无机发光层、其制备方法和含有其的无机发光器件转让专利

申请号 : CN200680033449.1

文献号 : CN101263613B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : K·B·卡亨

申请人 : 伊斯曼柯达公司

摘要 :

本发明公开了一种无机发光层以及制备所述发光层的方法,所述发光层包含:许多发光核,各核具有响应空穴和电子复合而发光的半导体材料,各所述发光核限定第一带隙;许多半导体壳,所述半导体壳分别形成于所述发光核周围以形成核/壳量子点,各所述半导体壳具有比所述第一带隙宽的第二带隙;和半导体基质,所述半导体基质与所述半导体亮相连以提供经由所述半导体基质并至各所述半导体壳及其相应发光核的导电路径以便允许空穴和电子复合。

权利要求 :

1.一种无机发光层,所述发光层包含:

(a)许多发光核,各核具有响应空穴和电子复合而发光的半导体材料,各所述发光核限定第一带隙;

(b)半导体壳,所述半导体壳分别形成于所述发光核周围以形成核/壳量子点,各所述半导体壳具有比所述第一带隙宽的第二带隙;和(c)半导体基质,所述半导体基质包含分散的由IV型、III-V型或II-VI型半导体材料形成的无机纳米微粒,所述半导体基质与所述半导体壳相连以提供经由所述半导体基质并至各所述半导体壳及其相应发光核的导电路径以便允许空穴和电子复合,并且所述无机纳米微粒具有不同于核/壳量子点的组成。

2.权利要求1的无机发光层,其中所述各发光核包含IV型、III-V型或II-VI型半导体材料。

3.权利要求2的无机发光层,其中所述各发光核包含CdSe。

4.权利要求1的无机发光层,其中所述各半导体壳包含II-VI型半导体材料。

5.权利要求4的无机发光层,其中所述各半导体壳包含ZnS。

6.权利要求2的无机发光层,其中所述各半导体壳包含II-VI型半导体材料。

7.权利要求1的无机发光层,其中所述半导体基质材料的带隙在所述半导体壳材料带隙的0.2eV内。

8.一种制备权利要求1的无机发光层的方法,所述方法包括:(a)提供核/壳量子点和半导体基质纳米微粒的胶态分散体;

(b)沉积所述胶态分散体以形成薄膜;和

(c)将所述薄膜退火以形成所述无机发光层。

9.权利要求8的无机发光层,其中所述层的厚度为10-100nm。

10.权利要求8的无机发光层,其中所述沉积的薄膜在250-300℃下退火最高达60分钟。

11.一种无机发光器件,所述器件包含:

(a)彼此隔开的阳极和阴极电极;和

(b)位于所述阳极和所述阴极电极之间的权利要求1的无机发光层。

12.权利要求11的无机发光器件,所述器件包含位于所述阳极和所述无机发光层之间的p型传输层。

13.权利要求12的无机发光器件,其中所述p型传输层包含p型ZnSe、ZnS或ZnTe。

14.权利要求12的无机发光器件,其中通过包含氮或锂或二者的掺杂物提高所述p型传输层的电导率。

15.权利要求11的无机发光器件,所述器件包含位于所述阴极和所述无机发光层之间的n型传输层。

16.权利要求15的无机发光器件,其中所述n型传输层包含n型ZnSe或ZnS。

17.权利要求15的无机发光器件,其中通过包含Al、In或Ga的III型掺杂物提高所述n型传输层的电导率。

18.权利要求12的无机发光器件,所述器件包含位于所述阴极和所述无机发光层之间的n型传输层。

19.权利要求18的无机发光器件,其中所述n型传输层包含n型ZnSe或ZnS。

20.权利要求18的无机发光器件,其中通过包含Al、In或Ga的III型掺杂物提高所述n型传输层的电导率。

21.一种无机发光器件,所述器件包含:

(a)基板;

(a)在所述基板上形成的阳极和与所述阳极彼此隔开的阴极;和(b)位于所述阳极和所述阴极之间的权利要求1的无机发光层。

22.权利要求21的无机发光器件,其中所述基板包含p型半导体材料。

23.权利要求22的无机发光器件,其中所述发光层在所述基板的一侧上形成,所述阳极在所述基板的另一侧上形成。

24.权利要求21的无机发光器件,其中所述基板由玻璃、金属箔或塑料形成,所述阳极在所述基板上形成。

说明书 :

