混合动力车用驱动装置转让专利

申请号 : CN200680018656.X

文献号 : CN101184645B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 野村晋一山口康夫山下贡犬塚武

申请人 : 爱信艾达株式会社

摘要 :

本发明提供一种混合动力车用驱动装置,在具有2个电动机的构成中,能缩小发动机侧电动机的转子和定子之间的空气间隙,能改善电动机的性能,缩小尺寸。具有在接合状态下连接发动机输出轴(2)和变速器输入轴(8)之间,在分离状态下解除发动机输出轴(2)和变速器输入轴(8)之间连接的离合器(7);在离合器(7)的分离状态下能够向发动机输出轴(2)传递驱动力的第一电动机(MG1);以及在离合器(7)的分离状态下能够向变速器输入轴(8)传递驱动力的第二电动机(MG2),第一电动机(MG1)通过抑制发动机输出轴(2)径向的振动的抑制径向振动机构(3),与发动机输出轴(8)连接。

权利要求 :

1.一种混合动力车用驱动装置,具备:

在发动机输出轴和变速器输入轴之间进行驱动力的传递或者切断的离合器;

转子连接于所述离合器的所述发动机输出轴侧的第一电动机;以及转子连接于所述离合器的所述变速器输入轴侧的第二电动机,其特征在于,所述第一电动机,借助抑制所述发动机输出轴的径向振动的抑制径向振动机构,连接于所述发动机输出轴,具备:将第一电动机的转子以及离合器的发动机输出轴侧部件以一体旋转的方式予以固定的中间轴,中间轴借助径向振动抑制机构而与发动机的输出轴连接,

在中间轴的传动下位侧的内部,可相对旋转地嵌合有变速器输入轴,中间轴在第一电动机的转子及离合器的发动机输出轴侧部件之间的外周面上,借助轴承可相对旋转地支承有离合器的变速器输入轴侧部件及第二电动机的转子。

2.如权利要求1所述的混合动力车用驱动装置,其特征在于,所述抑制径向振动机构,是允许径向弯曲的板状体,并具有传动盘,其轴心侧连接所述发动机输出轴和所述第一电动机转子中的一者,其外周侧连接所述发动机输出轴和所述第一电动机转子中的另一者。

3.如权利要求2所述的混合动力车用驱动装置,其特征在于,所述第一电动机的转子,借助飞轮连接于所述传动盘。

4.如权利要求1所述的混合动力车用驱动装置,其特征在于,所述第一电动机的转子,借助可吸收旋转方向振动的减振器连接于所述发动机输出轴。

5.如权利要求4所述的混合动力车用驱动装置,其特征在于,所述中间轴连接于所述离合器和所述发动机输出轴之间,所述第一电动机的转子及所述减振器各自独立地花键卡合于所述中间轴。

6.如权利要求4所述的混合动力车用驱动装置,其特征在于,所述中间轴连接于所述离合器和所述发动机输出轴之间,所述第一电动机的转子及所述减振器通过连结部件连结成一体,所述连结部件花键卡合于所述中间轴。

说明书 :

技术领域

本发明涉及具备2个电动机的混合动力车用驱动装置。

背景技术

作为与混合动力车用驱动装置相关的技术,例如在下述专利文献1中公开了如图5中所示那样构成的混合动力车用驱动装置。该混合动力车用驱动装置,沿着发动机101的动力传递方向,按照发动机101、发动机输出轴102、第一电动机103、扭振减振器104、离合器105、第二电动机106、变速器输入轴107以及变速器108的顺序连接而构成。这里,变速器输入轴107被配置于发动机输出轴102的轴向。离合器105被与发动机输出轴102及变速器输入轴107的旋转中心线109同轴地配置,并且可传递转矩地连接这2个轴。第一电动机103具有与发动机输出轴102连接的转子103a及定子103b,并且与所述旋转中心线109同轴地配置。第二电动机106具有与变速器输入轴107连接的转子106a及定子106b,并且与所述旋转中心线109同轴地配置。扭振减振器104以旋转固定状态(一体地旋转的状态)连接发动机输出轴102与离合器105的发动机侧(初级侧)。而且,第一电动机103的转子103a,在发动机101的动力传递方向且比扭振减振器104靠近上位侧,可传递转矩地连接于发动机输出轴102。
该混合动力车用驱动装置的构成的目的是以减小必要的设置空间来实现系统整体的最佳安装。
专利文献1:美国专利第6862887号公报(第4页、第1图)
然而,在上述专利文献1记载的混合动力车用驱动装置构成中,第一电动机103的转子103a被直接连接于发动机输出轴102。因此,将发生下述现象,即由发动机101曲轴的旋转所产生的径向振动被传递至第一电动机103的转子103a,因而使转子103a在径向振动的现象。所以,为防止第一电动机103的转子103a与定子103b的碰撞,就必须将转子103a和定子103b之间的空气间隙设计较大。因此,存在电动机的性能降低或者因为需增大电动机的尺寸而使对车辆的搭载性能恶化等的问题。

