雷达设备和雷达设备的控制方法转让专利

申请号 : CN200710153448.7

文献号 : CN101153911B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 洞井义和石井聪八塚弘之岛伸和一津屋正树

申请人 : 富士通株式会社富士通天株式会社

摘要 :

本发明涉及雷达设备和雷达设备的控制方法。所述雷达设备用于通过检测从目标反射的由发送器单元发射的传输高频波来在接收器单元中检测所述目标,雷达设备的控制方法包括如下步骤:在所述发送器单元中以周期性时间间隔对第一操作模式和第二操作模式进行切换来检测所述目标,所述第一操作模式用于调频并发出所述传输高频波,所述第二操作模式用于调幅并发出所述传输高频波;以及在所述设备用作调频一连续波雷达并检测远程内的目标的所述第一操作模式时,切换到具有窄波束宽度的高增益天线;在所述设备用作脉冲雷达并检测近程内的目标的所述第二操作模式时,切换到具有宽波束宽度的低增益天线。

权利要求 :

1.一种雷达设备,所述雷达设备包括:

发送器单元,其具有高频振荡单元和脉冲调幅单元,所述高频振荡单元的振荡频率是可变的,所述脉冲调幅单元用于根据第一控制脉冲信号对从所述高频振荡单元输出的传输高频信号的脉冲进行调幅;

接收器单元,其具有门控单元,该门控单元用于根据第二控制脉冲信号来导通和截止收到的高频信号的输入;

控制单元,用于控制所述发送器单元和所述接收器单元,并且用于在第一操作模式和第二操作模式之间进行切换,所述第一操作模式用于使所述设备用作调频-连续波雷达,所述第二操作模式用于使所述设备用作脉冲雷达;以及具有窄波束宽度的一对第一天线和具有宽波束宽度的一对第二天线,所述一对第一天线中的一个第一天线连接到所述发送器单元,所述一对第一天线中的另一个第一天线连接到所述接收器单元,所述一对第二天线中的一个第二天线连接到所述发送器单元,所述一对第二天线中的另一个第二天线连接到所述接收器单元,其中所述控制单元在使得所述设备用作调频-连续波雷达的所述第一操作模式时切换到所述一对第一天线,并且在使得所述设备用作脉冲雷达的所述第二操作模式时切换到所述一对第二天线。

2.一种雷达设备,所述雷达设备包括:

发送器单元,该发送器单元具有高频振荡单元和脉冲调幅单元,所述高频振荡单元的振荡频率是可变的,所述脉冲调幅单元用于根据第一控制脉冲信号对从所述高频振荡单元输出的传输高频信号的脉冲进行调幅;

接收器单元,其具有门控单元,该门控单元用于根据第二控制脉冲信号来导通和截止收到的高频信号的输入;

控制单元,用于控制所述发送器单元和所述接收器单元,并且用于在第一操作模式和第二操作模式之间进行切换,所述第一操作模式用于使所述设备用作调频-连续波雷达,所述第二操作模式用于使所述设备用作脉冲雷达;

具有窄波束宽度的一对第一天线和具有宽波束宽度的一对第二天线,所述一对第一天线中的一个第一天线连接到所述发送器单元,所述一对第一天线中的另一个第一天线连接到所述接收器单元,所述一对第二天线中的一个第二天线连接到所述发送器单元,所述一对第二天线中的另一个第二天线连接到所述接收器单元;以及用于使天线在水平方向扫描的扫描机构,其中

所述控制单元具有如下功能:根据所述扫描机构在水平方向的扫描位置以及所述收到的高频信号,在水平方向检测位于扫描范围内的目标。

3.一种雷达设备,所述雷达设备包括:

发送器单元,该发送器单元具有高频振荡单元和脉冲调幅单元,所述高频振荡单元的振荡频率是可变的,所述脉冲调幅单元用于根据第一控制脉冲信号对从所述高频振荡单元输出的传输高频信号的脉冲进行调幅;

接收器单元,其具有门控单元,该门控单元用于根据第二控制脉冲信号来导通和截止收到的高频信号的输入;

控制单元,用于控制所述发送器单元和所述接收器单元,并且用于在第一操作模式和第二操作模式之间进行切换,所述第一操作模式用于使所述设备用作调频-连续波雷达,所述第二操作模式用于使所述设备用作脉冲雷达;