技术领域

本发明涉及无机发光二极管器件,所述器件包括具有量子点的发光层。

背景技术

自从二十世纪六十年代早期已制备半导体发光二极管(LED)器件,且近来被制造用于宽范围的消费者和工业应用。包含LED的层基于晶体半导体材料,晶体半导体材料需要超高真空技术(例如分子有机化学蒸汽沉积)用于其生长。此外,各层通常需要在几乎晶格匹配的基板上生长,以形成无缺陷的层。这些基于晶体的无机LED的优点为亮度高(由于层的电导率高)、寿命长、环境稳定性良好和外量子效率高。产生所有的这些优点的晶体半导体层的使用也产生许多缺点。主要的缺点为制造成本高、难以由相同的芯片组合多色输出、需要高成本和刚性基板。
在二十世纪八十年代中期,发明了基于使用小分子量分子的有机发光二极管(OLED)(Tang等,Appl.Phys.Lett.51,913(1987))。在二十世纪九十年代早期,发明了聚合物型LED(Burroughes等,Nature347,539(1990))。在随后的15年间,基于有机物的LED显示器进入市场,对器件寿命、效率和亮度有很大的改进。例如包含磷光发射体的器件外量子效率高达19%,而器件寿命常规报道为数万小时。与基于晶体的无机LED相比,OLED亮度降低(主要由于载流子迁移率小)、寿命较短,且器件工作时需要封装成本高。另一方面,OLED的优点为制造成本可能较低,能由相同的器件发射多种颜色,且如果可解决封装问题,允许使用挠性显示器。
为了改进OLED的性能,在二十世纪九十年代后期,引入了包含有机物和量子点的混合发射体的OLED器件(Matoussi等,J.Appl.Phys.83,7965(1998))。往发射体层中加入量子点的优点在于可提高器件的色域;通过简单地变化量子点粒径可达到发红光、绿光和蓝光;且可降低制造成本。由于各种问题(例如量子点在发射体层中聚集),这些器件的效率比通常的OLED器件低。当使用纯量子点薄膜作为发射体层时,效率更差(Hikmet等,J.Appl.Phys.93,3509(2003))。效率低是由于量子点层的绝缘性质。后来通过在有机空穴和电子传输层之间沉积单层量子点薄膜(Coe等,Nature 420,800(2002))提高效率(至约1.5cd/A)。一般认为由量子点发光主要是由于在有机分子上的激子的Forster能量转换(在有机分子上发生电子-空穴复合)。无论将来在效率方面有任何改进,这些混合器件仍面临纯OLED器件所具有的所有缺点。
近来通过在真空沉积的n-和p-GaN层之间夹有单层厚核/壳CdSe/ZnS量子点层来构造主要全无机LED(Mueller等,Nano Letters5,1039(2005))。所得到的器件外量子效率差,为0.001-0.01%。该问题部分与据报道存在后生长的三辛基氧化膦(TOPO)和三辛基膦(TOP)有机配体有关。这些有机配体为绝缘体,导致电子和空穴在量子点上的注入差。此外,由于使用通过高真空技术生长的电子和空穴半导体层且使用蓝宝石基板,该结构的其余部分制造成本高。
因此,构造基于量子点发射体的全无机LED是非常有益的,其通过低成本沉积技术形成,且各层具有良好的电导率性能。所得到的LED将兼有结晶LED和有机LED的许多所需特性。
发明概述
本发明的一个目标为提供其发射体层由无机量子点形成的无机发光二极管器件,其中所述无机发射体层同时导电和发光。此外,所述二极管器件通过低成本的沉积法形成。
通过无机发光层实现这些目标,所述无机发光层包含:
(a)许多发光核,各核具有响应空穴和电子复合而发光的半导体材料,各所述发光核限定第一带隙;
(b)许多半导体壳,所述半导体壳分别形成于所述发光核周围以形成核/壳量子点,各所述半导体壳具有比所述第一带隙宽的第二带隙;和
(c)半导体基质,所述半导体基质与所述半导体壳相连以提供经由所述半导体基质并至各所述半导体壳及其相应发光核的导电路径以便允许空穴和电子复合。
本发明的一个优点为提供一种形成发光层的方法,其发光物质为同时发光和导电的量子点。发光层包含导电宽带隙纳米微粒和带壳量子点发射体的复合材料。使用热退火使导电纳米微粒在其自身内和量子点表面烧结。结果是,提高了发光层的电导率,因为电子-空穴注入了量子点。为了使量子点能经受得住退火步骤而不降低其荧光效率(由于在退火过程中钝化量子点的有机配体蒸发掉了),设计量子点壳来约束电子和空穴,使得其波函数不采样(sample)外壳的表面状态。
本发明的再一个优点为在全无机发光二极管器件中结合导电和发光的发光层。电子和空穴传输层由导电纳米微粒组成,此外,使用单独的热退火步骤来提高这些层的电导率。所有的纳米微粒和量子点通过化学方法合成且制成胶态分散体。因此,所有的器件层通过低成本方法例如液滴涂布(drop casting)或喷墨沉积。所得到的全无机发光二极管器件成本低,可在各种基板上形成,且可经调节在宽范围的可见光和红外波长发射。与基于有机物的发光二极管器件相比,其亮度提高,且其封装要求降低。

