用于铸铁铣削的刀片转让专利

申请号 : CN200710110106.7

文献号 : CN101088756B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 莱夫·阿克松托里尔·米尔特韦特伊布拉尼姆·萨迪克

申请人 : 山特维克知识产权股份有限公司

摘要 :

本发明涉及一种涂层硬质合金铣削刀片,该涂层硬质合金铣削刀片用于铸铁,例如球墨铸铁(NCI)、灰口铸铁(GCI)、等温淬火球墨铸铁(ADI)和蠕墨铸铁(CGI)的湿式加工或干式加工,其中需要高的耐磨性和克服热裂纹的优良的抵抗力,该涂层硬质合金铣削刀片包括:基底,该基底包括5-7、wt%的Co、140-250ppm的Ti+Ta、和余量WC;和PVD层,该PVD层由AlxTi1-xN构成,其中x=0.50-0.70,并且具有1-10μm的厚度。本发明还涉及用于制造切削工具刀片的方法。

权利要求 :

1.包括硬质合金基底和涂层的切削工具刀片,其特征在于:

该基底包括:5-7wt%的Co;140-250ppm的Ti+Ta;和余量WC,且Ti/Ta重量比为

0.8-1.3,矫顽性Hc为15.5-19.5kA/m,且CW-比率为0.81-0.95,并且该涂层包括AlxTi1-xN均质层,其中x=0.5-0.7,且在前刀面上具有0.5μm-15μm的总厚度,在后刀面上具有2μm-7μm的总厚度。

2.如权利要求1所述的切削工具刀片,其特征在于:该基底包括:5.5-6.5wt%的Co;

160-225ppm的Ti+Ta,且Ti/Ta重量比为0.9-1.2,矫顽性Hc为17.0-18.7kA/m,且CW-比率为0.85-0.92,并且AlxTi1-xN均质层中,x=0.6-0.7,且涂层在前刀面上总厚度为1μm-10μm。

3.如权利要求1所述的切削工具刀片,其特征在于:AlxTi1-xN均质层在前刀面上具有

1μm-5μm的总厚度。

4.如权利要求1所述的切削工具刀片,其特征在于:b=0.8-0.9的外部TibAl1-bN层,该外部TibAl1-bN层具有足以给出可视的、均质的古铜色外观的厚度。

5.如权利要求4所述的切削工具刀片,其特征在于:对于外部TibAl1-bN层,b=

0.82-0.85,且该外部层为0.1-1μm厚。

6.制造包括硬质合金基底和涂层的切削工具刀片的方法,其特征在于:提供基底,该基底包括5-7wt%的Co、140-250ppm的Ti+Ta、和余量WC,且Ti/Ta重量比为0.8-1.3,矫顽性Hc为15.5-19.5kA/m,且CW比率为0.81-0.95;并且在N2或混合的N2+Ar气氛中,利用两对或三对由纯Ti和/或TiAl合金构成的电弧源,利用阴极电弧蒸镀来淀积涂层,该涂层包括AlxTi1-xN均质层,其中x=0.5-0.7,且在前刀面上具有0.5μm-15μm的涂层总厚度,在后刀面上具有2μm-7μm的总厚度。

7.如权利要求6所述的方法,其特征在于:该基底包括5.5-6.5wt%的Co、160-225ppm的Ti+Ta,且Ti/Ta重量比为0.9-1.2,矫顽性Hc为17.0-18.7kA/m,且CW比率为

0.85-0.92,并且AlxTi1-xN均质层中,x=0.6-0.7,且涂层在前刀面总厚度为1μm-10μm。

8.如权利要求6或7所述的方法,其特征在于:AlxTi1-xN均质层在前刀面上具有

1μm-5μm的总厚度。

9.如权利要求6所述的方法,其特征在于淀积b=0.8-0.9的外部TibAl1-bN层,该外部TibAl1-bN层具有足以给出可视的、均质的古铜色外观的厚度。

10.如权利要求9所述的方法,其特征在于:对于外部TibAl1-bN层,b=0.82-0.85,且该外部层为0.1-1μm厚。

11.根据权利要求1至5所述的切削工具刀片在湿式条件和干式条件下以下列切削数据Vc=100-400m/min和fz=0.05-0.4mm/齿在铸铁的铣削中的使用。

说明书 :

