一种烟气净化与硫回收系统及工艺转让专利

申请号 : CN200810104398.8

文献号 : CN101274193B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王金福高继贤王铁峰程易金涌

申请人 : 清华大学

摘要 :

一种烟气净化与硫回收系统及工艺,包括吸附器、脱附器、吸附剂输送系统、热能集成回收系统和炭粉分离回收系统,并采用适宜工艺方法。吸附器采用单器双段∏型径向错流移动床,选择性宽谱净化;脱附器采用轴向逆流移动床,实现热能集成回收利用、吸附剂再生和硫资源回收;吸附剂采用密相气力输送,使系统连续稳定运行;采用炭基柱状或球状脱硫脱硝吸附剂实现烟气净化与硫回收。本系统将节能减排降耗和资源回收利用高效集成在一起,具有高效宽谱净化与硫资源回收,良好的布气、颗粒移动和低压降,热能集成回收利用,吸附剂输送无机械部件,系统连续稳定运行,节省设备投资和运行费用等。

权利要求 :

1.一种烟气净化与硫回收系统,包括吸附器(1)、脱附器(2)、吸附剂输送系统、热能集成回收系统和炭粉分离回收系统;所述的吸附器(1)与脱附器(2)分开布置,其特征在于:所述的吸附器(1)采用单器双段∏型径向错流移动床;所述的单器双段∏型径向错流移动床吸附器(1)每段由外到内依次包括吸附器圆筒体壁(3)、环形气体流道(4)、外约翰逊网(6)、吸附器颗粒层(7)、内约翰逊网(8)和中心管(9);环形气体流道(4)采用扇形筒(5a)或外筛网(5b)构件;在吸附器颗粒层中设置颗粒整流子;在吸附器(1)下段的吸附器颗粒层(7)上方,分布有4-8个吸附器增湿降温喷嘴(15);在吸附器(1)上段选择性布置吸附器氨气进气管(10);在与吸附器烟气进气管(11)相连的烟气进气管路上布置烟气加湿罐(32);吸附器(1)的上下两段通过吸附器段间颗粒下料管(15)连接,吸附器烟气进口管(11)设置在吸附器(1)下段的顶部,吸附器烟气出口管(12)设置在吸附器(1)上段的下方;所述的吸附器(1)的顶部和底部分别设置有通过吸附器颗粒进口管(13)相连的吸附器储料罐(17)和通过吸附器颗粒出口管(14)相连的吸附器集料罐(18);所述的脱附器(2)采用轴向逆流移动床,在所述脱附器(2)的顶部和底部分别设置有脱附器储料罐(20)和脱附器集料罐(22);所述的吸附剂输送系统采用密相气力输送系统,该系统包括与吸附器集料罐(18)相连的吸附器发送装置(24)以及与脱附器集料罐(22)相连的脱附器发送装置(25),所述的吸附器发送装置(24)和脱附器储料罐(20)通过吸附气力输送管(30)连接,脱附器发送装置(25)通过脱附气力输送管(31)与设置在吸附器储料罐(17)上部的淘析柱(19)连接;所述的热能集成回收系统采用蒸汽热泵式结构与加热器介质回流式结构;其中,所述的蒸汽热泵式结构包括脱附器储料罐冷凝室(21)、脱附器集料罐汽化室(23)、以及设置在脱附器储料罐冷凝室和脱附器集料罐汽化室之间的热泵蒸汽管(37)和热泵冷凝管(38);所述的加热器介质回流式结构包括设置在脱附器(2)外的脱附器加热器(39)、与脱附器集流管(34)相连的脱附器加热介质输送管(40),以及与脱附器加热器(39)和脱附器加热介质输送管(40)相连的脱附器加热介质回流管(41);所述的烟气净化与硫回收系统采用炭基吸附剂净化烟气,所述的炭基吸附剂为脱硫脱硝活性炭、活性焦或活性半焦;所述的烟气净化与硫回收系统采用适宜工艺方法实现功能。

2.根据权利要求1所述的烟气净化与硫回收系统,其特征在于:所述脱附器(2)包括脱附器集流管(34)、脱附器加热管(35)、设置在脱附器底部的气体分布器(36)以及布置在脱附器顶部的脱附器分流斗(33),所述的脱附器加热管(35)为多根套管,分别与脱附器分流斗(33)和脱附器集流管(34)连接。

3.根据权利要求1所述的烟气净化与硫回收系统,其特征在于:所述的吸附器发送装置(24)包括2-4个吸附器发送罐(26)和发送罐气刀(27),脱附器发送装置(25)包括2-4个脱附器发送罐(28)和脱附器发送罐气刀(29);所述的吸附器发送装置(24)中不同的吸附器发送罐(26)和所述的脱附器发送装置(25)中不同的脱附器发送罐(28)分别交替发送,连续操作。

4.根据权利要求1所述的烟气净化与硫回收系统,其特征在于:所述的炭粉分离回收系统还包括脱附炭粉输送管(42)、吸附炭粉输送管(43)、一级旋风分离器(44)、二级旋风分离器(45)和粉料斗(46)。

5.根据权利要求1所述的烟气净化与硫回收系统,其特征在于: 所述的炭基吸附剂为圆柱形或球形颗粒;吸附剂颗粒为圆柱形时,粒径范围为2-10mm,长径比为0.5-3,颗粒粒径分布的最大直径和最小直径与平均直径的偏差值在1mm内,轴向长度分布最长尺寸与最短尺寸比值为1-2之间;吸附剂颗粒为球形时,球形度良好,粒径范围2-10mm,粒径分布最大最小颗粒粒径与平均粒径偏差值在1-1.5mm内;炭基吸附剂采用沥青基、煤基、高分子基或糠醛渣基原料制备。

6.一种采用如权利要求1所述的系统的烟气净化与硫回收的工艺方法,其特征在于该方法包括如下步骤:

1)烟气在吸附器(1)的流型采用同时向心径向,或者同时离心径向或者上下段向心与离心组合型式;当上段脱硝时,上段只采用向心径向流型;

2)烟气在吸附器(1)下段向心径向流动时,烟气从烟气进口管(11)流入吸附器(1)的下段床层,向心流动经过环形气体流道(4)和外约翰逊网(6),径向穿过下段吸附器颗粒层-1(7)与下移的炭基吸附剂错流接触,在温度100-160℃、空速400-1500h 的条件下发生生吸附和催化氧化反应,SO2被吸附脱除,然后进入中心管,再由下向上流动进入上段床层;