附图说明

图1表示核/壳量子点微粒的示意图;
图2表示本发明的无机发光层的截面图;
图3表示本发明的无机发光器件的侧视图;
图4表示本发明的无机发光器件的另一个实施方案的侧视图;和
图5图示ZnS薄膜的透射率。
发明详述
使用量子点作为发光二极管中的发射体的优点在于可通过改变量子点微粒的大小简单地调节发射波长。因此,可由相同的基板实现窄谱(导致色域较宽)的多色发射。如果通过胶态方法制备量子点[且不通过高真空沉积技术生长(S.Nakamura等,Electron.Letter.34,2435(1998))],则基板不必昂贵或需要与LED半导体体系晶格匹配。例如基板可为玻璃、塑料、金属箔或Si。使用这些技术来形成量子点LED是十分理想的,特别是如果使用低成本沉积技术来沉积LED层。
图1为核/壳量子点120发射体的示意图。该微粒包括发光核100、半导体壳110和有机配体115。由于通常的量子点的大小在几纳米数量级,且与其固有的激子的大小相当,因此微粒的吸收峰和发射峰均相对于本体值蓝移(R.Rossetti等,J.Chem.Phys.79,1086(1983))。由于量子点小,点的表面电子状态对点的荧光量子产额有很大的影响。通过将适当的(例如伯胺)有机配体115与其表面相连或通过围绕着发光核100外延生长另一种半导体(半导体壳110)可钝化发光核100的电子表面状态。生长半导体壳110的优点(相对于通过有机方法钝化的核)为可同时钝化空穴和电子核微粒表面状态,所得到的量子产额通常较高,且量子点对光更稳定且在化学上更稳定。由于半导体壳110的厚度有限(通常为1-2个单层),其电子表面状态也需要被钝化。同样,有机配体115为常见的选择。以CdSe/ZnS核/壳量子点120为例,在核/壳界面处的化合价和导带偏移使得所得到的电位将空穴和电子约束在核区内。由于电子通常比重空穴轻,所以空穴主要约束于核内,而电子穿透至壳中,且采样与金属原子相关的电子表面状态(R.Xie等,J.Am.Chem.Soc.127,7480(2005))。因此,对于CdSe/ZnS核/壳量子点120的情况,仅壳的电子表面状态需要被钝化,合适的有机配体120的实例为一种与表面Zn原子形成给体/受体键的伯胺(X.Peng等,J.Am.Chem.Soc.119,7019(1997))。总之,通常的高度发光的量子点具有核/壳结构(较高带隙围绕着较低带隙)且具有与壳的表面相连的不导电的有机配体120。
在过去的十年内,由许多工作者制造了高度发光的核/壳量子点的胶态分散体(O.Masala和R.Seshadri,Annu.Rev.Mater.Res.34,41(2004))。发光核100由IV型(Si)、III-V型(InAs)或II-VI型(CdTe)半导体材料组成。对于在光谱的可见光部分的发射,由于通过改变CdSe核的直径(1.9-6.7nm),发射波长可从465nm调节至640nm,因此CdSe为优选的核材料。如本领域众所周知的,可由其他材料体系制造可见光发光量子点,例如掺杂的ZnS(A.A.Bol等,Phys.Stat.Sol.B224,291(2001))。发光核100通过本领域众所周知的化学方法制备。通常的合成路线为在配位溶剂中高温分解分子前体、溶剂热(solvothermal)方法(O.Masala和R.Seshadri,Annu.Rev.Mater.Res.34,41(2004))和静置沉淀(R.Rossetti等,J.Chem.Phys.80,4464(1984))。半导体壳110通常由II-VI型半导体材料(例如CdS或ZnSe)组成。通常选择壳半导体以与核材料几乎晶格匹配,且化合价和导带水平使得核空穴和电子主要约束在量子点的核区内。对于CdSe核,优选的壳材料为ZnSexS1-x,其中x为0.0-约0.5。通常通过在配位溶剂中在高温下分解分子前体来完成围绕发光核100的半导体壳110的形成(M.A.Hines等,J.Phys.Chem.100,468(1996))或反胶束技术(A.R.Kortan等,J.Am.Chem.Soc.112,1327(1990))。
