环烷烃基油、由环烷烃基油制得的环烷烃基介电液体及其制备方法转让专利

申请号 : CN200580040065.8

文献号 : CN101069244B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : S·A·霍姆斯A·R·德克拉克尔J·R·鲍尔斯M·P·史密斯

申请人 : 国际壳牌研究有限公司

摘要 :

环烷烃基油、环烷烃基油的制备方法以及含环烷烃基油的介电液体,所述环烷烃基油含一定量的异链烷烃和50-70wt%通式为CnH2n(其中n为15-30)的环烷烃,所述异链烷烃的量低于环烷烃基油的50wt%。

权利要求 :

1.一种环烷烃基油,其包含一定量的异链烷烃和50-70wt%通式为CnH2n的环烷烃,其中n为15-30,所述异链烷烃的量低于所述环烷烃基油的50wt%。

2.权利要求1的环烷烃基油,其包含20-40wt%的异链烷烃。

3.权利要求1或2的环烷烃基油,其中70wt%或更多的环烷烃包括烷基取代的环烷烃。

4.权利要求1或2的环烷烃基油,其沸点温度范围为260-371℃。

5.权利要求3的环烷烃基油,其中80wt%或更多的环烷烃包括所述烷基取代的环烷烃。

6.权利要求5的环烷烃基油,其中90wt%或更多的环烷烃包括所述烷基取代的环烷烃。

7.一种环烷烃基介电液体,其包含:

权利要求1-6任一项的环烷烃基油,和

一种或多种抗析气剂,其为非酚类的抗析气芳烃,该抗析气芳烃选自二芳基化合物、含至少一个活性氢原子的烷基取代的芳族化合物和含至少一个活性氢原子的部分饱和的芳族化合物,其含量基于介电液体的重量为5wt%或更少。

8.权利要求7的环烷烃基介电液体,还包含一定量的一或多种抗氧化剂,该抗氧化剂选自受阻酚、肉桂酸酯型酚酯和烷基化二苯胺,其含量基于介电液体的重量为0.01-1wt%。

9.权利要求7或8的环烷烃基介电液体,其包含60wt%或更多的环烷烃。

10.权利要求9的环烷烃基介电液体,其中70wt%或更多的环烷烃包括烷基取代的环烷烃。

11.权利要求7或8的环烷烃基介电液体,其析气倾向为+30微升/分钟或更少。

12.权利要求11的环烷烃基介电液体,其析气倾向为+15微升/分钟或更少。

13.权利要求12的环烷烃基介电液体,其析气倾向为+5微升/分钟或更少。

14.权利要求7或8的环烷烃基介电液体,其中所述抗析气剂选自二芳基化合物、烷基化苯、和烷基化四氢萘。

15.权利要求7或8的环烷烃基介电液体,其中所述抗析气剂选自二氢菲、苯基邻二甲苯基乙烷、四氢-5-(1-苯乙基)萘、苊、四氢萘、和四氢喹啉。

16.权利要求7或8的环烷烃基介电液体,其中所述抗析气剂选自具有如下通式的二芳基化合物:其中

R选自单连续键和具有1-4个碳原子的亚烷基,和

R1-R6独立地选自“无”和具有1-2个碳原子的烷基。

17.权利要求7或8的环烷烃基介电液体,其中所述抗析气剂选自具有9-11个碳原子的烷基取代的芳族化合物、具有9-11个碳原子的烷基取代的部分饱和的芳族化合物及其组合。

18.权利要求7或8的环烷烃基介电液体,其中所述抗析气剂选自含80wt%的1,5-二甲基萘和20wt%的异构二甲基萘的组合。

19.权利要求7或8的环烷烃基介电液体,其中所述抗析气剂的量基于介电液体的重量为2wt%或更少。

20.权利要求7或8的环烷烃基介电液体,其包含基于介电液体重量2wt%或更少的抗析气剂,其中所述抗析气剂选自二苯基和二均三甲苯基化合物。

21.权利要求7或8的环烷烃基介电液体,其包含基于介电液体重量2wt%或更少的抗析气剂,其中所述抗析气剂选自具有9-11个碳原子的烷基取代的芳族化合物、具有9-11个碳原子的烷基取代的部分饱和的芳族化合物及其组合。

22.权利要求7或8的环烷烃基介电液体,其包含基于介电液体重量2wt%或更少的抗析气剂,其中所述抗析气剂选自80wt%的1,5-二甲基萘和20wt%的异构二甲基萘的组合。

