用于混合动力系统的控制内燃机停止的方法和装置转让专利

申请号 : CN200810092857.5

文献号 : CN101298250B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : B·R·斯奈德

申请人 : 通用汽车环球科技运作公司

摘要 :

本发明涉及用于混合动力系统的控制内燃机停止的方法和装置。本发明提供了一种控制方案,用于在进行中的车辆操作期间停止混合动力系统的内燃机。作为在一种制品中的程序代码执行的所述方法包括按顺序提出的下述步骤。首先,控制内燃机操作,以使内燃机停止点火。然后选择性地控制来自第一和第二电机的转矩输出,以减小内燃机速度。然后选择性地控制来自第一和第二电机的转矩输出,以使内燃机的转动基本停止在预定的曲轴位置附近。

权利要求 :

1.一种用于控制动力传动系的操作以在进行中的车辆操作期间停止内燃机的装置,所述动力传动系包括内燃机、第一电机和第二电机以及机电变速器,所述机电变速器选择性地操作以在所述内燃机与所述第一电机和第二电机之间传递转矩,所述装置执行按顺序提出的以下步骤:首先,控制内燃机操作从而使内燃机停止点火;然后

控制阻尼器离合器,从而锁定内燃机与机电变速器的转动;然后

选择性地控制来自第一电机和第二电机的转矩输出,从而减小内燃机速度;然后选择性地控制来自第一电机和第二电机的转矩输出,从而使内燃机的转动基本停止在预定的曲轴位置附近。

2.根据权利要求1所述的装置,其中控制内燃机操作从而使内燃机停止点火还包括使进气歧管绝对压力最小。

3.根据权利要求2所述的装置,还包括在内燃机转动停止后随后打开内燃机节气门。

4.根据权利要求1所述的装置,还包括控制所述阻尼器离合器,从而在内燃机停止期间将内燃机的转动锁定至所述机电变速器。

5.根据权利要求1所述的装置,其中控制内燃机操作从而使内燃机停止点火包括顺序地停止到内燃机中的燃料喷射。

6.根据权利要求5所述的装置,还包括当所述内燃机包括火花点火内燃机时,在顺序地停止燃料喷射之前,控制火花点火从而使内燃机转矩最小。

7.根据权利要求5所述的装置,还包括当所述内燃机包括压缩点火内燃机时,控制燃料喷射定时从而使内燃机转矩最小。

8.根据权利要求5所述的装置,还包括选择性地将可变凸轮相位装置控制到停止位置。

9.根据权利要求8所述的装置,还包括可变凸轮相位装置被控制到完全延迟位置。

10.根据权利要求8所述的装置,还包括可变凸轮相位装置被控制到完全提前位置。

11.根据权利要求2所述的装置,其中使进气歧管绝对压力最小包括基本完全关闭所述内燃机的进气管理阀。

12.根据权利要求2所述的装置,其中使进气歧管绝对压力最小包括将内燃机节气门控制到基本完全关闭的位置。

13.根据权利要求1所述的装置,其中控制阻尼器离合器从而锁定内燃机与机电变速器的转动还包括基本立即锁定内燃机与机电变速器的转动。

14.根据权利要求1所述的装置,其中选择性地控制来自第一电机和第二电机的转矩输出,从而减小内燃机速度包括使用系统方程以基于来自内燃机的输入转矩和操作者转矩需求确定来自第一电机和第二电机中的每个的电机转矩输出。

15.根据权利要求1所述的装置,包括在执行控制内燃机操作从而使内燃机停止点火之前,将所述机电变速器选择性地控制到操作的无级变速模式。

16.一种控制混合动力系统的操作以停止内燃机的方法,所述混合动力系统包括内燃机、第一电机和第二电机以及机电变速器,所述机电变速器可选择性地操作,以在所述内燃机与第一电机和第二电机之间传递转矩,所述方法包括按顺序提出的以下步骤:首先,控制内燃机操作,以使内燃机停止点火并使进气歧管绝对压力最小;然后控制阻尼器离合器,以锁定内燃机与机电变速器的转动;然后选择性地控制来自第一电机和第二电机的转矩输出,以减小内燃机速度;并且然后选择性地控制来自第一电机和第二电机的转矩输出,以使内燃机的转动基本停止在预定的曲轴位置附近。