如本领域众所周知的,形成量子点薄膜的两种低成本方法为通过液滴涂布和旋转涂布(spin casting)沉积核/壳量子点120的胶态分散体。用于液滴涂布量子点的常用溶剂为9∶1的己烷∶辛烷混合物(C.B.Murray等,Annu.Rev.Mater.Sci.30,545(2000))。需要选择有机配体115使得量子点微粒溶解于己烷中。因此,含有烃基末端的有机配体为良好的选择,例如烷基胺。使用本领域众所周知的方法,来自生长方法的配体(例如TOPO)可与所选的有机配体115交换(C.B.Murray等,Annu.Rev.Mater.Sci.30,545(2000))。当旋转涂布量子点的胶态分散体时,对溶剂的要求是易在沉积表面上展开,且在旋转涂布过程中溶剂以中等速率蒸发。发现醇基的溶剂为良好的选择,例如将低沸点醇(例如乙醇)与较高沸点醇(例如丁醇-己醇混合物)混合,良好地形成薄膜。相应地,可使用配体交换将末端可溶于极性溶剂的有机配体与量子点相连,吡啶为合适的配体的一个实例。由这两种沉积法形成的量子点薄膜发光,但不导电。由于不导电的有机配体分隔核/壳量子点120微粒,因此薄膜有电阻。由于移动的电荷沿着量子点传送时,移动的电荷由于半导体壳110的限制势垒而截留在核区,因此薄膜有电阻。
无机LED的适当工作通常需要围绕着导电(标称掺杂)和发光发射体层的低电阻率n型和p型传输层。如上所述,通常的量子点薄膜发光,但绝缘。图2示意性地说明一种提供同时发光和导电的无机发光层150的方法。原理基于共沉积小的(<2nm)导电无机纳米微粒140,连同核/壳量子点120形成无机发光层150。随后使用惰性气体(Ar或N2)退火步骤在其自身内和在较大的核/壳量子点120的表面上烧结较小的无机纳米微粒140。烧结无机纳米微粒140导致产生连续的导电半导体基质130。通过该烧结过程,该基质还与核/壳量子点120相连。因此,自无机发光层150的边缘经由半导体基质130并至各核/壳量子点120产生导电路径,其中电子和空穴在发光核100中复合。还应注意到将核/壳量子点120包在导电半导体基质130中具有额外的益处,即保护量子点免受环境中氧和湿气的影响。
无机纳米微粒140需要由导电的半导体材料(例如IV型(Si)、III-V型(GaP)或II-VI型(ZnS或ZnSe)半导体)组成。为了容易地将电荷注入核/壳量子点120,优选无机纳米微粒140由带隙与半导体壳110材料相当(更特别是带隙在壳材料带隙的0.2eV内)的半导体材料组成。在ZnS为核/壳量子点120外壳的情况下,无机纳米微粒140由ZnS或Se含量低的ZnSSe组成。无机纳米微粒140通过本领域众所周知的化学方法制备。通常的合成路线为在配位溶剂中在高温下分解分子前体、溶剂热方法(O.Masala和R.Seshadri,Annu.Rev.Mater.Res.34,41(2004))和静置沉淀(R.Rossetti等,J.Chem.Phys.80,4464(1984))。如本领域众所周知的,相对于其大块对应物,纳米大小的纳米微粒在更低的温度下熔融(A.N.Goldstein等,Science 256,1425(1992))。相应地,希望无机纳米微粒140的直径小于2nm,以便增强烧结过程,优选的大小为1-1.5nm。至于含有ZnS壳的较大的核/壳量子点120,据报道2.8nm的ZnS微粒在退火温度高达350℃时较稳定(S.B.Qadri等,Phys.Rev B60,9191(1999))。综合这两个结果,退火过程优选的温度为250-300℃,持续时间最高达60分钟,在其自身内和在较大的核/壳量子点120的表面上烧结较小的无机纳米微粒140,而较大的核/壳量子点120形状和大小保持较稳定。