23.权利要求7或8的环烷烃基介电液体,其中72小时时淤渣的质量百分数为0.15或更低,72小时时的总酸值为0.5或更低,164小时时淤渣的质量百分数为0.5或更低,总酸值为0.6或更低。

24.权利要求7或8的环烷烃基介电液体,其倾点为-40℃或更低,按ASTM D92测定。

25.权利要求1的环烷烃基油的生产方法,包括:

提炼原油,以生产沸点温度范围为371-538℃的芳族真空瓦斯油,通过质谱测定,该芳族真空瓦斯油包括40-60wt%的芳烃,还包括20-30wt%的环烷烃、10-15wt%的异链烷烃、

5-15wt%的正链烷烃;

利用加氢裂化催化剂对芳族真空瓦斯油进行加氢裂化,以生产加氢裂化产品;

汽提加氢裂化产品,以提高环状烃的含量,该环状烃选自环烷烃、环烯烃及其组合,和除去硫化氢和氨,并生产汽提的加氢裂化产品;

将汽提的加氢裂化产品与包含选自铂、钯及其组合的金属的异构化/脱蜡/加氢催化剂接触,以将芳烃饱和成为环烷烃,降低正链烷烃含量,并生产异构化/脱蜡/加氢产品,该异构化/脱蜡/加氢产品含有大于50wt%的一种或多种选自环烷烃和环烯烃的环状烃;

不经溶剂抽提,将异构化/脱蜡/加氢产品与加氢处理催化剂接触,以生产含有大于

50wt%的环烷烃的加氢处理产品;和

从所述加氢处理产品中分离出含低于50wt%的异链烷烃和50wt%或更多的环烷烃的环烷烃基油,所述环烷烃基油的沸点温度范围为260-371℃。

26.权利要求25的方法,包括从加氢处理产品中分离出含50-70wt%环烷烃的环烷烃基油,其中所述环烷烃的通式为CnH2n,其中n为15-30。

27.权利要求25或26的方法,其中所述异构化/脱蜡/加氢步骤在如下条件下实施:异构化/脱蜡/加氢温度为250-390℃;

异构化/脱蜡/加氢气压大于大气压;

异构化/脱蜡/加氢氢循环比为400-15000SCF/B;和-1

异构化/脱蜡/加氢液时空速为0.1-20Hr 。

28.权利要求25或26的方法,其中加氢裂化在大于大气压的压力下进行,汽提在大于大气压的汽提压力下进行,和异构化/脱蜡/加氢在大于大气压的异构化/脱蜡/加氢压力下进行。

说明书 :

