用于输送具有提高纯度的气体的方法和用于输送具有改善纯度的过热气体的装置转让专利

申请号 : CN200710087978.6

文献号 : CN101071035B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : J·F·西鲁西D·米勒P·D·科特勒

申请人 : 气体产品与化学公司

摘要 :

一种用于从处于压力下充满液体并整合有净化器的容器中现场输送具有提高纯度的气体的装置和方法。在该方法中,通过降低容器内的压力将部分液体转化成蒸气,由此生成的蒸气通过减压器膨胀产生制冷。被冷却的蒸气在从净化器排出前被进入的蒸气加热。

权利要求 :

1.一种用于从处于压力下的充有液体的容器中将具有提高纯度的气体现场输送到使用地点的方法,该方法包括:将净化器整合到容器;

通过降低容器中的压力将至少部分液体转化成蒸气;

将该蒸气从所述容器的顶部空间引入所述净化器的蒸气入口;

在所述蒸气入口处部分冷凝所述蒸气,从而生成蒸气级分和冷凝物级分;

将蒸气级分和所述冷凝物级分接触,从而生成具有提高纯度的气体;

通过减压器膨胀使具有提高纯度的气体冷却,从而形成冷却气体并提供净化器的制冷;

通过与蒸气入口中的蒸气和冷凝物级分间接换热来加热所述冷却气体,以形成过热气体;

从净化器中除去过热气体,以输送到使用地点;以及将所述冷凝物级分回流到容器中的液体中。

2.如权利要求1所述的方法,其中所述净化器位于容器内。

3.如权利要求1所述的方法,其中所述净化器位于所述容器的外部并且临近所述容器。

4.如权利要求1所述的方法,其中压力降低量为15-200psi。

5.如权利要求1所述的方法,其中所述蒸气级分与冷凝物级分以逆流方向接触。

6.如权利要求1所述的方法,其中所述蒸气级分与冷凝物级分以并流方向接触。

7.如权利要求1所述的方法,其中当从净化器中除去过热气体时,向过热气体提供

5-35℃的过热。

8.如权利要求1所述的方法,其中部分冷凝所述蒸气生成蒸气级分和冷凝物级分,使得蒸气级分被所述冷凝物级分气提除去包括颗粒在内的较低挥发性污染物,从而产生具有提高纯度的气体和富含包括颗粒在内的较低挥发性污染物的冷凝物级分。

9.如权利要求1所述的方法,该方法还包括当所述容器中包括颗粒在内的较低挥发性污染物的浓度太高以致于不能分离包括颗粒在内的较低挥发性污染物并产生具有提高纯度的过热气体时,除去与所述净化器整合的容器。

10.一种用于输送具有改善纯度的过热气体的装置,包括:适用于在压力下储存液体的容器;

与所述容器整合的净化器,所述净化器具有至少一个与所述容器内的顶部空间相连通的蒸气入口;

与所述蒸气入口成间接热交换关系的通道,其通向用于从所述净化器中除去所述过热气体的产品出口,所述通道与所述蒸气入口相连通,并且限定了从所述蒸气入口到所述产品出口的连续路径;

位于所述通道内的减压器,用于实现所述通道内的蒸气膨胀;以及从所述净化器到所述容器中的所述液体中的冷凝物回路。

11.如权利要求10所述的装置,其中所述通道包括中心通道和外部通道,所述蒸气入口是环形,环形蒸气入口的内部是中心通道,所述外部通道环绕环形蒸汽入口。

12.如权利要求11所述的装置,其中所述减压器设置在所述中心通道的入口处。

13.如权利要求10所述的装置,其中所述净化器具有能够容纳液体并形成液封的底部。

14.如权利要求10所述的装置,其中所述蒸气入口直接与所述容器的顶部空间相连通。

15.如权利要求11所述的装置,其包括围绕蒸气入口并与其间接换热的外部通道,其中所述外部通道的一端与所述中心通道的出口相连通,所述外部通道的另一端与产品出口相连通。

说明书 :