为了形成无机发光层150,形成无机纳米微粒140和核/壳量子点120的共分散体。由于希望核/壳量子点120被无机发光层150中的无机纳米微粒140围绕着,选择无机纳米微粒140与核/壳量子点120的比率大于1∶1。优选的比率为2∶1或3∶1。根据沉积方法(例如旋转涂布或液滴涂布),适当地选择有机配体115。通常相同的有机配体115用于两种类型的微粒。为了提高无机发光层150的电导率(和电子-空穴注入过程),优选与核/壳量子点120和无机纳米微粒140相连的有机配体115因在惰性气氛下将无机发光层150退火而蒸发。通过选择具有低沸点的有机配体115,可在退火过程中使有机配体从薄膜蒸发(C.B.Murray等,Annu.Rev.Mater.Sci.30,545(2000))。因此,对于通过液滴涂布形成的薄膜,优选较短链的伯胺,例如己胺;对于通过旋转涂布形成的薄膜,吡啶为优选的配体。在高温下将薄膜退火可由于薄膜与基板之间热膨胀不匹配,导致薄膜裂纹。为了避免该问题,优选退火温度从25℃斜线升至退火温度,再从退火温度降至室温。优选的升温时间为30分钟。所得到的无机发光层150的厚度为10-100nm。
在退火步骤之后,核/壳量子点120的外壳不含有机配体115。对于CdSe/ZnS量子点的情况下,不含外配体的壳导致自由电子损失,原因是被壳的未钝化的表面状态截留(R.Xie,J.Am.Chem.Soc.127,7480(2005))。因此,经退火的核/壳量子点120比未退火的点量子产额降低。为了避免这种状况,需要增加ZnS壳的厚度,其程度使得核/壳量子点电子波函数不再采样壳的表面状态。使用本领域众所周知的计算技术(S.A.Ivanov等,J.Phys.Chem.108,10625(2004)),需要ZnS壳的厚度为至少5个单层(ML)厚,以消除电子表面状态的影响。但是,当ZnS亮厚高达2ML时,可直接在CdSe上生长,而不会由于两个半导体晶格之间晶格失配产生缺陷(D.V.Talapin等,J.Phys.Chem.108,18826(2004))。为了避免晶格缺陷,可在CdSe核和ZnS外壳之间生长ZnSe的中间壳。该方法由Talapin等使用(D.V.Talapin等,J.Phys.Chem.B 108,18826(2004)),其中在CdSe核上能生长最高达8ML厚的ZnS壳,最佳ZnSe壳厚为1.5ML。还可采用更复杂的方法,使晶格失配差异最小,例如在数个单层的距离上将中间壳的半导体含量从CdSe平稳变化至ZnS(R.Xie等,J.Am.Chem.Soc.127,7480(2005))。总之,使外壳的厚度足够厚,使得没有游离的载流子采样电子表面状态。此外,如果需要,将适当的半导体含量的中间壳加至量子点,以避免产生厚半导体壳110带来的缺陷。
图3给出结合有无机发光层150的电致发光LED器件200的最简单的实例。基板160承载沉积的半导体和金属层,其唯一的要求是足够刚性以能够进行沉积法,且可承受热退火过程(最高温度约285℃)。基板可为透明或不透明的。可能的基板材料有玻璃、硅、金属箔和某些塑料。接下来沉积的材料为阳极170。在基板160为p型Si的情况下,需要在基板160的底表面上沉积阳极170。适用于p-Si的阳极金属为Al。可通过热蒸发或溅射沉积。在沉积之后,在约430℃下退火20分钟。对于所有的上述其他类型的基板,在基板160的顶表面上沉积(如图3所示)阳极170且阳极包括透明的导体,例如氧化锡铟(ITO)。ITO可通过溅射或本领域众所周知的其他方法沉积。ITO通常在约300℃下退火1小时以改进其透明性。由于透明导体(例如ITO)的薄层电阻远大于金属的薄层电阻,可使用热蒸发或溅射,通过遮蔽掩模(shadow mask)选择性地沉积汇流排金属(bus metal)190,以降低接触垫至实际器件的电压降。