具有窄波束宽度的一对第一天线和具有宽波束宽度的一对第二天线,所述一对第一天线中的一个第一天线连接到所述发送器单元,所述一对第一天线中的另一个第一天线连接到所述接收器单元,所述一对第二天线中的一个第二天线连接到所述发送器单元,所述一对第二天线中的另一个第二天线连接到所述接收器单元;以及用于使天线在水平方向扫描的扫描机构,其中

所述控制单元具有如下功能:在使得所述设备用作调频-连续波雷达的所述第一操作模式中,通过由所述一对第一天线进行扫描,在水平方向执行具有高分辨率的检测处理;以及,在使得所述设备用作脉冲雷达的所述第二操作模式中,以高响应速度来检测位于从连接到所述发射器单元的所述一个第二天线发出的所述传输高频信号的波束内的目标,而无需由所述一对第二天线进行扫描。

4.一种雷达设备的控制方法,所述雷达设备用于通过检测从目标反射的由发送器单元发射的传输高频波来在接收器单元中检测所述目标,该方法包括如下步骤:在所述发送器单元中以周期性时间间隔对第一操作模式和第二操作模式进行切换来检测所述目标,所述第一操作模式用于调频并发出所述传输高频波,所述第二操作模式用于调幅并发出所述传输高频波;以及在所述设备用作调频-连续波雷达并检测远程内的目标的所述第一操作模式时,切换到具有窄波束宽度的高增益天线;在所述设备用作脉冲雷达并检测近程内的目标的所述第二操作模式时,切换到具有宽波束宽度的低增益天线。

5.根据权利要求4所述的雷达设备的控制方法,所述方法还包括以下步骤:

在所述设备用作调频-连续波雷达并检测远程目标的所述第一操作模式时,通过在水平方向进行扫描来在所述水平方向执行具有高分辨率的检测处理;以及,在所述设备用作脉冲雷达并检测近程目标的所述第二操作模式时,快速检测位于从固定的天线发出的所述传输高频信号的波束内的目标,而无需在水平方向进行扫描。

说明书 :

技术领域

本发明涉及一种雷达技术,更具体地,涉及一种适用于检测位于从远程到近程的大范围内的目标的有效技术。

背景技术

使用雷达来操作管理汽车时,旨在观察例如道路上的障碍物和交通状况的毫米波雷达技术已受到关注。
常规的FM-CW(调频-连续波)雷达系统可以检测从几米到一百几十米的距离范围内的目标,但是难以以同样的精度来检测极近程(例如大约10厘米)内的目标。同时,超短脉冲雷达系统可以以高精度检测从大约10厘米到十几米的距离范围内的目标,但是难以检测100米或以上距离范围内的目标。
如上所述,FM-CW雷达和超短脉冲雷达是完全不同的雷达系统。因此,常规上需要两种不同的雷达以包括远程和近程的检测功能。
在图1中例示了其中组合了两种雷达设备的远近程雷达300,作为本发明的参考技术。图1表示如下的示例:其中,远程雷达302是常规技术的FM-CW雷达,近程雷达303是使用UWB(超宽频带)技术的脉冲雷达,由集成单元301组合来自这两个雷达的检测信号,并且向外输出覆盖了从远程到近程的检测结果。
作为远程检测雷达,FM-CW雷达最为常用。非专利文献1公开了一种76 GHz频带的RF频率的雷达,检测距离范围为4至120米。
近程雷达主要在欧洲和美国得到了发展。例如,非专利文件文献2提出了一种RF频率为24GHz频带且距离为大约0.1至20米的UWB系统。
上面的图1描述了通过简单地使用根据这些现有技术的这两种雷达来构成的覆盖了近程至远程的检测系统。这种系统的缺点在于,与以一个装置来实现检测系统的情况相比,其结构复杂,并且其成本昂贵。
同时,专利文献1公开了一种雷达发送器/接收器,该雷达发送器/接收器用于利用FM脉冲雷达系统来检测远程目标,且用于利用FM-CW雷达系统来检测近程目标。
然而,如上述非专利文献1和2所述,FM-CW雷达系统对于3至100米的远程是有效的,而脉冲雷达系统对于0.1至20米的近程是有效的。因此,专利文献1中公开的雷达发送器/接收器与本领域技术常识不一致。即,对于FM-CW雷达,如果检测距离很短(例如1米或更短),则从发送和接收信号获得的差频(beat frequency)变得很低,从而难以精确地计算该频率。此外,难以区分在几十厘米的范围内接近的两个目标。例如,如果20厘米是需要区分的距离,那么调频偏差(frequencymodulation deviation)大约为750MHz。然而,很难制造对750MHz的频率偏差具有低调制失真的线性FM调制器,并且用于实现该FM调制的FM振荡器非常昂贵。此外,难以实现专利文献1所要求保护的、以短脉冲进行高速FM切换的FM调制器,并且其雷达系统和结构与根据本发明的能够以调幅来实现脉冲雷达模式的系统不同。
[非专利文献1]“Fujimoto and Ida,“Millimeter Wave Car-MountedRadar System”,NEC Technical Journal Vol.54,No.7/2001”,July,25,2001
[非专利文献2]Andre zander VolkswagenAG et al.,“A MultifunctionalAutomotive Short Range Radar System”,[online][2004年7月2日搜索],
[专利文献1]日本专利申请特开No.11-258340