3)烟气继续向心径向流动的过程中,残余的二氧化硫被吸附和催化氧化反应;或在此-1

过程中喷入氨气,在温度120-180℃、空速400-1000h 的条件下,烟气中的NOx与下移的炭基吸附剂错流接触发生选择性催化还原反应;

4)从吸附器(1)下落的吸附饱和的炭基吸附剂,经过吸附剂输送系统进入脱附器(2),被加热到350-450℃,炭基吸附剂与附着在微孔内的H2SO4发生反应,解析出体积分率

10%-30%的浓SO2,硫资源得到回收利用,炭基吸附剂得到再生;

5)从脱附器(2)下落再生的炭基吸附剂输入到淘析柱(19),经空气吹扫,将炭基吸附剂中的炭粉分离,炭粉经过一级旋风分离器(44)、二级旋风分离器(45)进入粉料斗(46)回收;经淘析柱(19)分离炭粉后的炭基吸附剂与补充的新鲜炭基吸附剂继续向下移动进入吸附器(1),完成一个循环。

说明书 :

一种烟气净化与硫回收系统及工艺

技术领域

[0001] 本发明是一种用于对燃煤烟气、烧结机烟气、金属冶炼废气、硫酸生产尾气、垃圾焚烧与燃油废气中SO2、NOx、重金属离子、有害烟尘进行宽谱净化的移动床资源化烟气净化与硫回收系统及工艺,属于大气净化环保设备、化工过程工艺与设备。

背景技术

[0002] 燃煤电厂、金属冶炼厂、燃煤锅炉厂、垃圾焚烧和燃油过程排放的烟气和废气中含有SO2、SO3、NOx、重金属离子、有害烟尘,造成酸雨危害、臭氧层破坏、温室效应、光化学烟雾、人体健康危害、建筑物腐蚀等,严重的危害了人类的生产和生活,并造成了巨大的经济损失,成为我国和全球大气公害。我国一次能源以煤炭为主,每年排放的燃煤烟气中SO2、SO3和NOx总量远超过了我国的大气环境容量,形势非常严峻;我国是农业大国,生产化肥、磷肥需要大量硫酸和硫磺,而我国贫硫,每年花费巨资从国外进口硫磺;同时,我国的煤炭多分布在中西部缺水地区。因此,需要一种既能对多种有害废气进行一体化联合脱除,同时回收硫资源,并且节水的干法烟气净化技术,实现循环经济和可持续发展的良性循环。
[0003] 在众多的燃煤烟气净化技术中,移动床炭基吸附剂(活性炭、活性焦、活性半焦)变温吸附烟气净化与硫回收技术是实现高效联合脱硫、脱硝、脱重金属离子和除尘一体化的节水可资源化与宽谱净化的干法烟气净化技术,是一种集吸附、表面化学反应为特征的化学吸附和催化反应过程。其中,在适宜条件下,烟气中的SO2在炭基吸附剂上发生吸附和催化氧化反应被脱除,加热再生得到含浓SO2的脱附气,得到浓SO2,接后续工序可得浓H2SO4、硫磺或其他含硫化工产品;在适宜条件下,NOx与还原气体如NH3发生选择性催化还原(SCR)反应,生成无害的N2和H2O;重金属离子被吸附除去;有害烟尘被过滤除去,实现了烟气宽谱净化和硫回收功能。该技术已在国内外有多套工业装置运行或在建,取得了良好的效果。
[0004] 该技术虽然得到了应用,但是,已运行和在建的干法烟气净化设备存在以下问题。矩形截面的错流移动床吸附器净化得烟气通量相对圆柱径向床低,向心运动、离心运动不分明;圆柱形脱硫移动床吸附器颗粒层偏厚,压降较高,床内布气构件、颗粒移动调控构件有待改进,以提高轴向布气均匀度和减小颗粒磨损率与下移时颗粒速度梯度;吸附器单段脱硫,导致吸附剂利用效率不高,脱硫率和烟气处理能力还需提高;脱附器供热效率不高,热能回收利用功能不全,导致部分热能损失;炭基吸附剂输送采用皮带输送机、斗式提升机、气动传送机或翻斗传送机,焦粉分离采用机械振动筛分,导致设备投资费用高,对颗粒磨损大;部分吸附再生上下一体化装置虽节省了占地面积,但是装置抗风载荷、地震等因素的能力限制了其高度、大型化和烟气处理能力的提高;装置运行的稳定性、连续化和大型化有待提高。