用于输送具有提高纯度的气体的方法和用于输送具有改善

纯度的过热气体的装置

技术领域

[0001] 本发明涉及对从容器中输送气体的装置和方法的改进。
[0002] 背景技术
[0003] 很多工业过程需要用于广泛应用的可靠来源的高纯度工艺气体。通常这些气体在压力下以液态或液-气混合物的形式储存在容器中,随后在可控条件下从容器中被输送到工艺应用地点。
[0004] 为了满足这些工业,尤其是半导体工业中使用的气体产品的高纯度要求,已经使用了各种填充(fill)工序。例如,用于储存和输送的容器要特别进行清洁准备,并且在生产和产品填充的过程中进行详细测量以维持纯度标准。尽管有这些测量,但各种气体的产品纯度在储存中会有下降的趋势,在将气体产品输送到现场使用之前,必须除去产生的劣化产品。在蒸气回收中通过颗粒夹带也可能发生对气体产品的污染。这些污染物在现场使用之前必须除去。
[0005] 为了确保将高纯度气体产品输送到应用地点,已经采用了现场净化器和具有内置净化器的容器来除去污染物,例如劣化产品和颗粒。采用碳基或其它吸附剂的净化器对所有污染物的去除效果有限,并且吸附过程也需要定期更换吸附剂以避免意外的污染泄漏。
[0006] 以下文章和专利是现有技术的代表:
[0007] US5409526公开了一种通过将流体从圆筒中抽出通过含吸附剂的净化单元的方法从圆筒中提供高纯度流体的装置。该净化单元内置于圆筒中。
[0008] US5461870公开了一种用于低温制冷的自制冷方法,该方法采用一热交换器,并由此在一个单元组件处理由至少两种具有不同冷凝温度的可冷凝组分组成的气体。该装置包括净化器类型的热交换器。
[0009] US6442969公开了一种分离气体的方法,例如使用回流交换器从甲烷中分离二氧化碳。
[0010] US6349566公开了一种安装在压力容器内的净化器系统,用于清除集管、收集器等。
[0011] US5983665公开了一种采用净化器生产液体甲烷的方法。进料气体在热交换器内冷却、部分冷凝然后在净化器内精馏。
[0012] US5802871公开了一种从甲烷气体中除去氮气的方法,通过冷却、部分冷凝随后在至少一个净化器中精馏甲烷。
[0013] US5694790公开了一种在热交换器中精馏空气流的方法,其中热交换器具有通过分馏分离组分的第一组通道。
[0014] US5144809公开了一种通过在一个装置中冷却进料气空气流来生产氮气的方法,其中所述装置采用平行六面体热交换器。
[0015] US5017204公开了一种通过在净化热交换器中精馏进料气体来从天然气流中生产氦气的方法。该系统是自动制冷的,不需要热泵或循环压缩机。
[0016] US4110996公开了一种在其填充过程中从容器中回收蒸气的方法和装置。蒸气被冷却收集和冷凝。冷凝物从蒸气中分离并且用来进一步冷却和冷凝蒸气。

发明内容

[0017] 本发明涉及对从容器中输送气体的装置和方法的改进,尤其是从容器内输送用于电子和半导体工业中的高纯度特殊气体。该装置是蒸馏净化系统,该净化系统整合在储存容器内或作为气体输送系统内的小型模块整合。在该输送方法的一个实施方案中,保存在容器内的液体被转化成蒸气,生成的蒸气在净化热交换器中部分冷凝并且蒸气级分在分馏区被冷凝物级分洗涤。包含较易挥发性组分的蒸气级分在排出净化器之前与进入的蒸气间接热交换而被加热。冷凝物返回到保存在容器中的液体中。在这种独立蒸馏净化装置中,纯度提高的高挥发性气体产品作为过热蒸气除去,而在容器内残留的液体中留下包括颗粒的低挥发成分。
[0018] 通过使用用来输送气体,尤其是用于电子工业的高纯度气体的集成净化器/容器,可以得到显著的优点,包括:
[0019] 能够减少在输送高纯度气体产品中必须处理的剩余液(heel)的量。通常在输送过程中产生大量含污染产品的剩余液,这些剩余液不能使用并且通常必须作为废弃物排放掉;
[0020] 能够在蒸气离开容器时使蒸气过热,因而使得在容器下游的管线中冷凝物最少,冷凝物可能对终端使用的工艺非常有害;
[0021] 能够提供维持将高纯度过热产品在更长时间内输送到使用地点;
[0022] 能够连续生产高纯度产品;
[0023] 在使用蒸气和冷凝物的连续通道的输送工艺中能够获得非常高产量的产品;以及[0024] 能够消除或最小化辅助加热器的使用,通常情况下提供辅助加热器是为了向饱和蒸气提供过热并且最小化管线中的凝结。