发明内容

本发明的一个目的是提供一种雷达设备,该雷达设备能够以低成本用一个装置来检测从远程到近程的大范围内的目标。
本发明的第一方面提供了一种雷达设备,其包括:发送器单元,其具有高频振荡单元和脉冲调幅单元,所述高频振荡单元的振荡频率是可变的,所述脉冲调幅单元用于根据第一控制脉冲信号对从所述高频振荡单元输出的传输高频信号的脉冲进行调幅;接收器单元,其具有门控单元,该门控单元用于根据第二控制脉冲信号来导通和截止收到的高频信号的输入;控制单元,用于控制所述发送器单元和所述接收器单元,并且用于在第一操作模式和第二操作模式之间进行切换,所述第一操作模式用于使所述设备用作调频-连续波雷达,所述第二操作模式用于使所述设备用作脉冲雷达;以及具有窄波束宽度的第一天线和具有宽波束宽度的第二天线,所述第一天线和第二天线共同地或者分别地连接到所述发送器单元和所述接收器单元,其中所述控制单元在使得所述设备用作调频-连续波雷达的所述第一操作模式时切换到所述第一天线,并且在使得所述设备用作脉冲雷达的所述第二操作模式时切换到所述第二天线。
本发明的第二方面提供了一种雷达设备的控制方法,所述雷达设备用于通过检测从目标反射的由发送器单元发射的传输高频波来在接收器单元中检测所述目标,该方法包括如下步骤:在所述发送器单元中以周期性时间间隔对第一操作模式和第二操作模式进行切换来检测所述目标,所述第一操作模式用于调频并发出所述传输高频波,所述第二操作模式用于调幅并发出所述传输高频波;以及在所述设备用作调频-连续波雷达并检测远程内的目标的所述第一操作模式时,切换到具有窄波束宽度的高增益天线;在所述设备用作脉冲雷达并检测近程内的目标的所述第二操作模式时,切换到具有宽波束宽度的低增益天线。
根据本发明,可以仅以一个雷达来实现常规上需要远程雷达和近程雷达两个雷达的远近程雷达。因此,与使用三个装置的结构(远程雷达和近程雷达,它们由一个或更多个集成装置来管理)相比,尺寸和成本减小为三分之一。结果,可以提供低成本的能够检测从远程到近程的大范围内的目标的雷达设备,并且具有显著拓宽雷达设备的使用范围的效果。

附图说明

图1是表示作为本发明参考技术的远近程雷达设备的结构的框图;
图2是例示根据本发明优选实施例的雷达设备的结构的框图;
图3是例示根据本发明优选实施例的雷达设备的发送器单元在FM-CW雷达模式中的操作的图;
图4是例示根据本发明优选实施例的雷达设备的接收器单元在FM-CW雷达模式中的操作的图;
图5是例示根据本发明优选实施例的雷达设备的发送器单元在脉冲雷达模式中的操作的图;
图6是例示根据本发明优选实施例的雷达设备的接收器单元在脉冲雷达模式中的操作的图;
图7是例示根据本发明优选实施例的雷达设备的变型例的框图;
图8是例示根据本发明优选实施例的雷达设备的发送器单元和接收器单元在脉冲雷达模式中的操作的变型例的图;
图9是例示根据本发明优选实施例的雷达设备的接收器单元在脉冲雷达模式中的操作的变型例的图;
图10是例示安装在根据本发明优选实施例的雷达设备中的信号处理软件的结构的框图;
图11是例示安装在根据本发明优选实施例的雷达设备中的控制软件的结构的另一变型例的框图;
图12是例示根据本发明优选实施例的雷达设备的变型例的原理示意图;
图13是例示根据本发明优选实施例的雷达设备的变型例的原理示意图;以及
图14是例示用于对根据本发明优选实施例的雷达设备中的操作模式进行切换的时分方法的原理示意图。