接着沉积无机发光层150。如上所述,可在透明导体(或Si基板)上液滴涂布或旋转涂布。还可使用其他沉积技术,例如喷墨胶态量子点-无机纳米微粒混合物。在沉积之后,优选在270℃下将无机发光层150退火50分钟。最后,阴极180金属沉积在无机发光层150上。可选的阴极180金属为与包括无机纳米微粒140的材料形成欧姆接触的物质。例如在ZnS无机纳米微粒140的情况下,优选的金属为Al。可通过热蒸发或溅射沉积,随后在285℃下热退火10分钟。本领域技术人员还可推断颠倒层组合物,使得阴极180沉积在基板160上,阳极形成在无机发光层150上。对于Si载体的情况下,基板160为n型Si。
图4给出结合有无机发光层150的电致发光LED器件205的另一个实施方案。该图表示将p型传输层220和n型传输层230加至器件,且包围无机发光层150。如本领域众所周知,LED结构通常包含掺杂的n型和p型传输层。这些传输层有几个不同的用途。如果半导体被掺杂,则与半导体形成欧姆接触更容易。由于发射体层通常本身带有杂质或经轻微掺杂,因此与掺杂的传输层形成欧姆接触更容易。由于表面等离激元效应(plasmon effect)(K.B.Kahen,Appl.Phys.Lett.78,1649(2001)),具有与发射体层相邻的金属层导致发射体效率降低。因此,最好通过足够厚的(至少150nm)传输层将发射体层与金属触点间隔。最后,传输层不仅将电子和空穴注入发射体层,而且通过适当选择材料,可防止载流子泄漏出发射体层。例如如果无机纳米微粒140由ZnS0.5Se0.5组成,传输层由ZnS组成,则通过ZnS势垒将电子和空穴约束在发射体层内。适用于p型传输层的材料包括II-VI和III-V半导体。典型的II-VI半导体为ZnSe、ZnS或ZnTe。仅ZnTe天然为p型,而ZnSe和ZnS为n型。为了得到足够高的p型导电性,应向所有的三种材料中加入另外的p型掺杂物。对于II-VI p型传输层的情况下,可选的掺杂物为锂和氮。例如在文献中说明在约350℃下Li3N可扩散至ZnSe中以产生p型ZnSe,其电阻率低至0.4ohm-cm(S.W.Lim,Appl.Phys.Lett.65,2437(1994))。
适用于n型传输层的材料包括II-VI和III-V半导体。典型的II-VI半导体为ZnSe或ZnS。对于p型传输层,为了得到足够高的n型导电性,应向半导体中加入另外的n型掺杂物。在II-VI n型传输层的情况下,可选的掺杂物为Al、In或Ga的III型掺杂物。如本领域众所周知,可通过离子注入(随后退火)或扩散法(P.J.George等,Appl.Phys.Lett.66,3624[1995])将这些掺杂物加至层中。更优选的路线为在化学合成纳米微粒的过程中原位加入掺杂物。以在十六胺(HDA)/TOPO配位溶剂中形成ZnSe微粒为例(M.A.Hines等,J.Phys.Chem.B102,3655[1998]),Zn源为二乙基锌的己烷溶液,Se源为溶解于TOP中的Se粉末(形成TOPSe)。如果用Al掺杂ZnSe,则将相应百分比的(相对于二乙基锌浓度的百分之几)三甲基铝的己烷溶液加至包含TOP、TOPSe和二乙基锌的注射器。当通过化学浴沉积法生长薄膜时,成功地证明了这类原位掺杂法(J.Lee等,Thin Solid Films431-432,344[2003])。应注意到,参考图4,还可仅在结构中加入p型传输层或n型传输层使二极管工作。本领域技术人员还可推断层组合物可颠倒,使得在基板160上沉积阴极180,在p型传输层220上形成阳极。在Si载体的情况下,基板160为n型Si。
以下实施例用于进一步理解本发明,不应认为是要局限本发明的范围。
实施例1