发明内容

本发明是鉴于上述问题而完成的,其目的在于提供这样一种混合动力车用驱动装置,即在具有2个电动机的构成中,可以缩小发动机侧的电动机的转子与定子之间的空气间隙,可以提高电动机的性能,以及缩小尺寸。
用于实现上述目的的本发明的混合动力车用驱动装置的构成特征如下所述,其具备:在发动机输出轴和变速器输入轴之间进行驱动力的传递或者切断的离合器;转子连接于所述离合器的所述发动机输出轴侧的第一电动机;以及转子连接于所述离合器的所述变速器输入轴侧的第二电动机,所述第一电动机,借助抑制所述发动机输出轴的径向振动的抑制径向振动机构连接于所述发动机输出轴。
其中,本申请中的“连接”是包括可传递驱动力地连结的所有状态(驱动连结状态),不仅包括部件之间的直接连接,并且还包括部件之间借助1或2个以上部件的间接连接。另外,间接连接还包括通过能够在部件之间借助离合器等可进行切断动作的部件的连接。
另外,本申请中的“电动机”作为下述这样的概念使用,即包括由电力产生旋转驱动力的马达;由旋转驱动力产生电力的发电机(generator);以及根据需要实现马达以及发电机双方的功能的马达/发电机中的任意一者。
根据该特征构成,可以通过所述抑制径向振动机构抑制由发动机曲轴的旋转产生的径向振动向所述第一电动机转子的传递。由此,可以抑制所述第一电动机的转子在径向上的振动,可以将所述第一电动机的转子和定子之间的空气间隙设计较小。所以,可以提高电动机的性能,以及缩小尺寸。
这里,可以采用这样的构成,即所述抑制径向振动机构,是允许径向的弯曲的板状体,具有传动盘,其轴心侧连接所述发动机输出轴和所述第一电动机的转子中的一者,其外周侧连接所述发动机输出轴和所述第一电动机的转子中的另一者。
根据这样的构成,通过所述传动盘径向的弯曲,可以吸收并抑制由发动机曲轴的旋转产生的径向振动。另外,因为是仅仅在所述第一电动机和所述发动机输出轴之间设置板状体的传动盘的简易构成,故可以防止装置的大型化。
另外,理想地是采用这样的构成,即所述第一电动机的转子借助飞轮连接于所述传动盘。
由此,可以使所述第一电动机的转子侧部分的旋转相对所述传动盘稳定,可以进一步抑制所述第一电动机转子的径向振动。
另外,理想地是采用这样的构成,即所述第一电动机的转子,借助可吸收旋转方向振动的减振器连接于所述发动机输出轴。
根据这样的构成,可以通过所述减振器抑制发动机输出轴旋转方向的振动向所述第一电动机的转子传递。所以,所述第一电动机转子的旋转稳定,所述第一电动机的控制变得容易。
另外,理想地是采用这样的构成,即具备连接于所述离合器和所述发动机输出轴之间的中间轴,所述第一电动机的转子及所述减振器各自独立地花键卡合于所述中间轴。
利用这样的构成,由于可依次地将所述第一电动机的转子及所述减振器组装于所述中间轴,故具有高组装性的优点。
或者,理想地也可是采用这样的构成,即具备连接于所述离合器和所述发动机输出轴之间的中间轴,所述第一电动机的转子及所述减振器通过连结部件连结成一体,所述连结部件花键卡合于所述中间轴。
利用这样的构成,由于将所述第一电动机的转子与所述减振器通过连结部件作为一体地花键卡合于所述中间轴,与将所述第一电动机的转子与所述减振器各自独立地卡合于所述中间轴的情况相比较,可以缩短所述中间轴的轴向卡合部的长度。所以,还可以缩短装置整体的轴向长度,实现装置的小型化。

