.5%苯酚、2.5%水实现断裂和侧链去保护。在被从树脂分开前通过使用上述方法,按顺序将2个6-氨基己酸间隔子偶联在NH2末端和一个生物素
分子上来生物素化用于结合测定法的指示肽。通过反相HPLC分析单个的肽,用于本研究的肽常规地为85%的纯度。
[0229] I-Ag7肽结合测定法。将肽以10mM溶解在DMSO中并稀释入20%DMSO/PBS以进行测定。使用生物素分子和NH2末端的2个间隔子残基合成指示剂I-Ag7结合性肽HEL10-23。
在室温下,在U形底聚丙烯96孔板(Costar Serocluster,Costar Corp.,Cambridge,MA)中,将大约200nM的该生物素化的HEL肽和在50μM至50pM范围内变化的7个浓度的各
受试肽和大约200ng的结合缓冲液中的I-Ag7蛋白一起共温育。结合缓冲液是含有0.15M
NaCl、2%NP-40、2mM EDTA以及蛋白酶抑制剂(如用于裂解缓冲液中的抑制剂)的6.7mM
柠檬磷酸盐(citric phosphate)、pH7.0。在最短24小时后,将各温育物转移至包含预结合的OX-6抗体(5μg/ml,在4℃下过夜,然后洗涤)的ELISA板(Nunc Maxisorp,Nunc,
Roskilde,Denmark)的对应的孔中。在室温下温育至少2小时和洗涤后,在和链霉抗生物素-碱性磷酸酶以及对硝基苯酚磷酸反应后,在405nm处通过比色分析法检测结合的生物
素化的肽-I-Ag7复合物。作出竞争结合曲线,I-Ag7的肽的亲和力表示为半数抑制浓度
(IC50),即抑制bio-HEL10-23的结合达50%时所需的肽的浓度。
[0230] 结果
[0231] I-Ag7的纯化和结合测定法
[0232] 从5x1010 4G4.7细胞纯化大约2mg的蛋白,该数量通过考马斯亮蓝结合测定法(Bio Rad Protein assay)估量。在SDS-PAGE中,大部分(>95%)蛋白被分辨为分别对
应于小鼠II类MHC分子的本身和亚基的分子量为大约33,000和大约28,000的两条带。
使用纯化的I-Ag7的竞争结合测定法是灵敏的和特异性的,并且是高度可重复的;在15个独立的测定法中,生物素化的和未标记的HEL10-23之间的竞争的IC50的平均值±SD是
295±72nM。
[0233] 就对I-Ag7的结合检测交叠4个残基且跨越人胰岛素原的整个序列的肽,就结合基元的存在检查所述肽(参见表10)。其中为进行结合研究,半胱氨酸被丙氨酸取代的胰岛素原肽氨基酸65-79(来自胰岛素的A链)以适度的高亲和力(400nM)和I-Ag7结合。
[0234] 就对I-Ag7的结合检测交叠4个残基且跨越人胰岛素原的整个序列的肽,并就结合基元的存在检查所述肽。其中为进行结合研究,半胱氨酸被丙氨酸取代的胰岛素原肽氨基酸65-79(来自胰岛素的A链)以适度的高亲和力(400nM)和I-Ag7结合。
[0235] 小鼠:
[0236] NOD/Jax(F),每组10-12只小鼠
[0237] 肽:
[0238] 小鼠胰岛素原II氨基酸C53-A7(LQTLALEVAQQKRGIVDQCC(SEQ IDNO:31))。
[0239] 小鼠胰岛素原II氨基酸C64-A13(KRGIVDQCCTSICSL(SEQ IDNO:32))。
[0240] 在A6、A7和A11上半胱氨酸被丝氨酸置换的小鼠胰岛素原II氨基酸C64-A13(KRGIVDQSSTSISSL(SEQ ID NO:33))。
[0241] 用5μl磷酸缓冲盐溶液(PBS)中的10μg肽处理小鼠。从小鼠达到21、50和100天的大小时开始,施用3个系列的处理,各系列处理进行连续10天。
[0242] 当小鼠达到100天时,测量其尿糖。重新检测具有提高的尿糖浓度(>11mM)的小鼠,具有2次连续高于11mM的尿糖浓度的小鼠被认为患有糖尿病。
[0243] 表10
[0244] 就对I-Ag7的结合检测交叠的人胰岛素原肽
[0245]
[0246] 在p6或p9锚位置上具有充分耐受性的残基以粗体标示;耐受性较弱的以下划线标示;非耐受性的以小写粗体字标示。半胱氨酸已被丙氨酸(斜体标示的A)置换。
[0247] 实施例16
[0248] NOD小鼠中的糖尿病的预防
[0249] 本实施例的目标是调查人T细胞对A1-13表位的反应和使用NOD小鼠模型确定包含该表位的肽对预防1型糖尿病(T1D)的功效。
[0250] 导论/原理
[0251] 可在健康受试者中检测T细胞对胰岛自身抗原胰岛素原和GAD的反应(Mannering等人,AnnN.Y.Acad Sci 1037:16-21,2004)。尽管还未确定这些反应的表位特异性,但某些表位可能和糖尿病相关,而其他表位被来自健康受试者的T细胞识别。
[0252] 非肥胖性糖尿病(NOD)小鼠自发地发生自身免疫性糖尿病,其是被广泛地使用的人1糖尿病的模型。已显示胰岛素蛋白(Harrison等人,J Exp Med 185:1013-1021,1996)或跨越B-C链连接(Martinez等人,J Clin Invest 111:1365-1371,2003)的胰岛素原肽的鼻内递送预防NOD小鼠中的糖尿病。鼻内胰岛素原B-C链肽诱导调节性的抗致糖尿病的+ +