具体实施方式

以下参照附图对根据本发明的优选实施例进行详细说明。
图2是例示了根据本发明优选实施例的雷达设备的结构的框图。图3至6是例示该雷达设备的操作的示意图。
根据本优选实施例的雷达设备包括:发送器单元,其具有发送器高频FM调制振荡器13、发送器高频ASK切换电路14、短脉冲发生电路12、以及发送器天线15;接收器单元,其具有接收天线16、接收器高频门控电路17、第一混频器(mixer)18(第一频率转换器)、短脉冲发生电路19、可编程延迟电路20、带通滤波器21(第一带通滤波器)、第二混频器22(第二频率转换器)、以及差频带带通滤波器23(第二带通滤波器);以及控制和信号处理单元11,用于控制整个设备。
发送器单元的发送器高频FM调制振荡器13例如由其振荡频率从频率f0随输入控制电压而变化的VCO(压控振荡器)等构成,用于调频以输出其频率随着从控制和信号处理单元11输入的FM波形信号11b(例如三角波等)的电压波形而变化的发送器高频信号13a。
发送器高频ASK切换电路14通过接通和断开从发送器高频FM调制振荡器13输出并输出到发送器天线15的发送器高频信号13a,来进行调幅。即,短脉冲发生电路12发出控制脉冲12a(第一控制脉冲信号)并将产生的脉冲送到发送器高频ASK切换电路14,从而对发送器高频ASK切换电路14所进行的调幅的脉冲宽度进行控制。该控制脉冲12a具有与从控制和信号处理单元11输入的脉冲信号11a相同的周期,并且所设计的导通对截止脉冲宽度比(占空比)由该脉冲信号11a进行了同步。
同时,接收器单元的接收器高频门控电路17控制导通/截止操作(门控)以捕捉从接收天线16输入的接收高频波。从可编程延迟电路20和短脉冲发生电路19提供门控脉冲19a(第二控制脉冲信号)。即,可编程延迟电路20受来自控制和信号处理单元11的延迟控制信号11c的控制,将脉冲信号11a延迟为20a,并将经延迟的信号提供给短脉冲发生电路19和第二混频器22。短脉冲发生电路19产生门控脉冲19a,该门控脉冲19a具有与从可编程延迟电路20输出的矩形波信号20a相同的周期,以及不同的导通对截止的脉冲宽度比(占空比),并且短脉冲发生电路19控制接收器高频门控电路17的门控操作。
第一混频器18对经门控的接收高频信号和发送器高频信号13a进行混频,后者是发送器高频FM调制振荡器13的输出。于是第一混频器18产生IF(中波)信号18a。
带通滤波器21选择性地使来自IF信号18a的IF频带的信号通过,并将通过的信号输入到位于后继级的第二混频器22。第二混频器22对IF信号18a和矩形波信号20a进行混频,并且产生差频信号的信号分量22a,其包括诸如目标与雷达设备之间的相对速度和距离的信息。根据这种结构,即使由于接收器门控的滑动而使得IF信号的相位发生变化,也可以使IF信号和矩形波信号20a的频率和相位始终同步,并且可以始终将第二混频器的输出保持为差频信号的最大值。这是因为IF信号18a和矩形波信号20a的频率和相位是同步的。即,仅使用第二混频器的输出的I和Q分量中的I分量就可以获得差频信号的最大值。带通滤波器23选择性地使信号分量22a的频带通过,并将通过的分量输出给控制和信号处理单元11。
控制和信号处理单元11包括A/D(模数)转换器、DSP(数字信号处理器)、和微计算机等,并且具有执行计算(例如信号分量22a的IQ检测、FFT(快速傅立叶变换)、预定时间段中的绝对值求和、求平方和等)和向较高级的计算机系统输出检测结果信息26(例如目标的距离、相对速度等)的信号处理结果等功能。
以下说明根据此优选实施例的雷达设备的操作的一个示例。
在图2所示雷达设备中,在用于远程检测的FM-CW雷达模式中,从控制和信号处理单元11向发送器高频FM调制振荡器13(VCO)提供三角波作为FM波形信号11b,并选择FM-CW调制模式。输入到发送器高频ASK切换电路14(ASK)的控制脉冲12a的所有脉冲都被置为1,从而发送连续波。