根据图2的示意形成无机发光层150。无机纳米微粒140由ZnS组成,而核/壳量子点120具有CdSe核和ZnSe/ZnS壳。ZnS微粒采用Khosravi等报道的经修改的方法化学合成(A.A.Khosravi等,Appl.Phys.Lett.67,2506[1995])。Zn源为ZnCl2,硫源为双(三甲基甲硅烷基)硫醚(TMS)2S,表面活性剂/配体为己胺。制备各自为0.02M的ZnCl2、(TMS)2S和己胺的丁醇溶液,将等体积的各溶液用于反应。为了防止所得到的ZnS纳米微粒氧化,使用众所周知的方法在惰性条件下进行反应。首先,将5ml氯化锌溶液和5ml己胺溶液在两颈烧瓶中混合,同时剧烈搅拌该混合物。接着将5ml(TMS)2S溶液以0.1-1ml/分钟的速率滴加至烧瓶,同时继续剧烈搅拌该混合物。随后将所得到的三组分溶液放置在旋转蒸发器中,从溶液中蒸除约13ml丁醇。加入过量的甲醇后,将溶液离心分离,将上清液倾析。为了再溶解沉淀物,加入0.5ml甲苯。再一次将过量的甲醇加至溶液中,随后离心,倾析上清液。所得到的沉淀物可溶解于各种非极性溶剂中。由于通过液滴涂布沉积ZnS无机纳米微粒140和CdSe/ZnSe/ZnS核/壳量子点120的胶态分散体,将沉淀物溶解于9∶1的己烷:辛烷溶剂混合物中(C.B.Murray等,Annu.Rev.Mater.Sci.30,545[2000])。所得到的胶态分散体光学透明,但在360nm下激发时发射近紫外光。图5绘制在三种不同的温度下热退火10分钟后,ZnS纳米微粒薄膜的透射率。由于从其本体带隙(bulk bandgap)蓝移(约3.6eV)显著,图5表明ZnS微粒非常小(<2nm),且在约280℃时开始烧结在一起。如上所述,优选无机纳米微粒140非常小(<2nm),以便能够在较低温度下烧结。
采用Talapin等的路线合成核/壳量子点120(D.V.Talapin等,J.Phys.Chem.B108,18826[2004])。为了形成CdSe核,在Schlenk line和氩气流下进行“绿色”合成路线。开始将8g TOPO、5g HDA和0.15g正十四烷基膦酸(TDPA)在三颈烧瓶中混合,随后进行标准脱气和干燥过程。将2ml 1M的TOPSe溶液加至烧瓶中,随后将混合物加热至300℃。通过注射器将镉储液(0.12g乙酸镉在3ml TOP中)快速注入烧瓶中,同时将溶液剧烈搅拌。由于注入室温储液,反应温度立即下降约25℃。在260℃下保持7.5分钟,形成发射波长为约530nm的发绿光核量子点。
接着,在核CdSe量子点上沉积ZnSe的薄壳(约1.5ml)。开始将3.6ml核量子点粗品溶液(未洗涤)与20g TOPO和12g HDA(将两种配位溶剂脱气,干燥,随后加至烧瓶中)在三颈烧瓶中混合。将所得到的混合物升至190℃。在手套箱中,往注射器中填充Zn和Se前体(0.3mmol二乙基锌、0.39mmol TOPSe和3ml另外的TOP)。随后将注射器的内含物以5ml/小时的速率缓慢加至烧瓶中,同时剧烈搅拌溶液。在注入ZnSe前体后,立即将约5ml ZnS外壳沉积在带ZnSe壳的量子点上。这时往注射器填充3mmol二乙基锌(来自1M的二乙基锌的己烷溶液)、1.38ml(TMS)2S和12ml TOP。将注射器内含物以8ml/小时的速率加入,生长温度设定为210℃。完成ZnS壳生长后,将反应混合物冷却至90℃,且在该温度下保持60分钟。最后,将11ml丁醇加至混合物中,以防止在低于TOPO和HAD的凝固点下固化。所得到的核/壳/壳量子点轻微红移(相对于核发射),且发绿黄色光(约545nm)。测得的量子产额超过50%。