附图说明

图1是表示本发明实施方式的混合动力车用驱动装置的概略构成的说明图。
图2是表示本发明第一实施方式中图1的A部的具体构成的剖视图。
图3是表示图1的B部的具体构成的分解立体图。
图4是表示本发明第二实施方式中图1的A部的具体构成的剖视图。
图5是表示背景技术涉及的混合动力车用驱动装置1的概略构成的说明图。
符号说明:1...混合动力车用驱动装置;2...发动机输出轴;3...主动盘(抑制径向振动机构、传动盘);4...飞轮;5...减振器;6...中间轴;7...离合器;8...变速器输入轴;23...连结部件;MG1...第一马达/发电机MG1(第一电动机);R1...第一马达/发电机的转子;S1...第一马达/发电机的定子;MG2...第二马达/发电机MG2(第二电动机);R2...第二马达/发电机的转子;S2...第二马达/发电机的定子。

具体实施方式

第一实施方式:
下面,将基于附图对本发明第一实施方式进行说明。
图1是表示本实施方式涉及的混合动力车用驱动装置1的概略构成的说明图。图2是表示图1的A部的具体构成的剖视图。图3是表示图1的B部的具体构成的分解立体图。
如图1所示,混合动力车用驱动装置1,在发动机E和自动变速器AT之间具有2个马达/发电机MG1、MG2。而且,混合动力车用驱动装置1,沿着来自由发动机E驱动的发动机输出轴2的驱动力的传递路径,按照主动盘3、具备飞轮4的减振器5、中间轴6及第一马达/发电机MG1、离合器7、第二马达/发电机MG2、变速器输入轴8的顺序配置。变速器输入轴8的驱动旋转由自动变速器AT进行变速,借助差动齿轮9传递至驱动轮10。下面,在沿驱动力的传递路径的方向上,将从发动机E向自动变速器AT侧称为传动下位侧,将从自动变速器AT向发动机E侧称为传动上位侧。另外,将离合器7的发动机输出轴2侧(传动上位侧)的部件称为初级侧部件7a,将变速器输入轴8侧(传动下位侧)的部件称为次级侧部件7b。
另外,关于结构性配置,如图2所示从发动机E侧起在同一轴上依次配置有输出轴2、中间轴6及变速器输入轴8。另外,在这些轴的周围,从发动机E侧依次配置有主动盘3、具备飞轮4的减振器5、第一马达/发电机MG1、第二马达/发电机MG2及离合器7。
于是,通过进行下述的控制,即切换离合器7的接合状态和分离状态,与其对应地切换发动机E的工作状态和停止状态,把第一马达/发电机MG1及第二马达/发电机MG2的动作分别切换为马达或者发电机的控制,由此,可以构成以共用发动机E和马达/发电机MG1、MG2来高效地行驶的混合动力车用驱动装置。
在本实施方式中,第一马达/发电机MG1构成本发明中的“第一电动机”,第二马达/发电机MG2构成本发明中的“第二电动机”。下面,将对本实施方式涉及的混合动力车用驱动装置1的各部分构成具体地进行说明。
1.发动机E及发动机输出轴2
如图1所示,发动机E是汽油发动机、柴油发动机等的内燃机,其是这样的构成,即通过曲轴Eb将在未图示气缸内作往复运动的活塞Ea的运动变换为旋转运动,以旋转驱动发动机输出轴2的构成。这里,发动机输出轴2被直接连接于曲轴Eb。所以,因曲轴的旋转所产生的径向振动(擂槌振动)被传递至发动机输出轴2。其中,发动机输出轴2既可与曲轴Eb为一体结构,也可为分体结构。发动机输出轴2在传动下位侧于连接主动盘3。
2.主动盘3