用于铸铁铣削的刀片

技术领域

[0001] 本发明涉及用于铸铁例如球墨铸铁(NCI)、灰口铸铁(GCI)、等温淬火球墨铸铁(ADI)和致密石墨铸铁(CGI)的湿式加工或干式加工的涂层硬质合金铣削刀片,其中需要高耐磨性和克服热裂纹的优良抵抗力。

背景技术

[0002] 铸铁具有在不同类之间而且在某一类内能够显著改变的可加工性。材料内的化学成分和/或显微结构的微小变化可明显地影响工具的使用寿命。这些变化可能涉及所使用的铸造技术,例如冷却条件。利用某种冷却剂通过涂层硬质合金刀片频繁地加工铸铁,并且当刀片进入和离开工件时相关的热循环通常在垂直于边缘线的切削刃中产生热致裂纹,通常所说的梳形裂纹。这些梳形裂纹生长到基底中,并最终导致切削刃的破碎和劣化。
[0003] 就耐磨性而论,由于非金属夹杂物和/或铸件表皮,铸铁还非常劳神,因此已通常使用CVD涂层刀片,例如根据US5,912,051、US942,318、US6,767,583。
[0004] WO2006/043421公开了硬质合金,该硬质合金包括具有作为硬质相的0.3μm或更小平均颗粒直径的WC和作为粘结相的5.5-15wt%的至少一种铁族金属元素,并且除以上的硬质相和粘结相之外,还包括0.005-0.06wt%的Ti、Cr,其相对于粘结相的重量比为0.04-0.2,以及不可避免的杂质的余量。尤其地,该硬质合金不包含Ta。
[0005] 目前已令人惊奇地发现:对于在上述切削操作中普遍存在的不同磨损类型而言,能够通过具有如下成分的切削工具刀片而获得具有改良特性的切削工具刀片,该切削工具刀片包括:硬质合金主体,该硬质合金主体具有W合金粘结相,并具有良好均衡的化学成分和特定晶粒尺寸的WC,并与具有特定Al和Ti比率的PVD涂层(Al、Ti)N-层相结合。

发明内容

[0006] 根据本发明,提供具有硬质合金主体和涂层的涂层切削工具刀片。
[0007] 硬质合金主体具有如下成分:5-7、优选5.5-6.5、最优选5.8-6.2wt%的Co;140-250、优选160-225、最优选175-200ppm的Ti+Ta;和余量WC。Ti/Ta的重量比在0.8-1.3的范围内,优选在0.9-1.2的范围内。硬质合金主体还包含较少量的其它元素,不过在对应于技术杂质的水平上。矫顽性、Hc为15.5-19.5kA/m,优选为17.0-18.7kA/m。
[0008] 对钴粘结相与一定量的W进行合金化,使得硬质合金切削刀片具有期望性能。粘结相中的W影响钴的磁性,并因此与CW比率值相关,其限定为
[0009] CW-比率=磁性%Co/wt%Co,
[0010] 其中磁性%Co是磁性Co的重量百分数,而wt%Co是Co在硬质合金的重量百分数。
[0011] 根据合金化的程度,该CW-比率能够在1和大约0.75之间变化。较低的CW-比率对应于较高的W含量,并且CW-比率=1实际上对应于在粘结相中没有W。
[0012] 根据本发明,如果硬质合金主体具有0.81-0.95、优选0.85-0.92、并且最优选0.86-0.89的CW-比率,则实现改良的切削性能。硬质合金也可包含少量的、<1体积%的η-相(M6C),而无任何不利影响。根据本发明,在硬质合金中不应存在游离石墨。
[0013] 根据本发明的刀片在前刀面上设有0.5-15μm优选1-10μm更优选1-5μm的(Al、Ti)N-层,在后刀面上设有2-7μm的(Al、Ti)N-层。通过例如微探针或EDS测量的包括可选内部粘结层和外部着色层的整个层的化学计量是AlxTi1-xN,其中x为0.5-0.7,优选为0.6-0.7。在优选实施例中,存在b=0.8-0.9、优选0.82-0.85的外部TibAl1-bN层,该外部TibAl1-bN层具有足以给出可视的、均质的古铜色外观的厚度,优选0.1-1μm厚。
[0014] 本发明还涉及通过粉末冶金技术制造切削刀片的方法,该粉末冶金技术包括对形成硬质成分和粘结相的粉末进行湿磨、将碾磨过的混合物压紧成具有期望的形状和尺寸的主体并烧结。根据该方法,提供基底,该基底包括:5-7、优选5.5-6.5、更优选5.8-6.2wt%Co;140-250、优选160-225、最优选175-200ppm的Ti+Ta;和余量WC。Ti/Ta重量比在0.8-1.3优选在0.9-1.2的范围内。选择制造条件以获得烧结态结构,该烧结态结构具有:15.5-19.5kA/m优选17.0-18.7kA/m的矫顽性Hc;和如上限定的0.81-0.95、优选
0.85-0.92、最优选0.86-0.89的CW-比率。硬质合金主体还可以包含较少量的其它元素,但是在对应于技术杂质的水平上。
[0015] 涂层淀积在该基底上,该涂层包括均质的AlxTi1-xN层,其中x=0.5-0.7、优选0.6-0.7,在前刀面上具有0.5-15μm优选1-10μm、最优选1-5μm的总厚度,并且在后刀面上具有2-7μm的总厚度。在N2或混合的N2+Ar气氛中,利用两对或三对由纯Ti和/或TiAl合金构成的电弧源,利用阴极电弧蒸镀来淀积该层。在优选实施例中,淀积b=0.8-0.9优选0.82-0.85的外部TibAl1-bN层,该外部TibAl1-bN层具有足以给出可视的、均质的古铜色外观的厚度,优选0.1-1μm厚。
[0016] 本发明还涉及在具有切削数据Vc=100-400m/min和fz=0.05-0.4mm/齿的湿式和干式条件下上述切削工具刀片在灰口铸铁、球墨铸铁、等温淬火球墨铸铁和蠕墨铸铁的铣削中的使用。