发明内容

[0005] 本发明的目的是提供一种对燃煤烟气、烧结机烟气、金属冶炼废气、硫酸生产尾气、垃圾焚烧与燃油废气中产生的SO2、SO3、NOx、重金属离子(汞、镉等)和烟尘等有害物质进行宽谱净化与硫资源回收的一种烟气净化与硫回收系统及工艺,使其具有布气均匀、颗粒移动均匀和低压降特色;具有实现热能集成利用和回收的节能降耗特色;具有吸附剂输送连续稳定快捷、节省投资和机械磨损小的特色;具有选择性多功能宽谱净化、硫资源回收利用和节水特色;具有连续稳定运行、净化烟气大通量、节省设备投资和运行费用的特色。
[0006] 本发明的技术方案如下:
[0007] 一种烟气净化与硫回收系统,包括吸附器1、脱附器2、吸附剂输送系统、热能集成回收系统和炭粉分离回收系统,所述的吸附器1与脱附器2分开布置;吸附器1采用单器双段∏型径向错流移动床;吸附器的上下两段通过吸附器段间颗粒下料管15连接,吸附器烟气进口管11设置在吸附器1下段的顶部,吸附器烟气出口管12设置在吸附器1上段的下方;所述的吸附器1的顶部和底部分别设置有通过吸附器颗粒进口管13相连的吸附器储料罐17和通过吸附器颗粒出口管14相连的吸附器集料罐18;所述的脱附器2采用轴向逆流移动床,在所述脱附器2的顶部和底部分别设置有脱附器储料罐20和脱附器集料罐22;所述的吸附剂输送系统采用密相气力输送系统,该系统包括与吸附器集料罐18相连的吸附器发送装置24以及与脱附器集料罐22相连的脱附器发送装置25,所述的吸附器发送装置24和脱附器储料罐20通过吸附气力输送管30连接,脱附器发送装置25通过脱附气力输送管31与设置在吸附器储料罐17上部的淘析柱19连接;烟气净化与硫回收系统采用专用炭基吸附剂净化烟气;烟气净化与硫回收系统采用适宜工艺方法实现功能。。
[0008] 单器双段∏型径向错流移动床每段由外到内依次包括吸附器圆筒体壁3、环形气体流道4、外约翰逊网6、吸附器颗粒层7、内约翰逊网8和中心管9;环形气体流道4采用扇形筒5a或外筛网5b构件;在吸附器颗粒层中设置颗粒整流子。
[0009] 在吸附器1下段的吸附器颗粒层7上方,分布有4-8个吸附器增湿降温喷嘴15;在吸附器1上段选择性布置吸附器氨气进气管10;在与吸附器烟气进气管11相连的烟气进气管路上布置烟气加湿罐32。
[0010] 脱附器2包括脱附器集流管34、脱附器加热管35、设置在脱附器底部气体分布器36以及布置在脱附器顶部的脱附器分流斗33,所述的脱附器加热管35为多根套管,分别与脱附器分流斗33和脱附器集流管34连接。
[0011] 热能集成回收系统采用蒸汽热泵式结构与加热器介质回流式结构;其中,所述的蒸汽热泵式结构包括脱附器储料罐冷凝室21、脱附器集料罐汽化室23、以及设置在脱附器储料罐冷凝室和脱附器集料罐汽化室之间的热泵蒸汽管37和热泵冷凝管38;所述的加热器介质回流式结构包括设置在脱附器2外的脱附器加热器39、与脱附器集流管34相连的脱附器加热介质输送管40,以及与脱附器加热器39和脱附器加热介质输送管40相连的脱附器加热介质回流管41。
[0012] 吸附器发送装置24包括2-4个吸附器发送罐26和发送罐气刀27,脱附器发送装置25包括2-4个脱附器发送罐28和脱附器发送罐气刀29;所述的吸附器发送装置24中不同的吸附器发送罐26和所述的脱附器发送装置25中不同的脱附器发送罐28分别交替发送,连续操作。
[0013] 炭粉分离回收系统还包括脱附炭粉输送管42、吸附炭粉输送管43、一级旋风分离器44、二级旋风分离器45和粉料斗46。
[0014] 系统所采用的专用炭基吸附剂为脱硫脱硝活性炭、活性焦或活性半焦,吸附剂颗粒为圆柱形或球形;炭基柱状吸附剂为圆柱形,粒径范围为2-10mm,长径比为0.5-3,颗粒粒径分布的最大直径和最小直径与平均直径的偏差值在1mm内,轴向长度分布最长尺寸与最短尺寸比值为1-2之间;炭基球形吸附剂球形度良好,粒径范围2-10mm,粒径分布最大最小颗粒粒径与平均粒径偏差值在1-1.5mm内;吸附剂采用沥青基、煤基、高分子基或糠醛渣基原料制备。
[0015] 本发明提供的一种烟气净化与硫回收系统的工艺方法,该方法包括如下步骤:
[0016] 1)烟气在吸附器1的流型采用同时向心径向,或者同时离心径向或者上下段向心与离心组合型式,一般采用向心双∏型径向流动;当上段脱硝时,上段只采用向心径向流型;
[0017] 2)烟气在吸附器1下段向心径向流动时,烟气从烟气进口管11流入吸附器1的下段床层,向心流动经过环形气体流道4和外约翰逊网6,径向穿过下段吸附器颗粒层7与下-1移的炭基吸附剂错流接触,在温度100-160℃、空速400-1500h 的条件下发生生吸附和催化氧化反应,SO2被吸附脱除,然后进入中心管,再由下向上流动进入上段床层;
[0018] 3)烟气继续径向向心流动的过程中,残余的二氧化硫被吸附和催化氧化反应;或-1在此过程中喷入氨气,在温度120-180℃、空速400-1000h 的条件下,烟气中的NOx与下移的活性炭错流接触发生选择性催化还原反应;
[0019] 4)从吸附器1下落的吸附饱和的炭基吸附剂,经过吸附剂输送系统进入脱附器2,被加热到350-450℃,炭基吸附剂与附着在微孔内的H2SO4发生反应,解析出体积分率
10%-30%的浓SO2,硫资源得到回收利用,活性炭得到再生;
[0020] 5)从脱附器2下落再生的炭基吸附剂输入到淘析柱19,经空气吹扫,将炭基吸附剂中的炭粉分离,炭粉经过一级旋风分离器44、二级旋风分离器45进入粉料斗46回收;经淘析柱28分离炭粉后的活性炭与补充的新鲜炭基吸附剂继续向下移动进入吸附器1,完成一个循环。
[0021] 本发明与现有技术相比,具有以下优点及突出性效果:①吸附采用新结构径向错流移动床,具有布气均匀、颗粒移动均匀和低压降特色;②脱附采用新结构轴向逆流移动床,通过蒸汽热泵结构与加热介质循环利用,实现了热能集成利用和回收,节能降耗;③吸附剂采用气力密相输送,没有机械运动部件,节省投资,机械磨损小,输送稳定快捷,运行过程连续化;④选择性多功能宽谱净化,在净化脱除SO2的同时选择性宽谱净化NOx、重金属离子、烟尘,同时实现硫资源的回收利用,加热再生的干法净化过程节水;⑤连续稳定运行、大通量、节省设备投资和运行费用。

附图说明

[0022] 图1是本发明的一种烟气净化与硫回收的成套设备和工艺流程图。
[0023] 图2对吸附器1的不同高度处的横截面作了断面图,其中,图2(a)A-A’为采用气体向心流动流型时扇形筒分流道的横截面图,图2(b)A-A’为采用气体向心流动流型时圆筒形大直径外筛网分流道的横截面图,图2(c)A-A’为采用气体离心流动流型时扇形筒分流道的横截面图,图2(d)B-B’为在吸附器增湿降温喷嘴16高度的横截面图;图2(e)C-C’为气体向心流动时并采用扇形筒环形气体流道时,吸附器上段吸附器氨气进气管10高度处的横截面图;图2(f)C-C’为气体向心流动时并采用外筛网环形气体流道时,吸附器上段吸附器氨气进气管10高度处的横截面图。
[0024] 图中:1-吸附器,2-脱附器,3-吸附器圆筒体壁,4-环形气体流道,5a-扇形筒,5b-外筛网,6-外约翰逊网,7-吸附器颗粒层,8-内翰逊网,9-中心管,10-吸附器氨气进气管,11-吸附器烟气进口管,12-吸附器烟气出口管,13-吸附器颗粒进口管,14-吸附器颗粒出口管,15-吸附器段间颗粒下料管,16-吸附器增湿降温喷嘴,17-吸附器储料罐,18-吸附器集料罐,19-淘析柱,20-脱附器储料罐,21-脱附器储料罐冷凝室,22-脱附器集料罐,
23-脱附器集料罐汽化室,24-吸附器发送装置,25-脱附器发送装置,26-吸附器发送罐,
27-吸附器发送罐气刀,28-脱附器发送罐,29-脱附器发送罐气刀,30-吸附气力输送管,
31-脱附气力输送管,32-烟气加湿罐,33-脱附器分流斗,34-脱附器集流管,35-脱附器加热管,36-脱附器气体分布器,37-热泵蒸汽管,38-热泵冷凝管,39-脱附器加热器,40-脱附器加热介质输送管,41-脱附器加热介质回流管,42-脱附炭粉输送管,43-吸附炭粉输送管,44-一级旋风分离器,45-二级旋风分离器,46-粉料斗。