17.根据权利要求16所述的方法,其中基于电能存储装置的电能能力限制来自第一电机和第二电机的转矩输出,所述电能存储装置可操纵以将电能供给至所述第一电机和第二电机。

18.根据权利要求16所述的方法,包括在控制内燃机操作以使内燃机停止点火之前,将所述机电变速器选择性地控制到操作的无级变速模式。

19.一种控制混合动力系统的操作以停止内燃机的方法,所述混合动力系统包括内燃机、电机和机电变速器,所述机电变速器可选择性地操作,以在所述内燃机与第一电机和第二电机之间传递转矩,所述方法包括按顺序提出的以下步骤:首先,将所述机电变速器选择性地控制到操作的无级变速模式;然后

控制内燃机操作,以使内燃机停止点火并使进气歧管绝对压力最小;然后控制阻尼器离合器,以锁定内燃机与机电变速器的转动;然后选择性地控制来自电机的转矩输出,以减小内燃机速度;并且然后

选择性地控制来自电机的转矩输出,以使内燃机的转动基本停止在预定的曲轴位置附近。

说明书 :

用于混合动力系统的控制内燃机停止的方法和装置

技术领域

[0001] 本发明涉及控制系统,其用于采用机电变速器的动力传动系控制系统。

背景技术

[0002] 混合动力系统结构包括转矩产生装置,所述转矩产生装置包括内燃机和电机,所述内燃机和电机通过变速器装置将转矩传递至车辆传动系。混合动力系统结构通过在进行中的车辆操作期间在适当的时刻关闭内燃机来减小内燃机的燃料消耗,所述适当的时刻包括诸如车辆停在红绿灯处或停在交通中的事件,或当车辆在高速公路的下坡部分上操作时。动力传动系结构包括例如内燃机和变速器系统,该变速器系统被控制和机械化,以关闭内燃机,并且通过通常称为带式交流发电机起动机(BAS)装置的交流发电机使用带驱动重新起动内燃机。其它动力系统结构包括内燃机和变速器系统,其中一个或多个电机产生驱动转矩,该驱动转矩直接地或通过变速器传递至车辆传动系。
[0003] 一个这种变速器包括双模复合分配机电变速器,该变速器使用输入部件从典型地是内燃机的主驱动力源接收驱动转矩,并使用输出部件将驱动转矩从变速器传递至车辆传动系。可操作地连接至电能存储装置的电机包括电动机/发电机,该电动机/发电机可操作,以与来自内燃机的转矩输入独立地产生用于到变速器的输入的驱动转矩。电机还可操作以将通过车辆传动系传递的车辆动能转换成可存储在电能存储装置中的电能电势。控制系统监测来自车辆和操作器的各种输入,并且提供动力系统的操作控制,包括控制变速器换档、控制转矩产生装置和管理电能存储装置与电机之间的电力交换。
[0004] 示例性机电变速器可通过转矩传递离合器的致动选择性地操作在固定档位模式和无级变速模式下,所述转矩传递离合器典型地采用液压回路以实现离合器致动,该离合器致动包括固定档位模式和无级变速模式。应用具有机电变速器的动力系统的工程师的任务是将控制方案应用于监测系统状态并控制各种系统和致动器的操作,以有效地控制动力传动系操作。
[0005] 动力系统的操作包括选择性地起动和停止内燃机的操作。内燃机停止可以是操作者发起的,其中车辆操作者通过钥匙关闭动作停止内燃机操纵。内燃机停止还包括在进行中的车辆操作期间的自动内燃机停止事件,其中内燃机通过控制系统自动地停止。这典型地响应于控制系统对停止内燃机的时机的判断而发生,并且被称为静态自动停止事件。控制系统选择性地停止内燃机的操作,以优化能量效率,并为了其它原因。
[0006] 在内燃机停止事件期间,在未点火的内燃机气缸中产生压缩转矩脉冲,并且传递至变速器转矩阻尼器和内燃机机体,这会导致到达车辆操作者的令人不快的振动,尤其是在对于动力传动系和各种传动系部件的共振频率下。
[0007] 需要一种控制方案,该控制方案可优选地停止内燃机的操作,并缓和车辆运行期间的压力脉冲和振动。在下文中说明这种系统。