主动盘3是用于将发动机输出轴2的驱动力(驱动旋转)向传动下位侧的减振器5传递的部件。如图2及图3所示,主动盘3是圆盘状体,轴心侧连接有发动机输出轴2,外周侧借助减振器5及中间轴6连接有第一马达/发电机MG1的转子R1。具体就是,在主动盘3的轴心侧部分,沿着周向设置有多个轴心侧通孔3a。而且,插通于轴心侧通孔3a的多个螺栓11a,旋合于形成在发动机输出轴2的传动下位侧端部的内螺纹部(省略图示)。由此,将发动机输出轴2结合于主动盘3的轴心侧部分的传动下位侧面。同样地,在主动盘3的外周侧部分,沿着周向设置有多个外周侧通孔3b。而且,插通于外周侧通孔3b的多个螺栓11b,旋合于形成在减振器5所具备的飞轮4的外周部分上的内螺纹部4a。由此,将减振器5结合于主动盘3的外周侧部分的传动下位侧面。减振器5的传动下位侧,借助中间轴6连接有第一马达/发电机MG1的转子R1。所以,主动盘3的外周侧部分借助减振器5及中间轴6连接有第一马达/发电机MG1的转子R1。
主动盘3构成为允许径向的弯曲。这里,通过将主动盘3制成板状体,允许其厚度方向的变形,使得变形负荷向其厚度方向释放,由此允许由与发动机输出轴2结合的轴心侧部分的径向振动所产生的径向弯曲。由此吸收发动机输出轴2的径向振动(擂槌振动),抑制该振动向传动下位侧传递。另一方面,将主动盘3这样构成,使其周向的弯曲程度小,将来自发动机输出轴2的驱动力(驱动旋转)向传动下位侧的减振器5可靠地传递。另外,这里主动盘3是在径向中间部分设有级差的带阶梯形状。
在本实施方式中,该主动盘3相当于本发明中“传动盘”,构成“抑制径向振动机构”。
3.具备飞轮4的减振器5
减振器5是用于吸收借助主动盘3传递的发动机输出轴2的旋转方向的振动,即旋转变动的装置。如图2及图3所示,减振器5具有从动盘12、飞轮4、减振弹簧13以及弹簧罩14。从动盘12是作为减振器5主体并具有刚性的圆盘状体,借助设置于轴心侧并沿轴向延伸的轮毂12a卡合于中间轴6的外周。在轮毂12a的内周面及中间轴6的外周面形成有花键,并互相花键卡合。飞轮4结合于主动盘3的外周部分,配置在从动盘12和主动盘3之间。这里,飞轮4可相对于从动盘12进行相对旋转。
减振弹簧13,其一端部连结有飞轮4,另一端部连结有从动盘12,并且被可伸缩地配置在飞轮4和从动盘12之间。所以,在飞轮4和从动盘12之间,可借助减振弹簧13传递驱动力(驱动旋转)。此时,随着减振弹簧13的伸缩,可以允许飞轮4和从动盘12的相对旋转。这样,由减振弹簧13的伸缩所产生的作用力,作用向抑制动盘12和飞轮4的相对旋转角度变化的方向,可以抑制发动机输出轴2的旋转方向的振动。弹簧罩14以供从动盘12插入地与飞轮4相向配置,是覆盖减振弹簧13和从动盘12外周附近的罩。以将其外周端部与飞轮4一体地固定来设置该弹簧罩14。
4.中间轴6
如图1所示,中间轴6是用于连接发动机输出轴2和离合器7的初级侧部件7a之间的轴,如图2所示,与发动机输出轴2及变速器输入轴8配置在同一轴上。在中间轴6上,从传动上位侧依次卡合有减振器5的从动盘12、第一马达/发电机MG1的转子R1、离合器7的初级侧部件7a。这里,从动盘12及第一马达/发电机MG1的转子R1,各自独立地花键卡合于形成在中间轴6外周面上的花键。通过这样地卡合,可以将第一马达/发电机MG1的转子R1及减振器5的从动盘12依次地组装在中间轴6上,从而使组装性提高。离合器7的初级侧部件7a以与中间轴6一体旋转的方式设置于中间轴6的传动下位侧端部的外周。另外,中间轴6在第一马达/发电机MG1的转子R1及离合器7的初级侧部件7a之间的外周面上,借助轴承15可相对中间轴6旋转地支承有离合器7的次级侧部件7b(后述的离合器外壳20的圆筒部20a)及第二马达/发电机MG2的转子R2。在中间轴6的传动下位侧的内部,可相对旋转地嵌合有变速器输入轴8。另外,在中间轴6上,形成有从嵌合中间轴6的变速器输入轴8的部分沿径向直至外周面贯通的中间轴连通油路6a,以将沿轴向贯通变速器输入轴8的轴心部的轴心油路8a与离合器7的油压室7c两者连通。