具体实施方式

[0025] 下面结合附图对本发明的具体结构、工作原理和工艺过程作进一步的说明。
[0026] (1)系统及工艺总体
[0027] 一种烟气净化与硫回收系统,包括吸附器1、脱附器2、吸附剂输送系统、热能集成回收系统和炭粉分离回收系统,吸附器1与脱附器2分开布置;吸附器1采用单器双段∏型径向错流移动床;吸附器的上下两段通过吸附器段间颗粒下料管15连接,吸附器烟气进口管11设置在吸附器1下段的顶部,吸附器烟气出口管12设置在吸附器1上段的下方;所述的吸附器1的顶部和底部分别设置有通过吸附器颗粒进口管13相连的吸附器储料罐17和通过吸附器颗粒出口管14相连的吸附器集料罐18;所述的脱附器2采用轴向逆流移动床,在所述脱附器2的顶部和底部分别设置有脱附器储料罐20和脱附器集料罐22;所述的吸附剂输送系统采用密相气力输送系统,该系统包括与吸附器集料罐18相连的吸附器发送装置24以及与脱附器集料罐22相连的脱附器发送装置25,所述的吸附器发送装置24和脱附器储料罐20通过吸附气力输送管30连接,脱附器发送装置25通过脱附气力输送管31与设置在吸附器储料罐17上部的淘析柱19连接;烟气净化与硫回收系统采用专用炭基吸附剂净化烟气;烟气净化与硫回收系统采用适宜工艺方法实现功能。
[0028] 系统中的其他辅助系统还包括增湿降温系统、过程控制系统、储料集料系统、副产品回收加工系统和烟气监测系统等部分。在图中未标出但需要说明的设备还包括SO2富集装置需深加工时接的后续工序,如催化氧化制酸,接Claus装置还原制备硫磺等;分离SO2、CO2和CO气体的分离设备,存储CO2和CO的设备;在吸附塔下段脱硫,上段硫氮双脱但主要脱硝的时候,还需要加氨气储料罐、管路、阀门连到吸附塔上段的氨气进口。
[0029] 一种烟气净化与硫回收系统的工艺方法,包括如下特征和步骤:1)烟气在吸附器1的流型采用同时向心径向,或者同时离心径向或者上下段向心与离心组合型式,一般采用向心双∏型径向流动;当上段脱硝时,上段只采用向心径向流型;2)烟气在吸附器1下段向心径向流动时,烟气从烟气进口管11流入吸附器1的下段床层,向心流动经过环形气体流道4和外约翰逊网6,径向穿过下段吸附器颗粒层7与下移的炭基吸附剂错流接触,在温度-1
100-160℃、空速400-1500h 的条件下发生生吸附和催化氧化反应,SO2被吸附脱除,然后进入中心管,再由下向上流动进入上段床层;3)烟气继续径向流动的过程中,残余的二氧-1
化硫被吸附和催化氧化反应;或在此过程中喷入氨气,在温度120-180℃、空速400-1000h的条件下,烟气中的NOx与下移的活性炭错流接触发生选择性催化还原反应;4)从吸附器
1下落的吸附饱和的炭基吸附剂,经过吸附剂输送系统进入脱附器2,被加热到350-450℃,炭基吸附剂与附着在微孔内的H2SO4发生反应,解析出体积分率10%-30%的浓SO2,硫资源得到回收利用,活性炭得到再生;5)从脱附器2下落再生的炭基吸附剂输入到淘析柱19,经空气吹扫,将炭基吸附剂中的炭粉分离,炭粉经过一级旋风分离器44、二级旋风分离器45进入粉料斗46回收;经淘析柱28分离炭粉后的活性炭与补充的新鲜炭基吸附剂继续向下移动进入吸附器1,完成一个循环。
[0030] (2)吸附器
[0031] 吸附器1采用单器双段∏型圆柱形径向错流移动床,必要时可采用多段结构,是净化系统的核心设备。吸附器1主体横截面为圆形,通过结构设计和内构件实现轴向均匀布气,颗粒接近平推流型均匀向下移动,低压降,具有高效脱硫、选择性硫氮双脱功能、宽谱净化与硫回收资源化利用;。
[0032] 吸附器圆筒体壁3、吸附器顶部封头和吸附器底部封头组成吸附器壳体,吸附器壳体上布置吸附器烟气进口管11、吸附器烟气出口管12、吸附器颗粒进口管13和吸附器颗粒出口管14;吸附器上下段颗粒层之间通过吸附器段间颗粒下料管15连接;在吸附器壳体内与其同轴设置有中心管9、扇形筒5a或外筛网5b等内构件;每段吸附器1由外到内依次为吸附器圆筒体壁3、环形气体流道4、外约翰逊网6、吸附器颗粒层7、内约翰逊网8和中心管9;环形气体流道4采用扇形筒5a或外筛网5b构件;在每段吸附器的颗粒层中设置颗粒整流子;在吸附器1下段的吸附器颗粒层7上方,分布有4-8个吸附器增湿降温喷嘴15;在吸附器1上段脱硝时还布置有4-24个吸附器氨气进气管10。
[0033] 吸附器1采用新结构实现轴向均匀布气。烟气在吸附器1内的流动可以为采用同时向心径向或者同时离心径向或者上下段间采用向心与离心组合流动型式,一般采用向心双H型径向错流流动;当上段脱硝时,上段只采用向心径向错流流型。为实现轴向均匀布气,在中心管9上采用变开孔率调节均匀布气;气体向心流动时,吸附器烟气进口管11接环形布气管或中心布气喷头;气体向心流动时,在扇形筒5a或外筛网5b外选择性布置格栅或开孔的条孔板作二次布气构件;气体离心流动时,在中心管9外侧选择性布置格栅或开孔的条孔板作二次布气构件;优化分流流道与集流流道截面积比;采用以上构件和结构,实现轴向布气均匀度在0.95以上。
[0034] 吸附器1采用新结构实现颗粒平推流均匀向下移动。颗粒从吸附器1上段的吸附器颗粒进口管13流入吸附器1上段,在重力作用下向下移动,经过上段环形的吸附器颗粒层7和吸附器段间颗粒下料管15,从最下段的吸附器颗粒层7经吸附器颗粒出口管14流出;床层采用约翰逊网改善颗粒下移性能,防止颗粒贴壁或者较大径向速度梯度;在每段中下部设置颗粒整流子,以及采用圆锥形锥形下料结构,改善颗粒向下的移动性能,防止颗粒出现漏斗流或偏心流等流型,使颗粒接近平推流均匀向下移动。