环烷烃基油、由环烷烃基油制得的环烷烃基介电液体及其

制备方法

技术领域

[0001] 本申请涉及“环烷烃”基油、由环烷烃基油制得的环烷烃基介电液体、以及制备所述环烷烃基油的方法和所述环烷烃基介电液体。

背景技术

[0002] 介电液体一般由环烷基原油常压衍生得到的瓦斯油馏分制备。希望使用其它原料制备的介电液体。

发明内容

[0003] 本申请提供的环烷烃基油含一定量的异链烷烃和50-70wt%通式为CnH2n(其中n为15-30)的环烷烃,所述异链烷烃的量低于所述环烷烃基油的50wt%(由质谱测定)。
[0004] 本申请还提供一种环烷烃基介电液体,其包括:
[0005] 环烷烃基油,该基油含一定量异链烷烃和50-70wt%通式为CnH2n的环烷烃,其中n为15-30,所述异链烷烃的量低于所述环烷烃基油的50wt%(由质谱测定);和
[0006] 一种或多种选自非酚类烷基取代的或部分饱和的含至少一个活性氢原子的芳族化合物和二芳基化合物的抗析气剂,该抗析气剂的量有效降低介电液体的析气倾向。
[0007] 本申请提供了一种制备环烷烃基油的方法,包括:
[0008] 在炼制条件下提炼原油,生产沸点范围为约371-538℃的芳族真空瓦斯油,此芳族真空瓦斯油包括含碳物质,大部分含碳物质选自环烷烃和芳烃;
[0009] 将芳族真空瓦斯油与加氢裂化催化剂在加氢裂化条件下接触,以生产加氢裂化产品;
[0010] 对加氢裂化产品进行汽提,以有效提高选自环烷烃、环烯烃及其组合的环状烃的含量,并除去硫化氢和氨,得到经汽提的加氢裂化产品;
[0011] 使汽提后的加氢裂化产品与包括选自铂、钯及其组合的金属的异构/脱蜡/加氢(IDH)催化剂在IDH条件下接触,以有效将芳烃饱和为环烷烃,降低正链烷烃含量,并生产出IDH产品,该IDH产品包含大于50wt%的选自环烷烃和环烯烃的一种或多种环状烃;
[0012] 不经溶剂抽提,将IDH产品与加氢处理催化剂在加氢处理条件下接触,以有效生产含大于50wt%环烷烃的加氢处理产品(通过质谱测定);和
[0013] 从所述加氢处理产品中分离出含有低于50wt%异链烷烃和50wt%或更高环烷烃的环烷烃基油(通过质谱测定),所述环烷烃基油的沸点温度范围为约260-371℃。
[0014] 生产环烷烃基介电液体的方法包括:
[0015] 处理芳族真空瓦斯油并回收环烷烃基油,该烷烃基油含一定量异链烷烃和50-70wt%通式为CnH2n的环烷烃(其中n为15-30),所述异链烷烃的量低于所述环烷烃基油的50wt%(通过质谱测定);和
[0016] 向所述环烷烃基油中添加一种或多种试剂,所述试剂选自一定量的抗析气剂以有效降低环烷烃基油的析气倾向和一定量的一种或多种抗氧化剂以有效降低氧化条件下的淤渣生成和总酸值(TAN)(计为mgKOH/g)。
[0017] 本申请提供了用于制备环烷烃基介电液体的环烷烃基油。
[0018] “环烷烃基油”由芳族基油原料生产,优选为由原油炼制得到的“芳族真空瓦斯油”。一般地,任何原油都可用作芳族真空瓦斯油的来源。适合的原油包括但不限于:阿拉伯轻质原油、阿拉伯中质原油、阿拉伯重质原油、Orienta原油、科威特原油、Isthmus原油、玛雅原油、阿曼原油、布伦特原油及它们的组合物。
[0019] 在合适的“芳族真空瓦斯油”中,大部分含碳物质选自环烷烃和芳烃。芳族真空瓦斯油一般包括以下含碳物质的分布,按浓度降序排列为:芳烃>环烷烃>异链烷烃>正链烷烃。
[0020] 适合的芳族真空瓦斯油的沸点范围为约260℃(500°F)至约538℃(1000°F),优选约371℃(700°F)至约538℃(1000°F)。适合的芳族真空瓦斯油中芳烃的含量为约40-60wt%(通过质谱测定)。在优选实施方案中,芳族真空瓦斯油中的芳烃含量为约50-60wt%,更优选约55-60wt%(通过质谱测定)。芳族真空瓦斯油一般还包括约
20-30wt%的环烷烃、约10-15wt%的异链烷烃、约5-15wt%的正链烷烃(通过质谱测定)。
[0021] 芳族真空瓦斯油也可以与其它基油原料混合,包括但不限于溶剂抽提的提余液、软蜡、含油蜡、由气体至液体的费-托转化得到的润滑油沸程内的产品及它们的组合物。