5.第一马达/发电机MG1
第一马达/发电机MG1,由无刷DC电机等构成,接受来自未图示电池的电力供给而旋转驱动中间轴6,或者由中间轴6旋转驱动而进行发电。第一马达/发电机MG1具有转子R1和定子S1。转子R1具有嵌埋有永久磁铁的积层板R1a、和支承该积层板R1a的转子支承部R1b。转子支承部R1b借助设置在轴心侧并且沿轴向延伸的轮毂R1c,卡合于从动盘12的轮毂12a的传动下位侧的中间轴6的外周。在轮毂R1c的内周面及中间轴6的外周面形成有花键,并且相互花键卡合。定子S1具有以相对转子R1的积层板R1a具有很小的空气间隙g1的方式对置地配置的定子铁心S1a、和卷绕在该定子铁心S1a周围的定子线圈S1b。定子铁心S1a固定于覆盖第一马达/发电机MG1及第二马达/发电机MG2等的外周的外罩16。
如上所述,第一马达/发电机MG1的转子R1借助中间轴6连接于离合器7的初级侧部件7a。另外,该转子R1借助中间轴6、减振器5及减振器5所具备的飞轮4连接于主动盘3,进而,借助该主动盘3连接于发动机输出轴2。所以,在离合器7的分离状态下,该转子R1被连接为可以借助中间轴6、减振器5及主动盘3,与发动机输出轴2之间传递驱动力。
6.离合器7
离合器7是在发动机输出轴2和变速器输入轴8之间进行驱动力(驱动旋转)的传递或切断的装置。这里,如图2所示,离合器7是由相互交替地配置有多张离合器从动盘19及离合器摩擦片21的湿式多片离合器构成的。而且,离合器7收容在第二马达/发电机MG2的转子R2的径向内侧而配置。该离合器的构成可分为:设置在传动上位侧并与中间轴6一体旋转的初级侧部件7a、和设置在传动下位侧与第二马达/发电机MG2的转子R2及变速器输入轴8一体旋转的次级侧部件7b。
初级侧部件7a具有以下部件:即从中间轴6的外周面向径向外侧延伸出的圆盘状支承板17、与该支承板17对置地配置并可利用油压作用沿中间轴6的轴向滑动地设置的活塞18、以及以与该活塞18一体旋转地而被支承的多张离合器从动盘19。这里,活塞18的径向截面(图2中所示的截面)为近似“コ”字形的环状部件,并且其具有与中间轴6外周面平行的圆筒形内周面及外周面以及与支承板17平行的支承面。再者,活塞18的内周面可滑动地嵌合于中间轴6的外周面,活塞18的外周面可滑动地嵌合于支承板17的外周边缘,与支承板17之间形成有油压室7c。通过该活塞18沿着中间轴6的轴向滑动,由此可以多张离合器从动盘19与多张离合器摩擦片21相接或分离,来将离合器7接合或分离。
次级侧部件7b具有以下部件:即以围着初级侧部件7a的周围的方式形成的离合器外壳20、以一体地旋转的方式支承于该离合器外壳20的内周面并分别插入到多张离合器从动盘19之间的多张离合器摩擦片21、以及与离合器外壳20一体地固定并与变速器输入轴8的外周进行花键卡合的输出套筒22。这里,离合器外壳20在变速器输入轴8侧的端部通过焊接等方式一体地固定于输出套筒22。所以,离合器外壳20与变速器输入轴8一体地旋转。另外,离合器外壳20在发动机输出轴2侧,具有与中间轴6的外周面平行地延伸出来的圆筒部20a。借助轴承15可以相对中间轴6的外周面旋转地支承该圆筒部20a。在圆筒部20a的外周面上嵌合并固定有第二马达/发电机MG2的转子R2的转子支承部R2b。所以,第二马达/发电机MG2的转子R2与离合器外壳20及变速器输入轴8一体地旋转。另外,输出套筒22形成有套筒连通油路22a,其使沿轴向贯通变速器输入轴8的外周附近的外周油路8b和离合器外壳20内连通。