发明内容

[0008] 按照本发明的一实施例,提供一种控制方案,用于包括在进行中的车辆操作期间停止混合动力系统的内燃机。作为在一种制品中的程序代码执行的所述方法包括按顺序提出的下述步骤。首先,控制内燃机操作,以使内燃机停止点火。控制阻尼器离合器以锁定所述内燃机与机电变速器的转动。然后选择性地控制来自电机的转矩输出,以减小内燃机速度。然后选择性地控制来自电机的转矩输出,以使内燃机的转动基本停止在预定的曲轴位置附近。
[0009] 本发明的一方面包括所述混合动力系统,其包括内燃机、第一和第二电机以及机电变速器,该机电变速器可选择性地操作,以在所述内燃机与第一和第二电机之间传递转矩
[0010] 本发明的一方面包括内燃机转矩仿真模型,以基于当前的内燃机操作条件准确地实时确定内燃机压缩压力,从而适应内燃机操作条件的变化。
[0011] 当阅读并理解以下对实施例的详细说明时,本领域的技术人员将清楚本发明的这些和其它方面。

附图说明

[0012] 本发明可在某些部件和部件的布置中采用物理形式,将参照附图详细说明本发明的实施例,附图形成该实施例的一部分,并且其中:
[0013] 图1是根据本发明的示例性动力传动系的示意图;
[0014] 图2是根据本发明用于控制系统和动力传动系的示例性结构的示意图;以及[0015] 图3和图4是根据本发明的图形表述。