[0035] 通过结构设计实现吸附器1薄床层低压降运行。环形吸附剂床层厚度低于相同进气通量下传统吸附脱硫设备的颗粒床层厚度,并可在设计时控制颗粒床层径向的厚度,形成薄颗粒床层操作,以降低床层压降和节省能耗。
[0036] 在脱硫为主时,吸附器各段工况相同,每段烟气空速处于400h-1-1500h-1的宽范围内,温度范围100-160℃;炭基吸附剂与烟气错流接触,吸附器1脱除烟气中的SO2,并脱除部分重金属离子和有害烟尘。
[0037] 在对烟气宽谱净化时,吸附器1上下段结构和工况不同,各段形成脱硫、脱硝的不同功能段,实现了联合脱硫、脱硝、脱重金属离子、除尘一体化的宽谱净化与硫回收功能。下段采用通用构件,温度在100-160℃内,活性炭与烟气错流接触,脱除烟气中的SO2、部分重金属离子和有害粉尘;上段除采用通用构件外,还包含氨气进气管,喷入氨气与烟气在移动-1床环形气体流道4混合,在温度120-180℃、空速400-1000h 的条件下与炭基吸附剂在上段吸附器颗粒层7错流接触,炭基吸附剂作为催化剂,氨气作为还原剂,发生NOx的选择性催化还原(Selective catalytic reduction,SCR)反应,生成N2和H2O,脱除NOx,同时继续脱除部分痕量SO2、重金属离子和有害烟尘。
[0038] (3)脱附器
[0039] 脱附器2为轴向逆流移动床,实现了热能高效回收和集成利用。其典型结构特征在于,脱附器2为轴向逆流移动床,具有较高的长径比,具有充分的热能集成回收利用功能和颗粒均匀下移功能,在其中吸附硫饱和的炭基吸附剂通过加热再生;脱附器2内布置新型内构件,脱附器2外布置脱附器加热器39、介质管路和蒸汽热泵,形成蒸汽热泵式结构与加热器介质回流式结构实现热能集成回收系统采用。
[0040] 炭基吸附剂走脱附器2的壳程,加热介质(热惰性气体、热空气、热蒸汽、熔盐等)走管程。在壳程向下移动的炭基吸附剂,与脱附器加热管35中的加热介质发生能量交换,温度升高到350-450℃,吸附在炭微孔上的吸附态H2SO4化学键断裂,与炭发生还原反应,生成SO2、CO2或CO、H2O(g),炭有所消耗,吸附剂再生,恢复吸附能力。再生的气体被从塔下方逆流引入的少量的高温惰性N2吹扫,从塔上方引出到再生气分离设备,分离得到体积分数10%-30%的浓SO2气体,高浓度的CO2和部分CO气体;浓SO2被回收储存,或被送入后续工序进一步加工;CO2被分离储存,作为干冰(CO2)用于消防及用作化工原料。为使吸附剂在脱附器2内均匀向下移动,在脱附器2下方加整流子,防止出现对再生不利的颗粒流型;脱附器2内多根脱附器加热管35走加热介质,类似于列管换热器,根据换热任务布置列管的尺寸和根数;脱附器2下方为脱附器气体分布器36。器内上方设脱附器分流斗33和脱附器集流管34,连接器内的脱附器加热管35及器外的脱附器加热器39、脱附器加热介质输送管40和脱附器加热介质回流管41。
[0041] 脱附器2吹扫气体的工作路线:热惰性气体或热蒸汽经气体输送管,并被脱附器加热器32加热后,由脱附器吹扫气进口管流入脱附器2,经过脱附器气体分布器36,在脱附器2壳程向上流动,吹扫向下移动的吸附饱和硫的炭基吸附剂,将再生的含浓SO2吹扫下来,形成含体积浓度10-30%浓SO2的脱附气,继续向上流动,经过顶部脱附气出口管流出,回收浓SO2储存或者接入后续工序。
[0042] 脱附器2加热介质的工作路线:以熔盐或高温烟气或过热蒸汽作加热介质,经过脱附器加热介质输送管40流入脱附器分流斗33,向下流入脱附器加热管35,与壳程的炭基吸附剂换热,温度降低,在从脱附器加热管35(设置为类U形管)转折方向后向上流入脱附器集流管34,向外流入脱附器加热介质回流管41,经过脱附器加热器39加热,再向上流动由脱附器加热介质回流管41流入脱附器加热介质输送管40,重新流入脱附器2内的脱附器分流斗33,完成回流和一个循环,实现加热介质的热能集成回收利用。
[0043] (4)吸附剂输送系统
[0044] 吸附剂输送系统采用密相气力输送系统,该系统包括与吸附器集料罐18相连的吸附器发送装置24以及与脱附器集料罐22相连的脱附器发送装置25,所述的吸附器发送装置24和脱附器储料罐20通过吸附气力输送管30连接,脱附器发送装置25通过脱附气力输送管31与设置在吸附器储料罐17上部的淘析柱19连接;吸附器发送装置24包括2-4个吸附器发送罐26和发送罐气刀27,脱附器发送装置25包括2-4个脱附器发送罐28和脱附器发送罐气刀29;所述的吸附器发送装置24中不同的吸附器发送罐26和所述的脱附器发送装置25中不同的脱附器发送罐28分别交替发送,连续操作,实现系统的连续运行。
[0045] 在吸附器集料罐20下,安排有2-4个吸附器发送罐26,通过吸附气力输送管30将从吸附器1下落的吸附饱和的炭基吸附剂输送到脱附器2上部的脱附器储料罐20;在脱附器集料罐22下,安排2-4个脱附器发送罐28,通过脱附气力输送管31将加热再生后的炭基吸附剂输送到吸附器1上方的淘析柱19;输送介质氮气或空气吸附器发送装置24和脱附器发送装置25连续运行,使吸附饱和的炭基吸附剂和再生的炭基吸附剂连续输送,形成稳定的料栓,实现吸附器1和脱附器2连续稳定运行。
[0046] (5)热能集成回收系统和炭粉分离回收系统及其他辅助系统
[0047] 热能集成回收系统采用蒸汽热泵式结构与加热器介质回流式结构。