[0022] 为了生产环烷烃基油,芳族真空瓦斯油要经历加氢处理条件。在优选实施方案中,加氢处理条件包括:将芳族真空瓦斯油与加氢裂化催化剂在加氢裂化条件下接触,以有效生产加氢裂化产品;对加氢裂化产品进行汽提以有效除去硫化氢和所有氨,并得到汽提后的加氢裂化产品;汽提后的加氢裂化产品与异构化/脱蜡/加氢(“IDH”)催化剂在一定条件下接触,使芳烃有效饱合以制备环烷烃,降低正链烷烃,以生产包含含碳分子的IDH产品,大部分含碳分子包括一种或多种选自环烷烃和环烯烃的环状烃;在加氢处理条件下,将IDH产品与加氢处理催化剂接触,以有效生产含大于50wt%环烷烃(通过质谱测定)的加氢处理产品;然后对加氢产品进行分离,有效分离出含沸点范围为约260-371℃的馏分的环烷烃基油。
[0023] 环烷烃基油含量可以用多种方法分析,优选方法为质谱方法。优选的质谱方法使用AutospecQ即 高分辨磁质谱仪,可以从马萨诸塞米尔福德的Waters公司商购得到。本实施方案中,电离模式是场电离质谱(FIMS),其主要产生带有很少或没有与油相关的各种烃类片段的分子离子。FIMS数据采用Poly32处理,Poly32是一款基于PC的软件包,其处理质谱序列文件,以生成排除粘度的色谱(SEC)型数据,并完成其它运算。
Poly32可以从加利佛尼亚莫德斯托的SierraAnalytics公司商购。SEC数据包括分子量分布和多分散性计算。这些由M(质量,以道尔顿计)和n(相应质量范围的摩尔数)算得。软件还能通过质量和重复单元或单体单元如CH2基团计算低聚物系列的百分数。在烃分析时,会生成具有每个碳数和每种Z系列(Z用烃的通式CnH2n+Z确定)百分数的表格。饱和物的Z系列描述信息基于的假设是油品含有很少量的芳烃。因此,痕量芳烃和杂质在进行FIMS分析之前通过色谱柱(ASTM D 2549)除去。
[0024] 加氢裂化条件
[0025] 为了生产环烷烃基油,芳族真空瓦斯油要经历包括加氢裂化催化剂的加氢裂化条件。一般能够有效提高所希望加氢裂化速率的各种加氢裂化催化剂都是适合的。通常加氢裂化催化剂包括负载在载体上的适合的加氢裂化金属。
[0026] 适合的加氢裂化金属包括但不限于含一种或多种金属的硫化催化剂,该金属选自钴、铬、钼、钨、镁、铼、铁、钌、铱、镍、钯、铂及其组合。在一实施方案中,加氢裂化金属是选自Ni/W、Ni/Mo和Co/Mo的一种或多种金属。在更优选的实施方案中,加氢裂化金属选自Ni/W和Co/Mo的一种或多种金属。
[0027] 加氢裂化催化剂基本包括能提供足够表面积并且不会影响加氢裂化的各种载体。适合的载体的实例包括但不限于金属氧化物和分子筛。在一实施方案中,载体选自氧化铝和结晶硅酸铝。
[0028] 合适的加氢裂化条件包括:
[0029] 加氢裂化温度为约200-450℃;加氢裂化氢气压力大于大气压,优选约30个大气压或更大;加氢裂化氢循环比为约400SCF/B(每桶标准立方尺)-15000SCF/B;加氢裂化的-1液时空速为约0.1-20Hr 。通常,加氢裂化条件可以将重质芳族瓦斯油中的多核芳烃有效转化成更小的部分氢化的芳烃和氢化物质,将一些正链烷烃转化为异链烷烃,和将重质芳族瓦斯油中的硫和氮转化为硫化氢和氨。
[0030] 汽提条件
[0031] 加氢裂化产品要经过汽提处理,以有效除去硫化氢和氨,并生产汽提后的加氢裂化产品。适合的汽提条件包括约200-300℃的温度和有效的汽提压力,优选大于大气压。在更优选的实施方案中,汽提压力基本与加氢裂化压力相同,最优选为约30个大气压或更高。优选地,汽提气体是基本上不含硫化氢和氨的氢气。
[0032] 异构/脱蜡/加氢(IDH)条件
[0033] 汽提后的加氢裂化产品要经历加氢条件,优选经历异构/脱蜡/加氢(IDH)条件,以有效提高氢化或部分氢化的环状烃的含量,其中所述环状烃选自环烷烃、环烯烃及其组合。加氢处理条件、优选IDH条件一般还能通过使正链烷烃和近似正链烷烃异构化为异链烷烃而提高异链烷烃的含量。在优选实施方案中,加氢处理条件能有效生产含量为约20wt%或更多的异链烷烃,优选为约20至低于50wt%的异链烷烃,更优选为约20-40wt%的异链烷烃(通过质谱测定)。
[0034] IDH条件一般包括:使汽提后的加氢裂化产品与一种或多种IDH催化剂在IDH温度、IDH压力和IDH氢流量下接触,以有效提高选自环烷烃、环烯烃及其组合的环状烃的含量。IDH条件一般还会有效提高异链烷烃的含量。
[0035] 适合的IDH催化剂包含一种或多种IDH金属,包括但不限于钴、铬、钼、钨、镁、铼、铁、钌、铱、镍、钯、铂及其组合。优选的IDH金属包括但不限于铂、钯及其组合。
[0036] 一般IDH金属沉积在适合的IDH金属载体上。适合的IDH金属载体包括但不限于分子筛和金属氧化物。适合的分子筛包括但不限于沸石和硅铝磷酸盐分子筛。适合的金属氧化物包括但不限于氧化铝。优选的IDH金属载体包括硅铝磷酸盐分子筛。