具体实施方式

[0016] 现在说明附图,其中附图仅是为了说明本发明的目的,而不是为了限制本发明的目的。现在参照图1和图2,示出本发明的示例性系统,该系统包括内燃机14、变速器10、控制系统和传动系统。变速器10的机械方面在共同转让的美国专利No.6,953,409中详细地公开,该专利的名称为“具有四个固定传动比的双模复合分配混合动力机电变速器”,该专利通过参考包含与此。变速器10包括具有输入速度NI的输入轴12,该输入轴12优选地通过内燃机14驱动。内燃机14具有一曲轴,该曲轴经由轴18可操作地连接至一可锁定的转矩阻尼器装置20,该转矩阻尼器装置20可操纵以将转矩传递至变速器输入轴12。可锁定的转矩阻尼器装置包括离合器C5,该离合器C5可锁定转矩阻尼器装置20,从而在内燃机与变速器的输入轴12之间直接传递转矩。内燃机具有特征速度NE和输出转矩TE。当阻尼器装置20锁定时,内燃机速度NE和输出转矩TE有效地等于变速器输入速度NI和输入转矩TI,如果有任何差,则仅包括内燃机与变速器之间的部件的扭转。
[0017] 变速器10使用三个行星齿轮组24、26和28以及四个转矩传递装置,即离合器C170、C2 62、C3 73和C4 75。离合器C2和C4优选地包括液压致动的转动摩擦离合器。离合器C1和C3优选地包括接地至变速器壳体68的液压致动的静止装置。
[0018] 设有包括电动机/发电机56的第一电机和包括电动机/发电机72的第二电机,所述第一电机称为MA,所述第二电机称为MB并且经由行星齿轮可操作地连接至变速器。使用分解器82和84分别测量MA和MB的转动位置,分解器82和84是已知的电气装置,并且每个都包括定子和转子,所述定子和转子可操纵以测量电机的位置。变速器输出轴64可操作地连接至车辆传动系统90,以在输出速度NO下将驱动输出转矩TO提供给车轮。
[0019] 作为从燃料或存储在电能存储装置(ESD)74中的电势的能量转换的结果,变速器10从转矩产生装置接收输入转矩,所述转矩产生装置包括内燃机14和MA 56以及MB 72,所述输入转矩分别称为‘TI’、‘TA’和‘TB’。ESD 74经由DC传递导体27高压DC联接至变速器电力逆变器模块(‘TPIM’)19。TPIM 19是控制系统的部件,在下文中参照图2进行说明。TPIM 19通过传递导体29将电能传递至MA 56或从MA 56传递电能,并且TPIM 19类似地通过传递导体31将电能传递至MB 72或从MB 72传递电能。根据ESD 74是被充电还是放电,电流传递至ESD 74或从ESD 74传递。TPIM 19包括所述对电力逆变器和相应的电机控制模块,所述电机控制模块构造成接收电机控制命令并由此控制逆变器状态,用于提供电机驱动或再生发电功能。优选地,MA 56和MB 72是三相AC电机,每个都具有转子,该转子可操作以在安装在变速器的壳体上的定子内转动。逆变器包括已知的互补的三相电力电子装置。
[0020] 现在参照图2,示出控制系统的简要方块图,该控制系统包括分布式控制模块结构。下文说明的部件包括整体车辆控制结构的子集,并且可操作以提供在此所述的动力系统的协调的系统控制。控制系统综合有关信息和输入,并且执行算法以控制各种致动器来实现控制目标,所述控制目标包括诸如燃料经济性、排放、性能、驾驶性和硬件的保护的参数,所述硬件包括ESD 74的蓄电池和MA 56与MB 72。分布式控制模块结构包括内燃机控制模块(‘ECM’)23、变速器控制模块(‘TCM’)17、蓄电池组控制模块(‘BPCM’)21和TPIM19。混合控制模块(‘HCP’)5提供上述控制模块的上位(overarching)控制和协调。用户界面(‘UI’)13可操作地连接至多个装置,车辆操作者借助所述用户界面通过对转矩输出的需求典型地控制或指导包括变速器10的动力系统的操作。车辆操作者到UI 13的示例性输入包括加速器踏板、制动踏板、变速器档位选择器和车速巡航控制。每个上述控制模块都经由局域网(‘LAN’)总线6与其它的控制模块、传感器和致动器连通。LAN总线6允许各种控制模块之间的控制参数和命令的结构通讯。所使用的特定通讯协议是应用细节。
LAN总线和适当的协议提供上述控制模块之间的可靠的信息传递和多控制模块交互连接,并且其它控制模块提供诸如防锁死制动、牵引力控制和车辆稳定性的功能。