即,如图3所示,从控制和信号处理单元11向短脉冲发生电路12输入其脉冲全部为1的脉冲信号11a,并且从短脉冲发生电路12向发送器高频ASK切换电路14输入连续为ON的控制脉冲12a。因此,从发送器高频ASK切换电路14向发送器天线15连续输出由位于前级的发送器高频FM调制振荡器13调频了的发送器高频信号13a。
同时,接收器高频门控电路17(Rgate)根据50%占空比的门控脉冲19a在导通和截止之间进行切换,以捕获接收器高频波,所述门控脉冲19a是通过可编程延迟电路20和短脉冲发生电路19从矩形波信号20a中产生的。
在由第一混频器18对从接收器高频门控电路17捕获的接收器高频信号和从位于发送器单元侧的发送器高频FM调制振荡器13输出的发送器高频信号13a进行混频后,接收器高频信号被转换为中波波段的IF信号18a。IF信号18a通过可使该信号通过的带通滤波器21,由第二混频器22将其与通过可编程延迟电路20的矩形波信号20a进行混频,并作为差频信号输入控制和信号处理单元11。在FM-CW雷达模式中,可编程延迟电路20的延迟时间在时间上是固定的,不需要改变。
在控制和信号处理单元11中,由A/D(模数转换器)将差频信号转换为数字数据,并且如图4所示,通过进行FFT(快速傅立叶变换)来确定峰值频率,并计算与目标的距离。
即,假定R是到目标的距离,V是目标与雷达的相对速度,c是光速,Δf是调频的调制宽度(modulation width),fm是调频的调制周期,fbu是差频信号的三角波的上升段的频率,fbd是差频信号的三角波的下降段的频率,fd是多普勒频率,fR是差频,则fR、fd、fbu和fbd之间的关系由以下方程(1)和(2)表示。
fbu=fR-fd    ......(1)
fbd=fR+fd    ......(2)
fR和fd分别由以下方程(3)和(4)表示:
fR=4Δf·fmRc......(3)
fd=2foVc......(4)
对于R解方程(3),如方程(5)所示,从而可以获得到目标的距离。
R=cfR4Δf·fm......(5)
此外,对于V解方程(4),从而可以获得目标的相对速度V。在方程(4)中,f0是CW模式的传输频率。距离R和相对速度V的信息作为检测结果信息26输出。
下面是由上述的接收器高频门控电路17对接收器高频信号进行开关的原因。即,如果由第一混频器18直接提取差频信号,则由于RF电路(例如第一混频器18和FM调制振荡器13等)的1/f噪声而使得近程的S/N比(信噪比)劣化,但是一旦第一混频器18的输出变为其中心频率等于接收器高频门控电路17的开关频率的中频,则其包括1/f噪声的低频就被带通滤波器21所截止,最终可以由I/Q检测器(第二混频器22)检测到不含1/f噪声的差频信号22a。之后,由控制和信号处理单元11对该差频信号进行A/D转换,如图4所示,执行FFT以确定峰值频率,并计算到目标的距离。
在用于近程检测的脉冲雷达模式中,如图5所示,从控制和信号处理单元11向发送器高频FM调制振荡器13(VCO)提供具有恒定DC值的FM波形信号11b,并且该信号被保持为未经调制的连续波(CW)。输入短脉冲发生电路12的脉冲信号11a的多个脉冲被实现为“1010”的重复脉冲,并且由电路12将该信号变为具有短脉冲宽度(短ON持续时间T2)的矩形波。而其短脉冲用于驱动发送器高频ASK切换电路14(ASK)。结果,向发送器天线15输出在T0时段中的T2持续时间内具有恒定频率的发送器高频信号13a。