[0037] 适合的沸石是中孔沸石。优选的中孔沸石的孔径为约0.35-0.8纳米。适合沸石的特定实例包括但不限于沸石Y、沸石β、沸石θ、丝光沸石、ZSM-3、ZSM-4、ZSM-5、ZSM-11、ZSM-12、ZSM-18、ZSM-20、ZSM-22、ZSM-23、ZSM-35、ZSM-38、ZSM-48、SSZ-32、钾沸石、镁碱沸石、沸石α及其混和物。由于它们的异构化选择性,优选的沸石包括但不限于ZSM-12、ZSM-23、ZSM-22、SSZ-32及其组合。
[0038] 适合的硅铝磷酸盐分子筛包括但不限于SAPO-11、SAPO-31、SAPO-41及其组合。优选的硅铝磷酸盐分子筛是SAPO-11。还参见下述美国专利US 6,090,989、US 4,500,417、US4,906,350、US 4,943,672、US 5,059,299、US 5,135,63、US 5,282,958、US 5,306,860、US
5,362,378,这些专利在此处引入供参考,和欧洲专利EP 0776959A2。
[0039] 适合的IDH条件包括:IDH温度为约250-390℃;IDH气压大于常压,优选与加氢裂化压力基本相同,优选为约30个大气压或更高;IDH氢循环比为约400-15000SCF/B;和IDH-1液时空速为约0.1-20Hr 。
[0040] 加氢处理
[0041] 在优选实施方案中,加氢产品进行加氢处理。加氢处理包括使IDH产品与加氢处理催化剂在加氢处理条件下接触,以有效将IDH产品中不饱和键和残余芳烃、特别是多环芳烃分别转化为饱和键和环烷烃。
[0042] 适合的加氢处理条件包括:加氢处理温度为约190-340℃;加氢处理压力大于常压,优选与加氢裂化和IDH压力基本相同,优选为约30个大气压或更高;氢循环比为约400-15000SCF/B。
[0043] 适合的加氢处理催化剂包括能有效提高IDH产品中不饱和键和芳烃的氢化率的加氢处理金属。适合的加氢处理金属包括但不限于钴、铬、钼、钨、镁、铼、铁、钌、铱、镍、钯、铂及其组合。优选的加氢处理金属选自镍、铂、钯及其组合。
[0044] 加氢处理金属一般负载在适合的载体上,该载体具有足够的表面积,并且不会影响加氢处理工艺。适合的加氢处理催化剂载体包括但不限于金属氧化物和分子筛。优选的加氢处理催化剂载体包括能够有效提高残余芳烃分子饱和度的分散沸石。
[0045] 环烷烃基油的回收
[0046] 所得到的加氢处理产品的沸点温度范围为约38℃(100°F)至约538℃(1000°F)。加氢处理的产品经历分离条件,以有效分离出环烷烃基油,优选为沸点温度范围约260-371℃的环烷烃基油。只要能有效将沸点温度范围为约260-371℃的环烷烃基油与加氢处理产品的沸点大于700°F(371℃)的馏分(a)及沸点低于500°F(260℃)的馏分(b)分离,任意适合的分离条件都可以使用。
[0047] 在优选实施方案中,加氢处理产品经历分馏条件,该分馏条件包括作为塔底产品除去沸点大于371℃(700°F)的加氢处理产品,和作为塔顶产品除去沸点低于260℃(500°F)的加氢处理产品。
[0048] 在环烷烃基油中,大部分含碳分子包括环烷烃,优选为烷基取代的环烷烃。优选地,环烷烃基油中含50wt%或更多、优选约60wt%或更多、甚至更优选约66wt%或更多的环烷烃,优选为烷基取代的环烷烃,通过质谱测定。
[0049] 环烷烃一般具有通式CnH2n,其中n是碳原子总数。在优选实施方案中,基油所含环烷烃中n为约15-30。
[0050] 在优选实施方案中,大部分环烷烃包括烷基取代的环烷烃。优选地,约70wt%或更多、更优选约80wt%或更多、甚至更优选约90wt%或更多和最优选约99wt%或更多的环烷烃包括烷基取代的环烷烃,通过质谱测定。
[0051] 环烷烃基油含少于50wt%的异链烷烃,优选含约20至低于50wt%的异链烷烃,更优选含约20-40wt%的异链烷烃,通过质谱测定。根据测试方法D1274,环烷烃基油优选还含有约15ppm或更低的硫(在此引用供参考)。
[0052] 环烷烃基介电液体的制备
[0053] 本申请的环烷烃基油具有广泛用途,包括但不限于用作环烷烃基介电液体中的基油。优选实施方案中,环烷烃基油用来生产满足ASTMD3487要求(电器中使用的矿物绝缘油标准)的环烷烃基介电液体。最优选地,环烷烃基油用来生产适用于变压器油的介电液体。