CD4T细胞。为引发CD4T细胞反应,首先必须将肽结合II类MHC分子。该小鼠表达单一
的II类MHC分子I-Ag7。
[0253] 肽KRGIVEQCCTSICSL(SEQ ID NO:32)或小鼠同源物KRGIVDQCCTSICSL(SEQ ID NO:33)被称作A1-13肽,因为这些肽包含此处描述的最小表位(GIVEQCCTSICSL(SEQ ID NO:
34),或在小鼠中为GIVDQCCTSICSL(SEQ ID NO:35))。
[0254] 方法:
[0255] 来自健康HLADR4+受试者的克隆的分析:如所描述的(Mannering等人,J Immunol +Methods298:83-92,2005)分离响应胰岛素原而增殖的CD4T细胞克隆。将各克隆和经照射的抗原呈递细胞(APC)和无抗原、胰岛素原(10μg/ml)或A1-13肽(KRGIVEQCCTSICSL(SEQ
3
IDNO:32),10μM)一起培养。通过在培养的最后16小时期间 H胸苷的整合来检测对包含A1-13表位的肽的反应。
[0256] I-Ag7结合:通过竞争已知结合I-Ag7的生物素化的报告肽(bio-HEL10-23)来确定I-Ag7的结合。胰岛素原肽以系列稀释与固定浓度的bio-HEL10-23温育(详情参见附
件1)。高亲和力肽在低浓度(大约100-500nM)上抑制报告肽的结合,然而低亲和性肽或非结合性肽在高浓度(>2.0μM)下抑制结合。将用于I-Ag7结合的胰岛素原肽中的半胱氨酸
残基替换为丙氨酸以避免氧化修饰。
[0257] 肽治疗法:使用NOD小鼠检测包含A1-13表位的肽预防糖尿病的能力(参见附件2中的方案)。通过鼻内递送下列肽(KRGIVDQCCTSICSL(SEQ ID NO:32))或其
中半胱氨酸被丝氨酸置换的相似的肽(KRGIVDQSSTSISSL(SEQ ID NO:33))或对照肽
(LQTLALEVAQQKRGIVDQCC(SEQ ID NO:31))来治疗小鼠。位置A6和A7上的半胱氨酸残基
+
是邻位二硫键的形成和被人CD4T克隆识别所需的(如前面所示)。包含A1-13表位的肽
对HLA DR4的结合不受丝氨酸对半胱氨酸的置换的影响。如下面所示,当已用丙氨酸替代半胱氨酸时,A1-13肽的鼠类形式同源物结合I-Ag7。从100天龄开始通过每周检测尿糖来监测糖尿病发病率,进行超过240天。根据连续两天的>11mM的血糖浓度来确认糖尿病。
[0258] 结果
[0259] 来自健康HLA DR4+受试者的克隆的分析:就其响应胰岛素原和包含A1-13表位的+肽(KRGIVEQCCTSICSL(SEQ ID NO:32))而增殖的能力检测识别来自两个HLA DR4 健康受
试者的胰岛素原的15个克隆。响应胰岛素原而增殖的克隆中没有一个响应包含所述A1-13表位的肽,参见图9。
[0260] 结合I-Ag7的肽
[0261] 包含具有半胱氨酸被丙氨酸取代的A链表位的鼠类同源物的肽(RGIVEQAATSIASL(SEQ ID NO:55))以高度至中度的亲和力,400nM的IC50(参见表11),结合I-Ag7。
[0262] NOD小鼠中的T1D的预防
[0263] 用包含A1-13表位、表位的变体的肽或来自胰岛素原的无关肽处理NOD小鼠。监测糖尿病的发生率直至小鼠达240天大小。在用包含A1-13表位的肽(KRGIVDQCCTSICSL(SEQ ID NO:32))处理的小鼠中,12个小鼠中有一个发生糖尿病(8.3%),而用具有半胱氨酸被丝氨酸置换的相似肽(KRGIVDQSSTSISSL(SEQ ID NO:33))处理的10个小鼠中有4个发生糖尿病(40%)。当用来自胰岛素原的另一种肽(LQTLALEVAQQKRGIVDQCC(SEQ ID NO:31))处理小鼠时,11个中有4个(36.4%)发生糖尿病(图10)。
[0264] (a)来自健康供者的胰岛素原特异性T细胞克隆的分析
[0265] 该分析显示,分离自表达HLA DR4的健康受试者的克隆不对A1-13表位作出反应。这表明对该表位的反应只可在处于患T1D风险的人或已患有T1D的人中被发现。
[0266] (b)对1-Ag7的结合
[0267] 这些数据表明包含A1-13表位的肽结合II类MHC分子I-Ag7。使用包含A1-13表位的肽的鼻内处理在NOD小鼠中减少了糖尿病的发生,但只当半胱氨酸存在时才如此。这支持A6和A7上的形成邻位二硫键的相邻半胱氨酸残基在形成被T细胞识别的表位中的作
用,所述T细胞介导抗糖尿病的保护作用。
[0268] (c)预防NOD小鼠中T1D的肽治疗法
[0269] NOD小鼠是用于分析肽介导的抗1型糖尿病的保护作用的机制的有用模型。这些数据表明,使用该肽的治疗法可在易感动物中预防糖尿病的发生。这支持包含A1-13表位的肽在易感人中预防T1D的用途。