具体实施方式

[0017] 实例1(发明)
[0018] 硬质合金铣削毛坯从粉末被压成以下类型:R390-170408M-KM、R290-12T308M-KM、R245-12T3M-KH、R245-12T3E-KL和R300-1648M-KH,该粉末具有6.0wt%的Co、190ppm的Ti+Ta并具有1.06的Ti/Ta-比率(按重量计算)和余量WC的成分,并通过普通技术在1410℃烧结,给出烧结态刀片,利用来自Foerster仪器公司的 KOERZIMAT CS
1.096进行测量时,该烧结态刀片具有对应于1.7μm平均WC晶粒尺寸的18.1kA/M的Hc值、和对应于0.88的CW-比率的5.3wt%的磁性Co含量。利用常规方法将该刀片边缘圆化成
35μm的半径然后如下涂层:
[0019] 通过阴极电弧蒸镀来淀积(Ti、Al)N-层。通过安装在3重折叠旋转基底台上的刀片,该层从Ti33Al67-靶淀积。电弧蒸镀在N2气氛中进行。在前相上总层厚度为3.3μm,距边缘线的距离在0.3mm内,在刀片的间隙侧上总层厚度为4.2μm。刀片涂有具有0.2μm厚度的Ti0.84Al0.16N最终外部层以产生古铜色。
[0020] 实例2(参考例)
[0021] 根据公知技术制造或从市场上著名的竞争者购买具有如表1所述的成分的硬质合金铣削刀片。
[0022] 表格1
[0023]
[0024] *)前/后刀面
[0025] 实例3-10的说明:
[0026] 以下表达/术语普遍使用在金属切削中,并在以下的表格中说明:
[0027] Vc(m/min):以米每分钟为单位的切削速度
[0028] Fz(mm/齿):以毫米每齿为单位的进料速度
[0029] Z(数量)刀具中的刀片数量
[0030] Ae(mm):以毫米为单位切入的径向深度
[0031] Ap(mm):以毫米为单位切入的轴向深度
[0032] D(mm):以毫米为单位的刀具直径
[0033] 实例3
[0034] 测试来自实例1根据本发明的刀片,并与参考例A以及用于相同应用的市场上可买到的竞争者等级对比例1相比较。根据本发明的刀片和参考例A具有R390-170408MKM的几何形状,并且刀片对比例1具有适于相同应用领域的相似几何形状。所有刀片用于50mm直径的刀具中。在湿式条件下,以Vc=314m/min、fz=0.06-0.09mm/齿、ap=4-5mm、z=5,在GCI(灰口铸铁)制成的齿轮箱的粗平面铣削操作中测试刀片。根据本发明的刀片在该应用中持续158分钟,而参考例A只持续108分钟,并且用于相同应用的对比例1持续100分钟。在副切削刃中,决定性磨损类型是破碎,其导致工件上差的表面光洁度。
[0035] 实例4
[0036] 测试来自实例1根据本发明的刀片,并与参考例B以及用于相同应用的市场上可买到的竞争者等级对比例1相比较。根据本发明的刀片和参考例B具有R290-12T308M-KM的几何形状,并且刀片对比例1具有适于相同应用领域的相似几何形状。所有的刀片用于80mm直径的刀具中。在湿式条件中,在NCI(球墨铸铁、GGG40)制成的制动器盘中进行精平面铣削操作和半精平面铣削操作以测试刀片。夹紧稳定性较差。切削条件为Vc=226m/min、fz=0.16mm/齿、z=8。参考例B持续170分钟,对比例1持续233分钟,而根据本发明的刀片持续403分钟。对于参考例B,由于梳状裂纹,所以在切削刃中的决定性磨损类型为破碎,而对于对比例1为>0.5mm的、大的不规则的后刀面磨损,而根据本发明的刀片得到更均匀的后刀面磨损,而无任何破碎。工具变化的原因是在工件上差的表面光洁度和/或毛边。