离合器7通过第一油路W1和第二油路W2,与未图示的油泵连通,第一油路W1由变速器输入轴8的轴心油路8a及中间轴6的中间轴连通油路6a构成,第二油路W2由变速器输入轴8的外周油路8b及输出套筒22的套筒连通油路22a构成。于是,这些第一油路W1和第二油路W2构成循环油路,可以从一方向离合器外壳20内供给油,而从另一方排出。由此,控制活塞18的位置来进行离合器的接合或分离。这里,离合器7的初级侧部件7a,借助中间轴6、减振器5及主动盘3连接于发动机输出轴2,并且离合器7的次级侧部件7b连接于变速器输入轴8。所以,离合器7,在接合状态下连接发动机输出轴2与变速器输入轴8,在分离状态下解除发动机输出轴2与变速器输入轴8的连接。
7.第二马达/发电机MG2
第二马达/发电机MG2由无刷DC电机等构成,接受来自未图示的电池的电力供给旋转驱动变速器输入轴8,或者由变速器输入轴8旋转驱动而进行发电。第二马达/发电机MG2具有转子R2和定子S2。转子R2具有嵌埋有永久磁铁的积层板R2a、和支承该积层板R2a的转子支承部R2b。转子支承部R2b借助设置在轴心侧沿轴向向发动机输出轴2侧延伸的近似圆筒形的轮毂R2c,与离合器外壳20的圆筒部20a的外周面嵌合而一体地固定。轮毂R2c的外周面借助轴承25并由支承部件26可相对旋转地支承。支承部件26和定子S2一同一体地支承在壳体16上,形成为从那里沿径向内侧延伸出的圆盘状。定子S2具有以相对转子R2的积层板R2a具有很小的空气间隙g2的方式对置地配置的定子铁心S2a、和卷绕在该定子铁心S2a周围的定子线圈S2b。定子铁心S2a固定于覆盖第一马达/发电机MG1及第二马达/发电机MG2等的外周的壳体16。
如上所述,第二马达/发电机MG2的转子R2,在离合器外壳20的圆筒部20a处,连接于离合器7的次级侧部件7b。另外,该转子R2借助构成离合器7的次级侧部件7b的离合器外壳20及输出套筒22连接于变速器输入轴8。所以,该转子R2被连接成可在离合器7的分离状态下与变速器输入轴8之间传递驱动力。
8.自动变速器AT及变速器输入轴8
如图1所示,变速器输入轴8是自动变速器AT的输入轴,可以传递来自发动机E、马达/发电机MG1、MG2的驱动力(驱动旋转)。这里省略关于自动变速器AT的详细构成的说明,可以使用公知的各种自动变速机构。因此,可以使用例如利用了游星齿轮机构的有级自动变速器、或带式CVT(Continuously Variable Transmission)等的无级变速机构等。
根据以上的构成,即便是在发动机E工作状态下发动机输出轴2在径向发生振动(擂槌振动)的情况下,主动盘3在径向弯曲以吸收径向的振动。因此,可以抑制发动机输出轴2在径向的振动向传动下位侧的第一马达/发电机MG1的转子R1的传递。所以,可以缩小第一马达/发电机MG1的转子R1与定子S1之间的空气间隙g1。由此,可以实现第一马达/发电机MG1的性能提高或者同一性能下的小尺寸化。另外,由于主动盘3是圆盘状的简易构成,故可以防止混合动力车用驱动装置1的整体的大型化。