在接收器单元的接收器高频门控电路17(Rgate)中,根据具有与发送器的脉冲宽度几乎相等的短脉冲(ON持续时间T2)的门控脉冲19a来对信号进行门控。此外,由可编程延迟电路20根据来自控制和信号处理单元11的指令来滑动门控脉冲19a的定时,并且仅当门控脉冲19a与发送器高频信号到目标的传播延迟时间相一致时,接收器高频信号才通过门控电路17。然后该信号通过第一混频器18、带通滤波器21、第二混频器22、以及带通滤波器23,并由控制和信号处理单元11进行A/D转换。接着,如图6所示,获得其间接收器信号连续的时间段(ON持续时间T2)中的信号电平的绝对值之和,通过使用延迟时间τR根据方程(6)来计算到目标的距离,并且将其结果作为检测结果信息26输出,其中所述和值在所述延迟时间τR达到峰值。
τR=2Rc......(6)
在图2所示的结构中,在FM-CW雷达模式中,可以将发送到发送器单元的发送器高频ASK切换电路14的控制脉冲12a实现为占空比为50%(ON持续时间T1/周期T0×100%=50%)的脉冲,12a和驱动接收器高频门控电路17(Rgate)的19a脉冲极性相反。
结果,当接收器单元接通时,发送器单元断开。因此,可以防止发送器高频信号从发送器单元通过雷达设备和天线的内部或者容纳该雷达设备的任意物体而传输到接收器单元。图7例示了根据该优选实施例的雷达设备的变型例。图7所示结构与图2所示结构的不同点在于,其还包括:与带通滤波器23(BPF2)并联设置的带通滤波器24(BPF3)(第三带通滤波器),该带通滤波器24对应于与带通滤波器23不同的差频带;以及开关25,用于在带通滤波器23和24的输出之间进行切换,并且用于将所述输出输入到控制和信号处理单元11。
在操作时,在用于远程检测的FM-CW雷达模式中,开关25与带通滤波器23(BPF2)相连,该带通滤波器23的高端截止频率是差频的最大值。以与上述图4中相似的方式来执行从接收器高频信号检测目标距离的过程。
与FM-CW雷达模式不同,通过如下方式构成用于近程检测的脉冲雷达模式中的发送器:对由如图8所示的周期为Tm(=1/fm)的三角波构成的FM波形信号11b进行调频(FM),并由发送器高频AKS切换电路14根据周期为T0并且ON持续时间为T2的控制脉冲12a对该信号进行调幅。作为发送波,进行FM和AM复合调制。对于FM,根据检测距离来控制FM调制频率和调制宽度,不考虑检测距离地使得接收器侧的差频恒定。从发送器天线15发射这种复合调制波。
同时,在脉冲雷达模式中进行接收时,由可编程延迟电路20根据来自控制和信号处理单元11的指令对门控脉冲19a的定时进行滑动控制,并且,仅当门控脉冲19a与发送器高频信号到目标的传播延迟时间相一致时,接收器高频信号才通过接收器高频门控电路17。第一混频器18的输出变为从图8底部算起的第二个波形,并且通过IF滤波器21和第二混频器22的信号变为图8最底下的波形。该信号的信号频谱集中在包括差频fb和多普勒频移的频率上。因此,由开关25使得该信号通过带通滤波器24(BPF3),从而截止了不希望的频谱(例如在信号频带之外的热噪声和无用的噪声)并且仅选择信号频谱并将其输出到控制和信号处理单元11。
此时,如图9所示,计算第m个滑动段(时间长度τs)和第(m+1)个滑动段(时间长度τs)中的信号电平的绝对值之和,所述第m个滑动段和第(m+1)个滑动段分别与利用FM波形信号11b的三角波进行调频的接收器差频信号的波形的上升段和下降段在时间上同步,并可以通过使用绝对值之和的峰值位置处的延迟时间τR,根据上面提供的方程(6)来获得到目标的距离R。
此外,为图9的段Tm/2(=1/2fm)获得fbu、fbd和fd,从而可以如上述图4地根据方程(4)和(5)获得目标的距离R和相对速度V。
即,可以根据对应于一对频率的上升段和下降段的一对(一次测量)差频信号来获得目标的距离R和相对速度V。
上述的说明涉及时间长度τs(该时间长度τs是进行1次滑动来计算信号电平的时间)与Tm/2的时间相等的情况。然而,这二者的定时是同步的,它们可以具有整数倍数或者整数因数的关系。