[0037] 实例5
[0038] 来自实例1的刀片与具有R300-1648M-KH的几何形状的参考例A相比较。操作是利用63mm直径的刀具对NCI(球墨铸铁)制成的泵体进行粗平面铣削。切削数据为Vc=316m/min、z=6、fz=0.32mm/齿、ap=2mm、ae=60mm,使用冷却剂。28分钟之后,由于涂层的剥落和随后边缘线中的破碎,参考例A被磨坏,然而在来自实例1的根据本发明的刀片上几乎不能检测出任何磨损。
[0039] 实例6
[0040] 来自实例1的刀片与所有具有R245-12T3M-KH的几何形状的参考例B和C相比较,并且还与具有相似几何形状、用于相同应用领域的市场上可买到的竞争者等级对比例2相比较。利用125mm直径的刀具,在湿式条件下,在灰口铸铁(GCI)的外壳中进行半精平面铣削操作以测试刀片。切削条件为:Vc=392m/min、z=6、fz=0.10mm/齿、ap=4.5mm和ae=67mm。参考例B持续354分钟,参考例C持续111分钟,对比例2持续335分钟而来自根据本发明实例1的刀片持续422分钟。参考例B、对比例2和来自实例1的刀片的磨损类型为后刀面磨损,而参考例C的边缘线中发生涂层的剥落和破碎。工具变化的原因是在工件上的破碎和/或差的表面光洁度,当后刀面磨损超过大约0.4mm时出现以上情况。
[0041] 实例7
[0042] 来自实例1的刀片与用于相同应用领域的市场上可买到的竞争者等级对比例3相比较。利用80mm直径的刀具,以Vc=251m/min、z=8、fz=0.125mm/齿、ap=0.3mm、ae=60-65mm,在干式条件下,在NCI(SS0727)的阀体中进行精平面铣削操作以测试刀片。几何形状为R245-12T3E-KL。来自根据本发明实例1的刀片在两次运转中制造370和400个部件,而刀片对比例3仅仅平均制造200个部件。两个变体的磨损类型均为后刀面磨损,并且工具变化的原因是差的表面光洁度。
[0043] 实例8
[0044] 来自实例1的具有R290-12T308M-KM的几何形状的刀片与相同几何形状中的参考例B相比较。利用50mm直径的刀具,以Vc=196m/min、z=5、fz=0.16mm/齿、ae=45mm、ap=2.5mm,在干式条件下,在NCI(SS0727)的阀体中进行粗平面铣削操作以测试刀片。两个变体制造均100个部件,并且对于参考例B,测量的后刀面磨损为0.38mm,对于根据本发明(实例1)的刀片为0.15mm。
[0045] 实例9
[0046] 来自实例1的具有R290-12T308M-KM的几何形状的刀片与相同几何形状中的参考例A、B和D相比较。在致密石墨铸铁(CGI)的特殊部分中进行粗平面铣削操作以进行测试,该测试适于实验室试验。利用80mm直径的刀具器,以Vc=300m/min、z=6、fz=0.15mm/齿、ae=50mm、ap=3mm,在干式条件下完成测试。工具使用寿命标准为大于0.3mm均匀后刀面磨损,破碎或大于0.4mm不均匀后刀面磨损。
[0047] 与根据本发明刀片的22min相比较,参考例A、B和D的工具使用寿命分别为13、17和18min。
[0048] 实例10