另一方面,由于主动盘3在周向的弯曲程度小,故可以将来自发动机输出轴2的驱动力(驱动旋转)可靠地向传动下位侧传递。另外,此时由于传动盘3的传动下位侧设置有减振器5,所以发动机输出轴2的旋转方向的振动被减振器5吸收。所以,可以抑制发动机输出轴2的旋转方向的振动向第一马达/发电机MG1的转子R1的传递,可以简化第一马达/发电机MG1的控制。另外,由于减振器5所具备的飞轮4,具有旋转方向的惯性,所以可使传动下位侧的旋转相对主动盘3稳定。因此,可以进一步抑制发动机输出轴2径向、旋转方向的振动向传动下位侧的第一马达/发电机MG1的转子R1传递的状况。
第二实施方式
下面,将对本发明第二实施方式的混合动力车用驱动装置1进行说明。本实施方式混合动力车用驱动装置1的概略构成与上述第一实施方式同样。图4是表示本实施方式混合动力车用驱动装置1中的、图1的A部的具体构成的剖视图。如该图所示,本实施方式混合动力车用驱动装置1,在以下方面与上述第一实施方式不同,即利用连结部件23一体地连结第一马达/发电机MG1的转子R1及减振器5,该连结部件23花键卡合于中间轴6。就其他构成而言,可以制成与上述第一实施方式同样。
在本实施方式中,减振器5的从动盘12,取代上述第一实施方式中的轮毂12a,具备与第一马达/发电机MG1的转子支承部R1b结合的结合部12b。该结合部12b具备与转子支承部R1b平行的面部,通过铆钉等结合部件24结合于转子支承部R1b的侧面。第一马达/发电机MG1的转子支承部R1b与上述第一实施方式同样地,借助设置在轴心侧的沿轴向延伸的轮毂R1c花键卡合于中间轴6的外周。另外,这里是,从动盘12的结合部12b相对于与减振弹簧13结合的外周部12c,偏位于第一马达/发电机MG1侧而形成的。
在本实施方式中,结合部件24、从动盘12的结合部12b以及第一马达/发电机MG1的转子支承部R1b构成本发明中的“连结部件23”。
根据以上的构成,可以利用连结部件23将第一马达/发电机MG1的转子R1和减振器5的从动盘12两者作为一体地花键卡合于中间轴6。所以,与如上述第一实施方式那样将第一马达/发电机MG1的转子R1和减振器5的从动盘12各自独立地卡合于中间轴6的情况比较,可以缩短中间轴6轴向的卡合部的长度。所以,还可以缩短混合动力车用驱动装置1整体的轴向长度,实现装置的小型化。
其他实施方式
(1)在上述各实施方式中说明了以下构成,即在发动机输出轴2的传动下位侧连接有作为传动盘的主动盘3,在该主动盘3的传动下位侧连接有具备飞轮4的减振器5的构成。但是,本发明的适用范围不限于此。例如,还可以交换传动盘和减振器5的配置,在发动机输出轴2的传动下位侧连接有减振器5,在该减振器5的传动下位侧连接有传动盘的构成,这也是优选实施方式之一。在这样的情况下,可将传动盘本身的构成形成与上述第一实施方式中的主动盘3同样。但此时,传动盘上,其外周侧借助减振器5(及飞轮4)连接有发动机输出轴2,轴心侧连接有中间轴6。所以,此时,传动盘成为被驱动侧的从动盘,在上述第一实施方式中,作为减振器5的从动盘12的部件,成为驱动侧的主动盘。
(2)另外,抑制径向振动机构的构成,不限于上述各实施方式中所示的传动盘。例如,由刚性部件构成上述第一实施方式中的主动盘3,在该主动盘3和发动机输出轴2之间,作为抑制径向振动机构设置欧氏联轴器(Oldham Coupling)等可吸收径向振动的联轴器,这也是优选实施方式之一。另外,可以将这样的联轴器的位置,设为从发动机输出轴2到第一马达/发电机MG1的转子R1之间任意的位置。
本发明还可适当地利用于具有2个电动机的混合动力车用驱动装置。