此外,在该优选实施例中,在执行脉冲雷达模式的操作时预先根据滑动的延迟时间来控制检测距离。因此,即使目标的检测距离发生变化,也如下地将差频控制为恒定。
假设fm是FM调制频率,Δf是FM调制的调制宽度,c是光速,在通过使用三角波进行的FM波形信号11b的FM调制中,距离R和差频fb之间的关系如下。
fb=4fm·ΔfRc......(7)
在该优选实施例的脉冲雷达模式中,根据来自控制和信号处理单元11的延迟控制信号11c,通过可编程延迟电路20对接收门控导通的时间进行延迟控制。因此,可以进行检测时的距离R与该延迟时间形成一一对应关系,并且顺序地控制距离R。这里,假定即使距离变化时也希望使其恒定的差频为fb0,
fmΔf=fb0c4R......(8)
此外,检测距离R和接收器高频门控电路17中的接收器高频信号的门控的延迟时间τ之间的关系如下:
τ=2Rc......(9)
如果将方程(9)中的R代入方程(8),则获得如下方程。
fmΔf=fb0c4R=fb02τ......(10)
最终,如果fmΔf根据用于对接收器高频信号进行门控的延迟时间τ的变化而随着方程(10)所示的关系而变化,则差频变为恒定值fb0。此外,用于对接收器高频信号进行门控的延迟时间τ是从发送器高频信号的脉冲发出的时刻到接收器高频门控电路17的门控导通的时刻之间的时间差。
图10是例示该优选实施例中安装在控制和信号处理单元11中的信号处理软件48的构成的框图。
在用于近程检测的脉冲雷达模式中,该信号处理软件48在信号处理例程42中将差频信号切换到脉冲模式的信号处理系统,并进入段绝对值求和例程43,其中差频信号在控制和信号处理单元11中被AD转换单元41进行了A/D转换。由峰值确定例程45来确定各个滑动时间的绝对值和电平的局部最大值。然后,在距离/速度/检测电平计算例程47中,计算根据当时滑动的延迟时间计算出的到目标的距离R、距离对时间变化的相对速度V、以及作为检测电平的通过将绝对值和电平除以段时间而获得的值,并将它们作为检测结果信息26向外部输出。
在用于远程检测的FM-CW雷达模式中,在信号处理例程42中将由AD转换单元41进行了A/D转换的差频信号切换到FM-CW模式中的信号处理系统,并且软件进入段FFT例程44。在峰值确定/配对例程46中,根据对FM波形信号11b的三角波的各个上升段和下降段进行FFT而获得的各频率的电平值来获得差频信号的局部最大值,确定(配对)要配对的两个差频信号,并通过距离/速度/检测电平计算例程47向外输出到目标的距离R、相对速度V、以及接收信号电平作为检测结果信息26。
图11是例示该优选实施例中安装在控制和信号处理单元11中的信号处理软件的构成的变型例的框图。
图11中所示的信号处理软件58与上述图10所示的信号处理软件48的不同点在于,在用于近距检测的脉冲雷达模式中,在信号电平计算例程53中对每个滑动都进行段绝对值求和(图9所示的过程)以及FFT(图4所示的过程),并且在峰值确定/配对例程55中进行对应于三角波的上升段和下降段的峰值确定和差频信号配对。
之后,在距离/速度/检测电平计算例程57中,根据表示段绝对值和的局部最大值的滑动延迟时间(τR)获得目标距离,根据从局部最大值滑动时对上升段和下降段进行FFT所得到的频率对的频率差的1/2来获得多普勒频率fd,从而可以计算目标的相对速度V。
即,利用与一对频率的上升段和下降段对应的该对(一次测量)接收器信号(差频信号),可以快速获得目标的距离R和相对速度V。
用于远程检测的FM-CW雷达模式的操作和上述图10的操作相同。
图12是例示该优选实施例的变型例的原理示意图。在图12所示的变型例示例中,提供了具有不同特性的多种类型的天线,对其进行切换,将其用作发送器天线61和62以及接收器天线63和64,并且将其与雷达设备10的发送器单元和接收器单元相连接。