附图说明

[0025] 图1是位于输送容器内结合有净化器的独立蒸馏装置的一般示意图。
[0026] 图2是应用在图1的容器内的净化器的横截面分离视图。
[0027] 图3是采用蒸气和冷凝物并流的净化器的横截面分离视图。
[0028] 图4是采用图1的净化器的独立蒸馏净化器的横截面视图,其中独立蒸馏净化器固定在被设计用来大量储存和/或输送产品的水平容器的外部。

具体实施方式

[0029] 在现场(on-site)将气体输送到例如那些在半导体工业容器中采用的处理中心中,容器通常在现场以外充满液化气,被充满的容器被运送到处理工厂,或者用车从供应处将液化气运送到处理工厂,并且容器在现场被填充。气体产品在压力下作为液体储存,直到被输送。通过降低容器内压力从而将部分液体转化成蒸气,并将产生的气体管送到使用地点来实现气体产品的输送。以这种方式输送到电子工业的代表性气体包括NH3、Cl2、CO2、HCl和制冷剂,并且这些气体尤其适合通过在此描述的装置输送。
[0030] 在输送电子和半导体工业中需要的高纯度气体产品并且满足输送规程的一个方案中,所述的装置考虑了在将气体产品输送到使用地点之前,很好的降低较低挥发性污染物和气体产品中的颗粒物。
[0031] 为了帮助对装置和方法的理解,参考附图。图1和2图示了包括与填充液体的容器整合(即与其流体连接、物理连接和/或包含在内)的独立蒸馏净化器的系统2(图2图示了应用在图1中的独立蒸馏净化器的设计,比图1中显示的更详细)。在系统2中,容器4容纳低压液体6,例如NH3,在被输送到使用地点前,该液体从液态形式转化成气体形式。当液体转化成气体形式(蒸气)并且将产生的蒸气从容器中除去时,在液体6的上部产生了顶部空间8。
[0032] 在图示的实施方案中,净化器10设置在容器4内,从而形成与填充液体的容器2整合的独立蒸馏净化器。净化器10包括内部蒸气入口12,例如最终通向产品蒸气出口14的环。建立就从内部蒸气入口12流向蒸气产品出口14的蒸气流动而言连续的路径。内部环形蒸气入口12的内部是与减压器18相连的中心通道16。中心通道16的流通路径通向环绕内部环形蒸气入口12的外部通道20,然后通向产品蒸气出口14。
[0033] 通过从容器4内部经过蒸气产品出口14形成流动以及在排出之前通过减压器18使液体转化成蒸气产生的蒸气级分膨胀来提供净化器10的制冷。气体通过减压器18的膨胀必须提供对气体的足够冷却从而实现在排出之前部分冷凝进入净化器10的蒸气。通常通过减压器18的压降为15-200psi。降压设备,即减压器18可以是恒流阻力或变流阻力。减压器的选择取决于流量要求和工艺需要的条件变化。
[0034] 在采用图1的装置将气体输送到使用地点的工艺中,由于形成流动导致一部分液体6转化成蒸气。随后将生成的蒸气以上升流方向从顶部空间8进入内部环形蒸气入口12中并在那里部分冷凝。向上流动的蒸气(再沸腾)被蒸气入口12内壁上的液体和液滴
13(图2中所示)形式的向下流动的冷凝物(回流)洗涤(即精馏、气提和/或分馏)除去重组分(不易挥发的)。夹带入内部环形蒸气入口12的蒸气内残留的颗粒也被从蒸气级分中洗涤出。液滴13形式的冷凝物落入液体6中。结果,包含颗粒的重组分,即不易挥发的污染物趋向于积累在容器4底部的液体6中。
[0035] 基本上不含污染物(包括颗粒)的蒸气通过减压器18膨胀。产生的冷却蒸气15穿过中心通道16并且被内部环形蒸气入口12中进来的蒸气间接热交换加热。在中心通道16中连续向下的蒸气流向上经过环绕内部环形蒸气入口12的外部通道20,用来在蒸气经过蒸气产品出口14排出之前进一步加热并使蒸气过热。通常5-35℃之间的过热气体足够用来消除集成系统的下游管线内的冷凝物。
[0036] 论及在图1中所示的实施方案中蒸气料流被冷凝物逆流洗涤,可以实现多段设计,即在分离设计的理论段数目大于1。一旦液层中污染物的浓度太高,就不能从蒸气产品中充分分离污染物,从而产生不符合规定的产品。需要比内置净化器10提供更多的分离阶段。那时容器4必须停止使用,排出残留内容物(剩余液)并充满容器。由于是集成净化系统,因此可以在输送工艺的剩余液中收集更多的污染物,并且可以使剩余液的量与现有系统相比更少。因此,集成净化系统可以输送更多的产品。