[0270] 本领域技术人员将认识到此处描述的本发明,除了明确描述的内容外,易于产生变化和改进。要理解本发明包含所有这些变化和改进。本发明也单独地或一起地包括在本说明书中提及或指出的所有步骤、特征、组合物和化合物和所述步骤或特征的任意两个或多个的任意的和所有组合。
[0271] 参考文献
[0272]
[0273] Andcrson 6:337-442.2000
[0274] Bodanszky
[0275] Congia et al. Acad.Sci USA 95:3838-3838,1998
[0276] Cowley and Mackin, Lett 402:124-130,1997
[0277] Doyle and Mamula Trends 2:443-449,2001
[0278] Douillard and Hoffman,Basic Facts about Hybridomas,in ofImmunologyVol.II,ed.by Schwartz,1981
[0279] Durinvic-Bello et,al.,J.Amoimmun,18:55-66,2002
[0280] Eisenbarth et al.,J. 5Suppl. 241-246.1992
[0281] Erickson ,Science 249:527-533,1990
[0282] Harrison et al,J Exp Med 185:1013-1021,1996
[0283] Harrison,L.C.,Pediatr Diabetes 2:71-82,2001
[0284] Haunkapiller et al,Nature 310:105-11,19S4
[0285] Haunkapiller et al,Nature 310:105-11,1984
[0286]
[0287] Kohler and Milstein Nature 256-495-499.1975
[0288] Kohler and Milstein,Enropean.Journal of Innunology 6:511-519,1976
[0289] Kunkcl et al..MolCell Biochem 34:3,1981
[0290] Lieberman et,al., Antigens 62:359-377,2003
[0291] Lucassen et al., Genet,4:305-310,1993
[0292] Marmering et al Ann N.Y.Acad Sci,1037:16-21,2004
[0293] Mannering et al J Immumol Methods 298:83-92,2005
[0294] Martinez et al J Clin Invest 111:1365-1371,2003
[0295] Molberg et al.,Nat.Med 4:713-717,1998
[0296] Munder et al.,Appl.Microbiol Biotechnol 52:311-320,1999
[0297] Narendtan et al.,Autoimmun.,Rev,2:204-210,2003
[0298] Ott et al.,J.Clin.Immunol 24:327-339,2004
[0299] Picrce Chemical Co.Piere Immuno Technology Catalog and Handbok,1990
[0300]
[0301] :625-633.1995
[0302] Raju et al Hum 58:21-29,1997
[0303] Schloot et al.,J.Autoimmun 11:69-175,1998
[0304] Semana et al.,J.Autoimmun12:259-267,1999
[0305] Shapiro,"Practical flow cytometry",3rd cd.Brisbane,Wiley-Liss,1995[0306] Shapiro et al.,N Engl J.Med.343:230-238,2000
[0307] Stewart and Young,Solid Phase Peptide Sythesis Ed,Pierce Chemical Co.,Rockford 1984
[0308] Tait et al.,Hum.Immunol,42:116-122,1995
[0309] Verge,et al Diabetes 47:1857-1866,1998
[0310] Wells,Methods Enzymol.202:2699-2705,1991
[0311] Yagi et al.,Eur.J.Immunol.22:2387-2393,1992
[0312] Young et al.,Nat.Biotechnol.16:946-950,1998
[0313]