[0048] 蒸汽热泵式结构包括脱附器储料罐冷凝室21、脱附器集料罐汽化室23、以及设置在脱附器储料罐冷凝室和脱附器集料罐汽化室之间的热泵蒸汽管37和热泵冷凝管38。脱附器储料罐冷凝室21布置在脱附器储料罐20内,其内热蒸汽加热输送来的需再生的炭基吸附剂到较高温度,再进一步在脱附器2内加热到脱附再生温度,冷凝水由热泵冷凝管38回流到脱附器集料罐汽化室23内;脱附器集料罐汽化室23中回流下来的水,被从脱附器2落下的脱附再生的热炭基吸附剂加热,汽化成热蒸汽,通过热泵蒸汽管37上升流动到冷凝室中加热刚输送来的炭基吸附剂,两者构成蒸汽热泵,实现用出口高温炭基吸附剂的热给入口低温炭基吸附剂加热,实现热能高效回收和集成利用。。
[0049] 加热器介质回流式结构包括设置在脱附器2外的脱附器加热器39、与脱附器集流管34相连的脱附器加热介质输送管40,以及与脱附器加热器39和脱附器加热介质输送管40相连的脱附器加热介质回流管41;脱附器加热器39实现对回流的加热介质和从底部走壳程的吹扫气加热;脱附器2加热介质的工作路线如前所述,通过介质加热、回流的循环,实现脱附器加热器32和加热介质的热能集成回收利用。
[0050] 炭粉分离回收系统包括淘析柱19、脱附炭粉输送管42、吸附炭粉输送管43、一级旋风分离器44、二级旋风分离器45和粉料斗46。通过炭粉分离回收系统,将炭基吸附剂在吸附器1、脱附器2和输送管路中磨损产生的炭粉回收,从粉料斗46回收炭粉,从而减小吸附器运行的阻力,保证其正常运行;同时,在吸附器底部也有管子和阀门辅助卸下部分炭粉。
[0051] 烟气净化与硫回收系统除了热能集成回收系统和炭粉分离回收系统,还有其他的辅助系统,主要包括增湿降温系统、过程控制系统、储料集料系统、副产品回收加工系统和烟气监测系统等部分。在与吸附器烟气进口管11相连的烟气进气管路上布置烟气加湿罐32,对烟气进行第一次选择性增湿降温;烟气流入增湿降温设备,由吸附器烟器进口管11流入吸附器1,此处吸附器增湿降温喷嘴16进行第二次选择性增湿降温。储料集料系统包括是实现物料连续移动的辅助系统,包括吸附器储料罐17、吸附器集料罐18、脱附器储料罐20和脱附器集料罐22;吸附器1上方的吸附器储料罐17,用于存放再生后的活性炭和人工定期补充的炭基吸附剂颗粒;脱附器2上方的脱附器储料罐20,储存输送系统输送来的失去吸附能力的炭基吸附剂,下移入脱附器2再生;吸附器集料罐18布置在吸附器1的下方,脱附器集料罐22布置在脱附器2的下方,其中的炭基吸附剂分别下移到吸附器发送装置24和脱附器发送装置25,进入吸附剂输送系统。副产品回收加工系统包括气体分离装置、硫产品回收装置,和后续硫产品加工转化装置,将从脱附器2吹扫再生出的气体分离、回收和加工。过程控制和自动化系统采用先进的DCS系统,实现装置的自动化运行和控制,监测和调控仪器各参数的运行状态,包括温度、压力、组成、流量、料位、料输送量、空气量、换热能力等。烟气监测系统采用烟气连续在线自动监测仪器连续在线自动分析监测烟气的组成、流量、温度等状态。
[0052] (6)适应系统特性的炭基吸附剂
[0053] 系统所使用的专用炭基吸附剂为脱硫脱硝活性炭、活性焦或活性半焦,吸附剂颗粒为圆柱形或球形;炭基柱状吸附剂为圆柱形,粒径范围为2-10mm,长径比为0.5-3,颗粒粒径分布的最大直径和最小直径与平均直径的偏差值在1mm内,轴向长度分布最长尺寸与最短尺寸比值为1-2之间;炭基球形吸附剂球形度良好,粒径范围2-10mm,粒径分布最大最小颗粒粒径与平均粒径偏差值在1-1.5mm内;吸附剂采用沥青基、煤基、高分子基或糠醛渣基原料制备。根据材质调节其堆积密度、移动性能和床层填充率(或孔隙率)。
[0054] 柱状脱硫脱硝吸附剂的机械强度、规模化制备已积累了较多经验,在工业上已有较多成功的应用经验;而球形脱硫脱硝吸附剂还局限于实验室探索,尤其是我国以煤基原料为主,对其机械强度的研究还有待进一步探索;但是,由于球形吸附剂良好的滚动性,相对较低的压降,在移动床中更易控制颗粒移动和呈现平推流流型,颗粒尺寸制备相对更小以减小内扩散效应,使得炭基球形脱硫脱硝吸附剂的应用有着更加广阔的发展前景。
[0055] 系统采用的炭基柱状和球形吸附剂均具有优良脱硫脱硝宽谱净化和强选择性吸附性能,良好的吸附催化氧化SO2为H2SO4的反应性能,良好的催化NH3与NOx发生SCR反应生成N2和H2O的性能,良好的脱除汞、镉等重金属离子性能和良好的除尘性能;同时,吸附剂具备下列优良的物理性能,包括高的机械强度,高耐磨损率,高燃点,大比表面积,丰富的微孔结构,适中分布的微孔中孔大孔比率,在350-450℃时易于再生,加热再生时释放高浓SO2并易于回收,同时原料来源广泛,价格低廉。
[0056] (7)炭基吸附剂工作路线
[0057] 炭基吸附剂为柱状或球状的脱硫脱硝活性炭、活性焦或活性半焦。吸附器1上的吸附器储料罐17的炭基吸附剂有两个来源,一是来源于脱附器2再生后的气力输送,二是来源于人工定期补充。脱附器2上方脱附器储料罐20的炭基吸附剂来源于吸附器1吸附饱和SO2及催化还原NOx后的密相气力输送过程。