无机发光体层150包含ZnS无机纳米微粒140和CdSe/ZnSe/ZnS核/壳量子点120的复合材料。因此,使用9∶1的己烷∶辛烷作为溶剂形成CdSe/ZnSe/ZnS核/壳量子点120的胶态分散体,己胺为与量子点相连的有机配体。由于这样合成的核/壳量子点120含有TOPO/HDA作为表面配体,所以用己胺进行配体交换方法(D.V.Talapin等,NanoLett.4,207[2001])来钝化量子点。向经过配体交换的分散体中加入过量的甲醇后,将溶液离心,将上清液倾析。为了再溶解沉淀物,加入1.0ml甲苯。再一次将过量的甲醇加至溶液,随后离心,倾析上清液。将所得到的沉淀物再溶解于9∶1的己烷∶辛烷溶剂混合物中。请注意配体交换和微粒洗涤均在无空气的条件下进行。分别以2∶1的组分分散体的体积比,将ZnS纳米微粒和CdSe/ZnSe/ZnS量子点的复合胶态分散体液滴涂布在基板(Si或玻璃)上。将所得到的薄膜在270℃的管式炉中,在恒定的Ar流下退火50分钟(升至270℃耗时35分钟,降至室温耗时35分钟)。所得到的薄膜的荧光性在明亮的室内光线下清晰可见,并再次为绿黄色。该薄膜看起来在空气中稳定,观察几小时后未发现荧光产量衰减。该薄膜还导电,电阻率为104ohm-cm数量级。
实施例2
使用上述无机发光层120作为部件构造电致发光型发光二极管。通过遮蔽掩模在干净的玻璃基板160的表面上溅射ITO。沉积后,将ITO薄膜在300℃下退火1小时以改进其透明性。接着如实施例1所述,将无机发光层120沉积在ITO的表面上。为了确保层不含针孔,将复合(ZnS纳米微粒和CdSe/ZnSe/ZnS核/壳/壳)胶态分散体液滴涂布两次(每次液滴涂布后在270℃的管式炉中退火50分钟)。在两次液滴涂布之前,沉积表面用丙酮/甲醇溶剂洗液清洗,随后使用氮气吹干试样。
接着沉积n型传输层230。该传输层由ZnSe纳米微粒形成。通过在配位溶剂中高温分解分子前体来合成纳米微粒(在Schlenk line和氩气流下进行)。更具体地讲,将7g HDA(干燥并脱气)放置在三颈烧瓶中,随后加热至300℃。在手套箱中,往注射器中填充0.8mmol二乙基锌(来自1M的二乙基锌的己烷溶液)、0.8mmol TOPSe和2.5ml另外的TOP。将注射器内含物快速注入烧瓶,同时剧烈搅拌溶液。由于注入室温Zn/Se储液,反应温度立即下降约25℃。在270℃下保持3分钟,以便形成发近紫外光的ZnSe纳米微粒。在冷却至室温之前,将7ml丁醇加至溶液中以防止HDA固化。由于需要己胺液滴涂布,因此进行标准配体交换以除去HDA配体,并用己胺配体置换。随后将所得到的经配体交换的溶液放置在旋转蒸发器中,从溶液中蒸除任何过量的丁醇和己胺。加入过量的甲醇后,将溶液离心,将上清液倾析。为了再溶解沉淀物,加入0.25ml甲苯。再一次将过量的甲醇加至溶液中,随后离心,倾析上清液。将所得到的沉淀物再溶解于9∶1的己烷∶辛烷溶剂混合物中。为了确保层不含针孔,将ZnSe胶态分散体液滴涂布两次(每次液滴涂布后在270℃的管式炉中退火50分钟)。在两次液滴涂布之前,沉积表面用丙酮/甲醇溶剂洗液清洗,随后使用氮气吹干试样。
随后将带图案的阴极180沉积在n型ZnSe传输层230上。通过遮蔽掩模热蒸发铝以形成400nm厚的薄膜。为了与ZnSe更好地接触,将Al在285℃下退火10分钟(温度从25℃升至285℃,又返回25℃)。在带图案的阴极180和阳极170(ITO)触点的交叉点上,LED透过玻璃基板160发光。交叉面积为约5mm2。在柔和的室内照明条件下,LED发绿黄色可见光。器件发光所需的电压为至少7-8V。在连续工作几分钟后,在毁灭性失效之前,器件可控制高达100mA(2A/cm2)的直流电流。
具体参考某些优选的实施方案详细描述了本发明,但应理解的是,在本发明的宗旨和范围内可进行各种改变和变化。
零件列表
100发光核
110半导体壳
115有机配体
120核/壳量子点
130半导体基质
140无机纳米微粒
150无机发光层
160基板
170阳极
180阴极
190汇流排金属
200无机发光器件
205无机发光器件
220p型传输层
230n型传输层