[0021] HCP 5提供混合动力系统的上位控制,用于ECM 23、TCM 17、TPIM19和BPCM 21的协调操作。基于来自UI 13和包括蓄电池组的动力系统的各种输入信号,HCP 5产生各种命令,包括输出至传动系90的操作者转矩需求(‘TO_REQ’)、来自内燃机的输入转矩TI、用于变速器10的N个离合器C1、C2、C3、C4的离合器转矩命令(‘TCL_N’)和用于MA和MB的电机转矩命令TA和TB。TCM 17可操作地连接至电液控制回路42,包括监测各种压力检测装置(未示出)并且产生和执行用于各种螺线管的控制信号,以控制压力开关并控制其中包含的阀。
[0022] ECM 23可操作地连接至发动机14,并且用于通过总地表示为集合线35的多个离散的线从各种传感器获取数据并分别控制发动机14的各种致动器。ECM 23从HCP 5接收发动机转矩命令TE_CMD,并产生希望的轴转矩和输入至变速器的实际发动机转矩的指示信号TI,该指示信号TI被输送至HCP 5。为了简明,将ECM 23示出为总体上具有经由集合线35与发动机14的双向界面。通过ECM 23检测的各种其它信号包括发动机冷却剂温度、到轴12的发动机输入速度NE、歧管压力、环境空气温度和环境压力,所述发动机输入速度NE被转换成变速器输入速度NI。可通过ECM 23控制的各种致动器包括燃料喷射器、点火模块和节气门控制模块。
[0023] TCM 17可操作地连接至变速器10,并且用于从各种传感器获取数据,并给变速器提供命令信号。从TCM 17道HCP 5的输入包括对于N离合器C1、C2、C3和C4中每个的估计的离合器转矩和输出轴64的转速NO。其它致动器和传感器可而用于提供从TCM到HCP用于控制目的的额外信息。TCM 17检测来自压力开关的输入,并选择性地致动压力控制螺线管和换档螺线管,以致动各离合器来实现各种变速器操作模式,如下文所述。
[0024] BPCM 21信号地连接一个或多个传感器,以将关于蓄电池的状态的信息提供给HCP 5,所述传感器可操作以监测ESD 74的电流或电压参数。这种信息包括蓄电池荷电状态、蓄电池电压和从PBAT_MIN到PBAT_MAX的范围内的可用的蓄电池功率。
[0025] 上述控制模块每个都优选地是通用数字计算机,该通用数字计算机总体上包括:微处理器或中央处理单元;包括只读存储器(ROM)、随机存取存储器(RAM)、电可编程序只读存储器(EPROM)的存储介质;高速时钟;模拟到数字(A/D)和数字到模拟(D/A)电路;输入/输出电路和器件(I/O);和适当的信号调理和缓冲电路。每个控制模块都具有一套控制算法,包括驻留程序指令和标定,所述驻留程序指令和标定存储在ROM中,并且执行以提供每个计算机的相应功能。各计算机之间的信息传递优选地通过上述LAN 6实现。
[0026] 每个控制模块中用于控制和状态估计的算法典型地在预设的循环期间执行,以便使每个算法在每个循环期间至少执行一次。存储在非易失性存储装置中的算法通过中央处理单元中的一个执行,并且可操作以检测来自检测装置的输入,并执行控制和诊断流程,以使用预设的标定控制各装置的操作。循环在发动机运行和车辆操作期间典型地以规则的间隔执行,例如每3.125、6.25、12.5、25和100毫秒。或者,算法可响应于事件的发生而被执行。
[0027] 示例性的双模复合分配机电变速器在若干固定档位操作模式和两个无级变速操作模式下操作,参照图1和以下表1进行说明。
[0028] 表1
[0029]
[0030] 表中所述的各种变速器操作范围状态指示对于每个操作范围状态而言,特定离合器C1、C2、C3和C4中的哪个离合器被接合或致动。当离合器C1 70被致动以将第三行星齿轮组28的外齿轮部件“接地”时,选择第一模式,即,模式1。内燃机14可运行或关闭。当离合器C1 70被释放并且离合器C2 62同时被致动以将轴60连接至第三行星齿轮组28的行星架时,选择第二模式,即,模式2。同样,内燃机14可运行或关闭。本发明的范围以外的其它因素影响电机56和72何时作为电动机和发电机操作,并且在此不进行讨论。
