一种半导体器件封装结构转让专利

申请号 : CN200810014605.0

文献号 : CN101231982B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 孟博苏云荣

申请人 : 济南晶恒有限责任公司

摘要 :

本发明涉及一种半导体器件封装结构,尤其是涉及一种小型半导体器件的封装结构。其包括第一引线框架、第二引线框架和与两者电性连接的晶片,以及一体式结构的封装壳体。所述晶片夹在所述引线框架之间,其中位于晶片下面的第二引线框架的下表面暴露于所述封装壳体外面;所述第二引线框架的下表面与所述封装壳体的下表面的夹角呈3°~7°。本发明结构紧凑,制造成本低,散热效果好,有效提高了单位功率密度。

权利要求 :

1.一种半导体器件封装结构,包括第一引线框架(1)、第二引线框架(5)和与两者电性连接的晶片(3),以及一体式结构的封装壳体(2),所述晶片(3)夹在所述第一引线框架(1)和第二引线框架(5)之间,其中第二引线框架(5)的下表面暴露于所述封装壳体(2)外面,其特征在于:所述第二引线框架(5)的下表面与所述封装壳体(2)的下表面的夹角呈3°~7°。

2.根据权利要求1所述的半导体器件封装结构,其特征在于:所述第二引线框架(5)的下表面与所述封装壳体(2)的下表面的夹角呈3°~5°。

3.根据权利要求1或2所述的半导体器件封装结构,其特征在于:所述第二引线框架(5)的上表面设有凸块(4)。

4.根据权利要求1或2所述的半导体器件封装结构,其特征在于:所述第二引线框架(5)的两侧设有凸块(4)。

说明书 :

(一)技术领域

本发明涉及一种半导体器件封装结构,尤其是涉及一种小型半导体器件的封装结构。

(二)背景技术

半导体器件有许多封装结构,从DIP、SOP、QFP、PGA、BGA到CSP再到SIP,技术指标一代比一代先进,这些都是前人根据当时的组装技术和市场需求而研制的。总体说来,它大概有三次重大的革新:第一次是在上世纪80年代从引脚插入式封装到表面贴片封装,极大地提高了印刷电路板上的组装密度;第二次是在上世纪90年代球型矩封装的出现,它不但满足了市场高引脚的需求,而且大大地改善了半导体器件的性能。涉及到半导体小器件,目前多采用引脚插入式封装和表面贴片封装。

引脚插入式封装(Through-Hole Mount)有引脚出来,并将引脚直接插入印刷电路板(PWB)中,再由浸锡法进行波峰焊接,以实现电路连接和机械固定。由于引脚直径和间距都不能太细,故印刷电路板上的通孔直径,间距乃至布线都不能太细,而且它只用到印刷电路板的一面,从而难以实现高密度封装。这种封装结构适用于小器件的封装,基本上是采用完全封闭式的封装,也就是电子元件完全封装在封装介质内,这种封装结构不利于所封装器件的散热,同时体积比较大。由于电子元器件对散热有特殊的要求,基于散热的要求,这种封装封装层往往做的很薄,并且当芯片功耗大于2W时,在封装上需要增加散热片,以增强其散热冷却功能;5~10W时必须采取强制冷却手段。同时这种封装形式引脚安装更多的是借助于手工,不利于自动化生产,生产效率低。上述缺点也限制了电子元器件的集成度和应用。

后来出现的贴片式封装是在引脚插入式封装基础上发展而来,其相对于后者,大大降低了元件尺寸,此封装型式的特点是引脚全部在一边,而且引脚的数量通常比较少。象常用的功率三极管,只有三个引脚排成一排,其上面有一个大的散热片进行散热。这种封装形式考虑到散热,往往需要设一个面积比较大的散热片,其体积仍然比较大,并且通过封装介质散热,散热效果并不好。

目前还有引线框架封装形式,参照说明书附图4,其主要通过焊料将晶片4焊接到其中一个引线框架上,利用导线6将晶片内电路与另一端引线框架连接,从而形成不同电极。同时将晶片和金属线塑封,部分引线框架暴露在外面,形成焊接电极。目前半导体器件封装尺寸不断变小,现有的封装形式受塑封料和引线框架的影响,元器件散热效果差,功率密度低,从而限制了封装晶片的功率。

(三)发明内容

本发明针对上述现有技术的不足,公开了一种散热效果好的半导体器件形式。

本发明采用的一个技术方案为:

本发明半导体器件封装结构,包括第一引线框架第二引线框架和与两者电性连接的晶片,以及一体式结构的封装壳体,所述晶片夹在所述第一引线框架和第二引线框架之间,其中第二引线框架的下表面暴露于所述封装壳体外面,所述第二引线框架的下表面与所述封装壳体的下表面的夹角呈3°~7°。

上述半导体器件封装结构,位于所述晶片下面的第二引线框架的下表面与所述封装壳体的下表面夹角更佳的范围是呈3°~5°。

上述半导体器件封装结构,所述第二引线框架的上表面或两侧设有凸块。

本发明采用的另一种技术方案为:

本发明半导体器件封装结构,包括第一引线框架、第二和与两者电性连接的晶片,以及一体式结构的封装壳体,所述晶片夹在所述引线框架之间,该引线框架与晶片电性连接面设有凸块,相对面暴露于所述封装壳体外面。

本发明还采用了以下技术方案:

本发明半导体器件封装结构,包括引线框架和与其电性连接的晶片,以及一体式结构的封装壳体,所述晶片夹在所述第一引线框架和第二引线框架之间,其中位于所述晶片上面的引线框架的下表面设置有凸块,上表面暴露于所述封装壳体外面。

本发明半导体器件封装结构,是对现有引线框架半导体器件封装结构的改进,其主要是突破了原有技术要么将各器件完全封装造成的散热不良,要么是采用专门散热装置的结构繁杂,本发明采用引线框架的一个面与晶片电连接,另一个面暴露于封装壳体外面的方案,也就是让引线框架既做晶片的焊接电极,又作晶片的散热器。这种结构相对于原有引线框架半导体器件封装结构简单,成本低,并且因为通过引线框架直接散热,散热效果更好。为了获得较高的封装强度,在表面露在外面的引线框架的另一面或其两侧设置凸块,其与封装壳体形成嵌入式结构,借以增加封装强度。同时表面露在外面的引线框架,其露在外面的表面与封装壳体相应面呈一定角度,这样在封装是不会产生溢料,也就是封装壳体不会包覆引线框架需要露在外面的表面。这主要是为封装时考虑的,此角度不宜太小,也不宜太大,如果太大,会影响半导体器件的焊接使用,如果太小,则起不到防止产生溢料的作用。

(四)附图说明

图1为本发明半导体器件封装结构仰视示意图。

图2为本发明半导体器件封装结构主视剖视示意图。

图3为本发明半导体器件封装结构立体示意图。

图4为现有引线框架半导体器件封装结构示意图。

图5为现有引线框架半导体器件封装结构示意图。

图中,1、第一引线框架,2、封装壳体,3、晶片,4、凸块,5、第二引线框架,6、导线。

(五)具体实施方式

实施例1:

参照说明书附图1至3,本发明半导体器件封装结构是引线框架半导体器件封装结构的改进,采用以下技术方案:本发明也包括第一引线框架1、第二引线框架5和与两者电性连接的晶片3,以及一体式结构的封装壳体2。其改进之处是所述晶片3夹在所述第一引线框架1和第二引线框架5之间,其中第二引线框架5的下表面暴露于所述封装壳体2外面。这样颠覆了原有引线框架半导体封装结构全密闭封装的结构形式,同时也不同于外加散热装置的结构形式。本发明中第二引线框架5既做晶片3的焊接电极,同时又作为散热器,结构紧凑,同时省却了中间散热构件,散热效果更好。实验证明,以往引线框架半导体器件封装结构的功率密度一般为60毫瓦/平方毫米,而本发明的功率密度可以提高到230毫瓦/平方毫米,散热性能非常好。同样由于本发明中晶片夹在两引线框架之间,可以直接焊接,与原来通过导线焊接相比的优点是,导线一般比较细,其所通电流上限不如直接采用引线框架大,当然引线框架普遍采用铜质框架,电阻率也低。这样也就相应增加了单位封装面积内所能封装的元件功率。同时对整个封装结构来说,由于焊接点,也就是引线框架省掉了导线,其导通能力的提高也增加了其抵抗浪涌电流的能力。

上述半导体器件封装结构,所述第二引线框架5的下表面与所述封装壳体2的下表面的夹角呈3°,以避免在封装过程中出现溢料,从而防止封装料覆盖所述引线框架需要暴露在外的表面,影响散热。同时为了保证封装结构的封装强度,本发明采用在所述引线框架5的上表面设置凸块4的方案,封装完成后,凸块4所述封装壳体中,加强了封装强度。

实施例2:

相对于实施例1,本实施例为更有效防止封装过程中出现溢料,采用所述第二引线框架5的下表面与所述封装壳体2的下表面的夹角呈5°的方案,这样更有效的防止出现溢料。

同样众所周知,上述第二引线框架5的下表面与所述封装壳体2的下表面的夹角越大,封装料覆盖引线框架5下表面的几率可能性越小。同时为考虑半导体封装件的焊接安装,该角度过大,必然会影响其焊接到母板上的整洁和稳定。此角度为7°以下比较合适,最好是5°以下。过小则不能有效防止封装料覆盖在第二引线框5下表面上,此角度最好在3°以上。

实施例1和2适用于小器件的封装,这种封装方式为热沉式焊盘(引线暴露)结构。

实施例3:

参照说明书附图1至3,相对于实施例1和2,本发明半导体器件封装结构在第一引线框架1的下表面设置有凸块4,上表面暴露于所述封装壳体2外面的方案,这样可以引入外部强制冷却手段,从而适合于大功率器件的封装。

实施例4:

参照说明书附图1至3,相对于以上实施例,本发明半导体器件封装结构采用所述晶片3夹在所述第一引线框架1和第二5之间,该引线框架两侧设置凸块4,相对面暴露于所述封装壳体2外面的方案,散热效果会更好,封装强度也相对比较高。