[0037] 图3阐述了图1中净化器10的一个变化方案。该实施方案考虑到一个理论分离段。更具体而言,净化器40是可以取代图1中容器4内的净化器10的净化器。净化器40具有底部,即收集器58,被设计用来容纳液体42。在净化器40的顶端是蒸气产品出口44。当产生蒸气流并且净化器40内的压力相对于容器4内的压力降低时,液体6就会转化成蒸气。蒸气通过入口46进入净化器40,然后向下流动并在环形通道48内冷却。内部环形通道48内的冷凝液滴滴入净化器40的底部的液体42中。用于形成液封的净化器40中液体
42的液位通过收集器58维持。当液体42的量超过设计液位,过量液体就会溢流进入容器
4中容纳的液体6内。从内部环形通道48排出的蒸气通过减压器50并被冷却从而提供净化器40的制冷。当产生的纯度提高的冷却蒸气向上通过中心通道52时,被内部环形通道
48中蒸气和冷凝物间接热交换加热。通道52内加热(过热)的蒸气随后通过蒸气产品出口44被输送到使用地点。
[0038] 图3中的设计导致内部环形通道48内的蒸气级分冷凝,使得冷凝物与蒸气在内部环形通道48内并流,而不是如图1中的逆流。缺少图1中所示的蒸气被滴落的冷凝物逆流洗涤,分离的效率就会降低,从而可以减少理论分离段的数量。图3中图示的实施方案可以优选固定在具有有限空间的容器结构的内部。
[0039] 图4图示了图1中类型的独立净化器,用作容器64的外部净化器的改进。净化器70通常临近容器64设置,并且与前述系统一样,净化器70被容器64的液体66内的能量驱动。使用泵60将液体冷凝物输送回容器64中。然而,根据该设计结构,冷凝物可以通过重力供料返回到容器64。集成实施方案的该改进的优点在于储存物的现场转化和用于散装气体分布的输送设备。另外,图1的集成净化系统的所有方面都与图4设计中的操作相同。
[0040] 从容器64中净化和输送气体产品的工艺步骤的概述包括通过降低压力实现将容器64的液体储存器66中的液体转化成蒸气或“沸腾气体”68。容器中液体的能量加上环境的热泄漏,用于驱动分离。然后净化过程基本上是绝热的。可以通过辅助加热器(图中未示出)提供热,例如在输送氨时这可能是必须的,用来将系统维持在半稳定状态。在从净化器输送到出口84之前能够将产品蒸气或气体过量加热使得现有技术中对用于现场输送的管线加热器的需要最少化。
[0041] 在如图1中所述的本发明的一个优选实施方案中,向上流的蒸气与向下流的冷凝物接触,其中冷凝物从蒸气中解吸重组分和颗粒。含有洗涤颗粒和较难挥发组分的冷凝物回流到容器4底部的液体中。所有这些步骤在蒸气的连续通道中进行,使得结构简单。
[0042] 可以使用净化器结构的各种方式,并且蒸气入口和通道是环形的描述只是便于使用和优选的一种。例如也可以使用方形结构。
[0043] 提供了以下实施例来说明本发明的各种实施方案,且其并不用于限制本发明的范围。
[0044] 实施例1
[0045] 为了评价独立蒸馏净化器的各种设计的预测分离性能,使用从氨中除去水作为代表性体系。从容器储存器闪蒸出的饱和蒸气被设定为具有5ppm水的摩尔浓度。对于指定产品,将压降设定为从129psia降至65psia,抽出速率为1lb mol/hr。采用具有通过环境热泄漏进入容器提供的用来沸腾和过热的热输入的绝热净化操作。
[0046] 该评价包括图1中的逆流设计和图3中的并流设计。测量通过容器储存器的液体蒸发得到的内在单一理论段的系统的水含量的减少。
[0047] 初始分离结果表明图3中描述的独立蒸馏净化系统提供了氨产品中~20倍水含量的降低。图1中描述的逆流独立蒸馏净化器提供了~7000倍的降低。两种结构都提供了从排出物中去除热,使得排出的蒸气很少在下游输送管道中冷凝。更具体而言,为了实现这些条件,通过独立蒸馏净化器提供了大约27度的过热(高于露点)。
[0048] 总的来说,具有了升高的分离效率的设备能够在延长的时间内输送高纯度产品。这使得可以输送更一致的产品,有利于工业,例如电子工业。