[0054] 多种类型的常规电气设备含有介电流体,用来驱散供电部件产生的热量,并使之与设备外围和其它内部构件及设备之间绝缘。这种装置的实例包括但不限于变压器、电容器、开关、调压器、断路器、电缆、自动开关和X射线装置。
[0055] 变压器通过电磁效应将电能从一个回路转移到另一个回路。变压器用于电力输送。
[0056] 较大变压器一般要求在温度过压及瞬态过压时线圈和/或导体要绝缘,以保护变压器在正常电压下工作,这些过压是由于雷击或转换操作导致的。绝缘失效时,可能会发生内部故障或短路。这种情况可能造成设备故障,一般会导致系统中断,并可能危害设备附近的人员。
[0057] 为了从变压器内核和线圈组件有效移走热量并保持在可接受的操作温度范围内,常规变压器使用相对大量的介电液体作为绝缘体。
[0058] 过去,利用链烷烃油制备的介电液体倾向于具有固有的低温粘度性能较差的特点,也没有表现出如ASTM D3487要求的低析气性能。
[0059] 环烷烃基介电液体的析气倾向是在规定实验条件下,介电液体吸入或脱出氢气的速度的量度。低析气性能是很重要的,因为如果因电应力作用产生氢气,具有低析气倾向的液体将吸收产生的氢气,从而降低了发生爆炸的可能性。
[0060] 本申请的环烷烃基介电液体同时表现出低温粘度性能和低析气倾向。
[0061] 析气倾向是通过添加一种或多种抗析气剂来降低的。优选地,抗析气剂将介电液体的析气倾向降低到+30微升/分钟或更少,优选15微升/分钟或更少,更优选5微升/分钟或更少,优选0微升/分钟或更少,参照ASTM测定方法D2300。
[0062] 抗析气剂通常是除酚化合物之外的抗析气芳烃,其含一个或多个活性氢原子或含二芳基,其可以含有或不含一个或多个活性氢原子。适合的抗析气剂的实例包括但不限于二芳基化合物和选自烷基取代的芳族化合物、烷基取代的部分饱和的芳族化合物及其组合的具有9-11个碳原子的试剂。
[0063] 适合的二芳基化合物具有如下通式:
[0064]
[0065] 其中,
[0066] R选自单连续键(使二芳基为联苯)和具有约1-4个碳原子的亚烷基(使二芳基为二芳基烷烃);和
[0067] R1-R6独立地选自“无”和具有约1-2个碳原子的烷基。
[0068] 在R为单键(R=0)时,二芳基就是具有如下通式的联苯:
[0069]
[0070] 其中R1-R6独立地选自“无”和具有约1-2个碳原子的烷基。在优选实施方案中,1 6 1 6
R-R 选自甲基。在另一优选实施方案中,联苯基是未取代的,其中,R-R 为“无”。在另一
1 6
实施方案中,联苯基是二均三甲苯基,其中R-R 是甲基。
[0071] 适合的抗析气剂的实例包括但不限于二芳基化合物、二氢菲、苯基邻二甲苯基乙烷、烷基化苯(包括二乙基苯)、四氢-5-(1-苯乙基)-萘、苊、四氢萘、烷基化四氢萘和四氢喹啉。
[0072] 一般地,一种或多种抗析气剂在环烷烃基油中的加入量约为5wt%或更少,更优选为约2wt%或更少,甚至更优选为约0.5-1wt%,最优选为约1wt%,基于基油的体积计算。
[0073] 在一实施方案中,抗析气剂含约80wt%的1,5-二甲基萘和约20wt%的异构二甲基萘。
[0074] 另一实施方案中,基油含2wt%或更少、优选1wt%或更少、更优选低于1wt%的抗析气剂,该抗析气剂选自烷基取代或未取代的联苯基烷烃和烷基取代或未取代的二芳基烷烃。优选的抗析气剂选自联苯基(未取代)和二均三甲苯基化合物。
[0075] 在优选实施方案中,还向环烷烃基油中加入抗氧化剂(如上所述),以改善环烷烃基介电液体的氧化稳定性,并降低储存、处理和使用过程中油渣和酸度的进展。减少氧化会降低导电性和金属腐蚀,提高系统寿命,提高电击穿强度,并确保令人满意的传热。
[0076] 优选地,在进行酸渣测试(ASTM D2440)时,环烷烃基介电液体在72小时产生的淤渣质量百分数为0.15或更低,72小时的“总酸值”或“TAN”为0.5mgKOH/g或更低。环烷烃基介电液体还优选在164小时产生的淤渣质量百分数为0.5或更低,TAN为0.6mgKOH/g或更低。
[0077] 一般地,加入抗氧化剂是为了减少淤渣和降低TAN。在优选实施方案中,基于介电液体的重量,介电液体含约0.01-1.0wt%的抗氧化剂,优选约0.07-0.30wt%的抗氧化剂。