即,在用于近程检测的脉冲雷达模式中,通过开关65将从发送器单元输出的发送器信号输出连接到宽波束天线(wide beam antenna)61(第二天线),宽波束天线61具有宽波束和低增益特性,而通过开关66将接收器信号输出连接到具有宽波束和低增益特性的宽波束天线63(第二天线)。
同时,在用于远程检测的FM-CW雷达模式中,通过开关65将发送器信号输出连接到具有窄波束和高增益特性的窄波束天线(narrow beamantenna)62(第一天线),而通过开关66将接收器信号输出连接到具有窄波束和高增益特性的窄波束天线64(第一天线)。
通过这种天线连接的切换操作,在用于检测近程目标的脉冲雷达模式中,可以通过对发送器和接收器使用宽波束天线61和宽波束天线63来检测宽且近的范围。或者,在用于检测远程目标的FM-CW雷达模式中,可以通过对发送器和接收器使用窄波束天线62和窄波束天线64来检测远、窄且受限范围内的目标。
上述的远程检测和近程检测、以及宽波束天线和窄波束天线的组合可以与上述示例相反。或者,可以将固定于发送器或者接收器侧上的天线与另一仅进行切换的天线进行组合。即,可以将天线组合设置为根据由雷达设备中包括的控制和信号处理单元11中安装的控制软件的使用而变化。
图13是例示该优选实施例的变型例的原理示意图。在图13所示的该变型例示例中,整个雷达设备10例如安装在水平方向的扫描设备70中,所述水平方向扫描设备70例如由用于在水平面上的预定角度的范围内摆动(扫描)的电机构成,并且在扫描设备70进行摆动(扫描)的操作中,与雷达波束71、72和73一样,将使用雷达设备10的雷达波束的检测范围控制为在水平方向随时间变化。由雷达设备10的控制和信号处理单元11来控制水平方向扫描设备70的操作。
结果,如以上在前述变形例中所述,雷达设备10能够针对各摆动角度来检测目标的距离、速度、以及检测电平。因此,目标的水平方向角度由表示摆动角度的局部检测电平的最大值的扫描角度来确定,并可以将目标的距离、速度、水平方向角度、以及检测电平输出为检测结果信息26。
图14是例示用于对操作模式进行切换的时间变化方法的原理示意图。
在该图中,操作时间域81是在FM-CW雷达模式进行远程检测的时间段。在进行该远程检测操作时,通过使用位于发送器侧和接收器侧的窄波束天线62和64使由天线发送/接收的波束变窄,使水平方向扫描设备70执行水平方向的扫描操作,还高精度地检测水平方向中的角度。由于扫描在此时进行,所以一个周期中的检测时间受到扫描时间的限制。
操作时间域82是在脉冲雷达模式进行近程检测的时间段。在进行该近程操作时,通过使用位于发送器侧和接收器侧的宽波束天线61和63使得由天线发送/接收的波束加宽,不进行在水平方向的扫描,在进行远程操作时不采用FFT,仅采用信号幅度求和。结果,可以快速检测到波束内的目标的距离。
操作时间域81和82的和例如为几十到几百毫秒,并且可以以该周期反复地切换时间域。
例如,如果通过将根据本优选实施例的雷达设备10安装在汽车等的前部来构成前向监视,则可以以FM-CW雷达模式中的远程监视来辅助ACC(自动巡航控制),并可以用脉冲雷达模式中的近程监视来辅助在交通堵塞时极低速缓行/停止时对停止和前进的控制,或者恰在将要碰撞之前的控制。
此外,如果通过将根据本优选实施例的雷达设备10安装在汽车的后部来构成后向监视,则可以通过使用脉冲雷达模式中的近程监视来以所谓的BUA(倒退辅助)辅助汽车进入停车场的停车操作。
如上所述,一个雷达设备10可以用于多种汽车控制。
注意,本发明不限于在上述优选实施例中例示的结构。本发明当然可以在不脱离本发明的要旨的范围内进行多种变化。
根据本发明,可以提供作为低成本的一个设备的能够检测从远程到近程的宽范围内的目标的雷达设备。
本发明根据专利法实施细则第42条提出,是申请日为2005年1月19日、名称为“雷达设备和雷达设备控制方法”的第200510002719.X号中国专利申请的分案申请。