[0058] 在脱附器2中加热再生后的炭基吸附剂,由脱附气力输送管31输送到吸附器1上方的淘析柱19,由淘析柱19下方的空气或惰性气体吹扫,固料分两部分,一部分为淘析出的炭粉,经过一级旋风分离器44、二级旋风分离器45和粉料斗46回收;另一部分颗粒吸附剂与定期补充的新鲜吸附剂一起在重力的作用下,向下移动进入吸附器储料罐17,由自动控制装置监测,维持一定的合适料位和料量。吸附器储料罐17中炭基吸附剂通过吸附器颗粒进口管13进入吸附器1上段的吸附器颗粒层7,与流入吸附器上段的烟气错流接触,发生吸附和催化氧化反应,脱除残余的SO2到,实现脱硫95-99%的净化效率;或喷入NH3发生选择性催化还原(SCR)反应,生成N2和H2O,实现NOx的脱除。炭基吸附剂继续向下移动,通过吸附器段间颗粒下料管15进入吸附器1下段,与径向错流穿过吸附器颗粒层7的烟气接触,发生吸附催化氧化反应,生成的H2SO4附着在炭基吸附剂微孔中,脱除净化烟气中的SO2;失去继续吸附净化能力的炭基吸附剂在重力和下料装置控制下料量的双重作用下缓慢下移到吸附器集料罐18中,炭粉通过滤网由中间口排出回收。吸附器集料罐18中的吸附剂颗粒下移到下面的吸附器发送罐26,空气或者N2经过吸附器发送罐气刀27进入吸附器发送罐26,将失去继续吸附净化能力的炭基吸附剂通过吸附气力输送管30输送到脱附器2上部的脱附器储料罐20,空气或N2排出,携带磨损生成的炭粉经过脱附炭粉输送管42,和从吸附器1上方淘析柱19分离吹出的炭粉一起经过吸附炭粉输送管43,进入一级旋风分离器44和二级旋风分离器45,气体排出,分离的炭粉进入粉料斗46回收。脱附器储料罐20中的炭基吸附剂被脱附器储料罐冷凝室21预热后向下移动进入脱附器2进一步加热再生;在脱附器2内颗粒走壳程,加热介质走管程,颗粒被进一步加热到脱附再生的温度(350℃-450℃)再生,由吹扫气吹扫,形成体积组成为10%-30%的浓SO2脱附气,排出回收;再生后恢复吸附能力的炭基吸附剂继续向下移动进入脱附器集料罐22,用自身热能将脱附器集料罐汽化室23中的水汽化,同时自身降温,继续下移入脱附器发送罐28,空气或者N2由脱附器发送罐气刀29发送再生后的炭基吸附剂,形成料栓输送,沿脱附气力输送管
31输送到吸附器1上方的淘析柱19,在输送中进一步降温,下移入吸附器1,完后一个吸附剂输送循环;如此循环往复,并由吸附器集料罐18下方的2-4个吸附器发送罐26和脱附器集料罐22下方的2-4个脱附器发送罐28各自交替发送,实现烟气净化与硫回收系统的连续稳定运行。
[0059] (8)烟气工作路线
[0060] 烟气经过净化前烟气输送管,流入烟气加湿罐32,当温度高于160℃,水蒸气含量低于4%时,由温度感应器和湿度测量感应装置发送信号,启动烟气加湿罐32上的控制装置,由喷壶喷水加湿降温至炭基吸附剂烟气净化时的最佳工作条件内;从烟气加湿罐32流出的烟气进入吸附器1下段的吸附器烟气进口管11;当烟气向心径向流动时,由吸附器增湿降温喷嘴16选择性加湿后经过吸附器1下段环形气体流道4径向错流流动,经过扇形筒5a或外筛网5b、选择性设置的格栅或开孔的条孔板等二次布气构件,外约翰逊网6、径向错流穿过下段吸附器颗粒层7,与下移的炭基吸附剂错流接触,发生吸附和催化氧化反应,SO2被吸附脱除,烟气得到净化。在吸附器1下段净化后的烟气继续径向流动,经过内约翰逊网
8、中心管开孔壁,进入中心管9,从下段向上流动进入吸附器1上段的环形气体流道4径向流动,经过扇形筒5a或外筛网5b、选择性设置的格栅或开孔的条孔板等二次布气构件,外约翰逊网6、径向错流穿过上段吸附器颗粒层7,与从吸附器储料罐17落下的再生和新鲜炭基吸附剂错流接触,发生吸附和催化氧化反应,使从下段净化后的烟气得到进一步净化,脱除SO2更完全;或者在脱除残余SO2的同时喷入NH3,脱去NOx,并分别在下段吸附器颗粒层7和上段吸附器颗粒层7除去痕量重金属离子(Hg、Cd、Pb、类金属离子As、Se)、痕量有害气体HF、HCl、二噁英和有害烟尘,经过两段净化后的烟气进入吸附器1上段的中心管9,从吸附器烟气出口管12排出,经过引风机,引入烟囱排放到大气。净化时吸附器以单器双段为主,烟气在吸附器1以向心双∏型流动为主,根据情况选择多段和其他∏型流型。
[0061] (9)副产品回收及废气路线
[0062] 在脱附器2中,再生得到的浓SO2和其他废气组成的脱附气从脱附器2顶部出口流出,经过浓集SO2的脱附气输送管,进入后续分离、储存装置和加工工序。其中,脱附得到的浓SO2气体作为副产品回收,储存起来,或者作为化工原料进一步送入后续工序,其中,接Resox还原工序或Claus还原工序工艺设备可制备硫磺,接制酸工序可生产浓H2SO4,接其他深加工工序可生产其它高附加值含硫化工产品;重金属离子作为废渣集中收集处理;再生气中的大量的CO2气体通过分离装置分离出来,经过管道送入CO2储存装置,一方面作为消防和有用产品储存使用,另一方面减少了CO2的排放量;其中产生的CO气体另行收集处理,作为化工原料储存。
[0063] 在脱附器2中,炭基吸附剂如果在高温下遇到含O2的气体,并且温度达到燃点以上,有着火燃烧的危险;所以一方面需要严格控制再生温度在燃点以下,使用高燃点的炭基吸附剂,设计加强传热功能,防止热点出现,尽量隔绝氧气等;同时,需要备下消防用品,其中从烟气废气中分离储存的CO2(干冰)可作为消防用品,布置到脱附器2周围备用;必要时,可加锁气、锁压装置,以严格隔绝氧气,防止局部发生热点引起自燃。
[0064] (10)实施例1:SO2脱除净化与硫回收
[0065] 本例设计烟气净化与硫回收系统用于燃煤电厂中单机组600MW的超临界燃煤机6 3 6 3
组上,燃煤机组烟气量1.8×10m/h,设计处理烟气量2.0×10m/h,单吸附器1处理,设-1