[0078] 基本上,任何适用于特定类型的介电液体的抗氧化剂都是适合的。电气绝缘用油中使用的优选抗氧化剂是受阻酚、肉硅酸酯型酚酯和烷基化联苯胺。更优选的抗氧化剂(特别是用于变压器油的)选自2,6-二叔丁基对甲酚、2,6-二叔丁苯酚及其组合。最优选的抗氧化剂是2,6-二叔丁基对甲酚与2,6-二叔丁苯酚的组合物。
[0079] 如果需要,可以向环烷烃基油中加入一定量的一种或多种倾点降低剂,以将产品的倾点降低到约-30℃或更低,优选降低到约-40℃或更低。可以使用多种倾点降低剂。适合的倾点降低剂包括但不限于基于聚甲基丙烯酸酯化学物质的倾点降低剂。如果添加倾点降低剂,倾点降低剂的添加量以环烷烃基油重量计通常为约0.01-0.2wt%。
[0080] 环烷烃基介电液体满足多种用途的规格要求,包括但不限于电气绝缘用油。环烷烃基介电液体的优选用途是用作变压器油。
[0081] 除了抗氧化性和低析气倾向,环烷烃基介电液体优选具有多种其它性能,包括但不限于电阻和热稳定性。在最优选的实施方案中,环烷烃基介电液体满足ASTM D3487所规定的电气绝缘用油的物理、电学和化学相关指标。在优选实施方案中,环烷烃基介电液体还满足其它相关指标,这些指标在此引入供参考,包括但不限于:国家电气制造业协会(NEMA)TR-P8-1975;美国政府军方标准VV-I-530A和I类流体与II类流体(分别为I型和II型)的第二次修订标准,其淘汰了海军技术规格OS-1023;NATO代号为S-756的标准,英国标准BS-148。
[0082] 对于电气绝缘用油的ASTM物理性能要求包括但不限于:色度为约0.5或更低,使用测试方法D1500测定;闪点为约145℃或更高,使用测试方法D92测定;25℃下的界面张力为约40达因/厘米或更高,使用测试方法D971测试;倾点为约-40℃或更低,使用测试方法D92测定;相对密度为0.91或更低,使用测试方法D1298测定;视觉检查清澈并透明,使用测试方法D1524测定;及0℃时的粘度为约76厘沲或更低,40℃时为约12.0厘沲,和100℃时为约3.0厘沲或更低,使用测试方法D445测定。
[0083] 环烷烃基介电液体还优选满足电气绝缘用油的电学性能要求,包括但不限于ASTM要求:采用盘电极,在60赫兹下的介质击穿电压为30千伏或更高,按测试方法D877测定;按D1816(在此作为参考引用),使用新油,在60赫兹下的介质击穿电压为20千伏或更高和间隙为1.02毫米(0.040英寸);按照测试方法D3300测定,在25℃下,利用针和球之间的间隙为25.4毫米(1英寸)时,介质击穿电压脉冲为约145千伏或更高;和使用测试方法D924测定,25℃下60赫兹下的功率因数为0.05%或更低,和100℃下为0.30%或更低。
[0084] 环烷烃基介电液体还优选满足电气绝缘用油的化学性能要求,包括但不限于ASTM要求:I型油的抗氧化剂含量为0.08wt%或更低,II型油为0.3wt%或更低,使用测试方法D2668测定,或者当抗氧化剂是2,6-二叔丁基甲酚时,使用测试方法D1473测定;元素硫和热不稳定含硫化合物的含量低,以避免与介电液体接触的金属如铜和银发生腐蚀,使用测试方法D1274测定;水含量为35ppm或更低,使用测试方法D1533测定;中和值为0.03mgKOH/g或更低,使用测试方法D974测定;和检测不到的多氯联苯(PCB)含量,或其含量低于1ppm,使用测试方法D4059测定。
[0085] 在优选实施方案中,环烷烃基介电液体的色度为约0.5或更低,按ASTM D1500测定;闪点为约145℃或更高,按ASTM D92测定;25℃下的界面张力为约40达因/厘米或更大,按ASTM D971测定;相对密度为0.91或更小,按ASTM D1298测定;视觉检查清澈并透明,按ASTM D1524测定;粘度按ASTM D445测定,0℃为约76厘沲或更低,40℃为约12.0厘沲或更低,和100℃为约3.0厘沲或更低;按ASTMD1533测定,水含量为约35ppm或更低;按ASTM D4059测定,多氯联苯(PCB)含量低于1ppm;按ASTM D877测定,采用盘电极,60赫兹下的介质击穿电压为30千伏或更高;按ASTM D1816定,使用新油,60赫兹下的介质击穿电压为20千伏或更高和间隙为1.02毫米(0.040英寸);按照ASTM D3300测定,在25℃下,利用针和球之间的间隙为25.4毫米(1英寸)时,介质击穿电压脉冲为约145千伏或更高;按ASTMD924测定,25℃下60赫兹下的功率因数为0.05%或更低,和100℃下为0.30%或更低。