计烟气空速1000h 。烟气组分中SO2含量为1000-4000ppm,NOx含量为200-800ppm,吸附温度在120-150℃,脱附温度在350-450℃;所用吸附剂为山西新华环保(化工)有限公司生产的直径5mm的ZL50柱状脱硫脱硝活性炭,或者直径10mm的ZL100柱状脱硫脱硝活性炭。单吸附器1上下每段相当于一个独立整器的处理效果,只脱硫回收时上下段气体双∏形流动相当于两个独立的单段吸附器的串连;考虑吸附反应段和料封段,吸附塔内共装填
3 3 3
专用脱硫脱硝活性炭6000m,其中,开孔区吸附反应段段装填4000m,料封区装填2000m,
3 3
活性炭堆积密度580kg/m,单塔总装填量3480t(吨);塔的上下每段装填活性炭3000m,即
1740t(吨);脱附器2要满足再生量,根据吸附器1中活性炭的总量和再生要求设计;输送系统的输送任务、输送设备尺寸,吸附器储料罐1、吸附器集料罐18、脱附器储料罐20、脱附器集料罐22、换热设备等,均根据相应的处理任务进行设计。活性炭循环量96.67t/h,吸附器1中的活性炭循环一次时间为36h。吸附器1运行时主要脱硫,无NH3喷入器上段,NOx只发生吸附过程,脱除率低,基本不脱硝。
[0066] 从烟囱引出的烟气经过净化前烟气输送管,引到烟气加湿罐32,当烟气温度高于160℃或者烟气湿度低于4%时,烟气加湿罐32中的喷壶在感应装置的感应下,喷水进行加湿降温;经过选择性加湿降温的烟气经过管路流入吸附器1的吸附器烟气进口管11,径向流过吸附器1下段的吸附器颗粒层7,与缓缓向下移动的活性炭颗粒错流接触,发生化学吸附和催化氧化反应,生成的H2SO4附着在活性炭微孔内,从而烟气中的SO2、SO3被有效脱除;
净化的烟气从吸附器1下段向上流动到吸附器1上段,从环形气体流道4经过向下移动的吸附器颗粒层7,错流接触,发生化学吸附和催化氧化反应,进一步脱除残余的SO2,实现脱硫率95%-99%。被净化的烟气流入吸附器1上段的中心管9,向下流动,从吸附器烟气出口管12流出,经过烟气管路和引风机,经SO2连续自动在线检测仪器检测,符合环保标准,去烟囱,排入大气。活性炭颗粒在脱附器2加热再生时得到含10%-30%体积分数的浓SO2脱附气,回收硫资源并加工成各种含硫化工产品。
[0067] 活性炭颗粒的补充、再生和循环,脱附器2的工作,吸附剂输送和炭粉分离回收,换热设备的运转,在本发明专利的上面各部分已说明,在此不再重述。
[0068] (11)实施例2:硫氮双脱宽谱净化与硫回收
[0069] 本例设计烟气净化与硫回收系统用于燃煤电厂中单机组600MW的超临界燃煤机6 3 6 3
组上,燃煤机组烟气量1.8×10m/h,设计处理烟气量2.0×10m/h,单吸附器1处理,烟气组分中SO2含量为1000-4000ppm,NOx含量为200-800ppm,CO2气体含量在13%左右,还含-1
有部分有毒重金属离子汞、镉等,有害烟尘。设计两种工况:工况1为烟气空速1000h ,此-1
时吸附温度、脱附温度、设计参数和活性炭装填量同实施例1;工况2为烟气空速500h ,此时吸附温度、脱附温度同实施例1,但是活性炭装填量增倍,吸附器体积增倍,或在两个与原吸附器同体积的吸附器内联合处理。多组分的宽谱净化对吸附器1的工作运行提出了更高的要求;宽谱净化时在塔下段主要脱除烟气中的SO2,在塔上段脱NOx,吸附器1结构参见前文,在此处采用向心双∏型结构,烟气流型选择向心双∏型流动。
[0070] 从烟囱引出烟气,经过净化前烟气输送管和烟气加湿罐32,流入吸附器1下段,与活性炭径向错流接触,烟气中的大部分SO2被脱除,部分重金属离子和有害烟尘被脱除,剩余的NOx、少量残余的SO2、重金属离子和部分有害烟尘从吸附器1下段的中心管9,向上流动到吸附器1上段继续净化;在上段,烟气中的NOx和其他残余成分在吸附器活性炭颗粒层7得到进一步有效净化脱除。
[0071] 流入吸附器1上段的烟气,流入上段环形气体流道4;从NH3罐引出氨气至吸附器1上段的4-32个吸附器氨气进气管10,流入环形气体流道4,与从下段流动上来的烟气混合,在环形气体流道4与烟气中残余的微量SO2反应生成微量铵盐,SO2得到了进一步的净化,生成的铵盐经过较长时间积累到一定量后需要定期清除,以维护吸附器1上段环形气体流道4正常工作。NH3和烟气混合后,经过扇形筒5a或外筛网5b、选择性设置的格栅或开孔的条孔板等二次布气构件,外约翰逊网6、向心径向错流流动穿过上段吸附器颗粒层7,与从吸附器1上方的吸附器储料罐17和吸附器颗粒进口管13缓缓下移的再生活性炭与人工补充的新鲜活性炭的混合吸附剂颗粒错流接触,在活性炭的催化作用下,烟气中的NOx与NH3发生选择性催化还原(SCR)反应,生成N2和H2O,NOx被净化脱除;其余在下层已被净化的残余组分SO2、重金属离子和有害烟尘继续被净化脱除,烟气得到全面的宽谱净化,实现脱硫率95%-99%,脱硝率80%以上。净化后的烟气径向流过选择性设置的格栅或开孔的条孔板等二次布气构件,内约翰逊网8、流入吸附器1中心管9,从吸附器烟气出口管12流出,经过引风机,排入大气;净化后从吸附器烟气出口管12流出的烟气被引出一小股,经过连续在线自动监测仪器实时分析烟气净化效果。活性炭颗粒在脱附器2加热再生时得到含
10%-30%体积分数的浓SO2脱附气,回收硫资源并加工成各种含硫化工产品。
[0072] 活性炭颗粒的运动、输送、再生等,参见实施例1与专利中其它相关部分的叙述。经过净化,烟气中的SO2被净化并在脱附器2再生时浓集回收,并有部分在吸附器1上段生成铵盐;其它组分如NOx生成N2和H2O除掉,重金属离子吸附形成金属渣除掉,有害粉尘被过滤除掉;选择性的脱除回收了CO2,烟气得到了宽谱净化,并回收了硫资源,实现了环保和资源回收的双重效益。