具体实施方式

[0086] 参考以下实施例可以更好地理解本申请,这些实施例仅起说明作用:
[0087] 实施例1
[0088] 按上述方法生产的环烷烃基油经分析和检测具有如下性能:
[0089] API 31.6
[0090] 比重g/cc 0.8676
[0091] 倾点,℃(°F) ‑42.8(‑45)
[0092] 浊点,℃(°F) ‑30.5(‑22.9)2 *
[0093] 粘度@40℃mm/s(厘沲) 9.172
[0094] 粘度@100℃mm2/s(厘沲) 2.397
[0095] 粘度指数 68.7
[0096] *粘度测量是用佳能CAV4自动仪器进行的。粘度计按ASTM D445,在此引入作为参考。
[0097] 实施例2
[0098] 按上述方法生产的环烷烃基油经分析和检测具有如下性能:
[0099]API 32.4
比重g/cc 0.8633
倾点,℃(°F) -47(-52.6)
浊点,℃(°F) -38(-36.4)
克利夫兰开口杯(COC)闪点,℃(°F) 157.8(316)
2
粘度@40℃mm/s(厘沲) 7.471
2
粘度@100℃mm/s(厘沲) 2.112
粘度指数 70.7
UV芳烃
单芳烃(wt%) 0.97
二芳烃(wt%) 1.06
三+芳烃(wt%) 0.7
API 32.4
合计(wt%) 2.73
[0100] 实施例3
[0101] 对按上述方法生产的环烷烃基油进行分析。利用气相色谱进行模拟蒸馏以测定基油5wt%和95wt%的馏出温度(℃)。ASTM D6352“利用气相色谱测定174-700℃沸程内的石油馏分沸程分布的标准测试方法”在此引入供参考。下表给出了测试结果以及基油的物理性能:
[0102] 5%馏出温度,℃(°F) 267.8(514)
[0103] 95%馏出温度,℃(°F) 400.6(753)
[0104] 粘度@40℃mm2/s(厘沲) 9.92
[0105] 粘度@100℃mm/s(厘沲) 2.5
[0106] 粘度指数 53
[0107] 密度,g/ml@15.6℃(60°F) 0.854
[0108] API比重 34.1
[0109] 倾点,℃(°F) ‑45(‑49)
[0110] 平斯基‑马丁闭口杯(PMCC)闪点,℃ 148
[0111] UV芳烃,mmol/100g 6
[0112] 硫,ppm 1
[0113] 氮,ppm 1
[0114] 实施例4
[0115] 实施例3得到的环烷烃基油与0.075wt%或0.28wt%的丁基化羟基甲苯(BHT)(由CRI精细化学药品公司获得)混合。制备的样品不含添加的芳族油、含2.0wt%C9-C11烷基苯(“AB”)、含0.5wt%C9-C11烷基苯、含0.5wt%二甲基萘(“DMN”)、含1wt%的添加的DMN和含2.0wt%的联苯。在110℃浴温下在铜催化剂线圈存在下,所得混和物通过使氧气鼓泡通过平行测试样品各72和164小时进行氧化。在每次老化结束后,通过测量生成的淤渣和酸的量来评价环烷烃基油。测试样品用正庚烷稀释,然后将溶液过滤除去淤渣。将淤渣干燥并称重。不含淤渣的溶液在室温下用0.01N氢氧化钾滴定至终点,滴定终点通过加入的对萘酚苯溶液的颜色变化指示(绿色变褐色)。ASTM D2440,在此引入供参考。实施测试方法D2300程序B(在此引入供参考),用析气池组件和滴定管组件测定总析气倾向。
[0116] 将样品与酸化亚甲蓝水溶液混合,然后用氯仿抽提疏水离子对。合并的氯仿抽提物用酸溶液洗涤,以除去少量疏水离子对(分配系数较低)。
[0117] 氯仿抽提物中的残余蓝色强度用约650纳米的最大吸附波长测定。结果如下表:
[0118]72小时 72小时 164小时 164小时 析气
淤渣 TAN 淤渣 TAN 倾向
D3487标准 0.15最大值 0.5最大值 0.3最大值 0.6 30最大值