[0031] 第一和第二无级变速模式的操作是指这样的情况,即,其中变速器功能受到一个离合器——即离合器C1 62或C2 70——的控制,并且受到电机56和72的受控速度和转矩的控制。某些范围的操作包括通过应用额外的离合器实现的固定传动比。该额外的离合器可以是离合器C373或C4 75,如上表所示。当额外的离合器被应用时,实现变速器的输入对输出速度的固定比率操作,即NI/NO。电机MA 56和MB 72的转动取决于通过操作离合器限定的机构的内部转动,并且于在轴12处测量的输入速度成比例。
[0032] 响应于由UI 18捕获的操作者的动作,上位HCP控制模块5和其它控制模块中的一个或多个确定待在轴64处施加的操作者转矩需求TO_REQ。最终的车辆加速度受到包括例如道路负荷、道路坡度和车辆质量的其它因素影响。基于动力传动系的多个操作特征为示例性变速器确定操作模式。这包括典型地通过上述到UI 13的输入通讯的操作者对转矩的要求。另外,根据包括例如道路坡度、路面条件或风阻负荷的外部条件预测对于输出转矩的要求。可基于动力传动系转矩要求预测操作模式,该动力传动系转矩要求是由对电机在发电模式下或转矩产生模式下的操作的控制模块命令引起的。可通过优化算法或程序确定操作模式,所述优化算法或程序基于操作者对动力的要求、蓄电池荷电状态以及内燃机14、电机MA 56和MB 72的能量效率确定优化的系统效率。控制系统基于所执行的优化程序的输出管理来自内燃机14、MA 56和MB 72的转矩输入,并且进行系统优化以优化系统效率,从而提高燃料经济性并管理蓄电池充电。而且,可基于部件或系统中的故障确定操作。HCP5检测转矩产生装置的参数状态,并且确定在希望的转矩输出下所需要达到的变速器的输出,如下所述。在HCP 5的指导下,变速器10在从慢到快的输出速度范围上操作,以便满足操作者的要求。
[0033] 示例性的内燃机14包括多缸内燃机,其可选择性地操作在若干状态下,以通过轴12将转矩传递至变速器,并且可以是火花点火或压缩点火内燃机。示例性的内燃机状态包括正常内燃机操作(‘ALL_CYL’)、带断缸的内燃机操作(‘DEACT’)、内燃机燃料中断(‘FCO’)、带断缸的内燃机燃料中断(‘FCO_DEACT’)和内燃机关闭(‘OFF’)。在正常内燃机操作中,所有内燃机气缸都供给燃料并点火。在断缸状态下,典型地使半数的气缸,例如V型内燃机的一组气缸,不工作。典型地通过切断到气缸的燃料输送而使一组气缸不工作,并且选择性地保持排气门打开以减小内燃机泵气损失。在内燃机燃料中断状态下,中断到所有气缸的燃料输送。在带断缸的内燃机燃料中断状态下,中断到所有气缸的燃料输送,并且使一组气缸不工作以减小泵气损失。内燃机关闭状态由等于零转每分钟(RPM)的内燃机输入速度NE限定,即,内燃机曲轴不转动。
[0034] 现在参照图3,现在参照图1和2所示的示例性混合动力系统说明用于在运行中的车辆操作期间停止内燃机转动的控制方案。在执行在运行中的操作期间停止内燃机的步骤之前,机电变速器被控制到操作的无级变速模式(即模式1、模式2)中的任意一个。控制方案在控制模块中的一个或多个中作为机器可执行代码执行,所述机器可执行代码可操作以控制混合动力系统的部件,以从电机产生转矩输出,从而停止不点火的内燃机的转动。程序包括顺序地执行的步骤,其中每个步骤优选地基本在执行随后步骤之前完成。第一步骤包括控制内燃机操作以使内燃机停止点火,并且第一步骤可包括使进气歧管绝对压力最小。接下来,致动阻尼器锁定离合器装置。接下来,选择性地控制来自第一和第二电机的转矩输出以减小内燃机速度,即,控制内燃机转动的减慢。接下来,控制来自第一和第二电机的输出转矩以使内燃机转动基本停止在预定的曲轴位置,或在该位置附近。原先关闭的内燃机节气门优选地在内燃机停止转动随后重新打开。在内燃机停止期间,阻尼器离合器优选地将内燃机的转动锁定至机电变速器。
[0035] 内燃机停止事件是通过来自HCP 5的命令开始的,由关注优化系统效率的控制方案引起,并且包括基于超过系统施加的限制的决定。该系统施加的限制包括车速、蓄电池SOC、蓄电池温度、蓄电池电力能力、蓄电池电压、内燃机冷却剂温度、系统热限制和系统诊断的操作参数。这些操作参数每个都受到一个或多个控制模块的监测,并且停止内燃机的决定可基于超过预定阈值的参数中的一个或与彼此一致的超过预定阈值的参数的组合。停止内燃机的决定可出现在车辆滑行事件期间或稳态操作期间。每个重新启动内燃机的决定都包括内燃机起动/停止事件的反跳分析,有效地将滞后作用增加至每个起动事件。反跳分析包括例如使操作者行为依赖于基于效率计算而被开始的内燃机停止。因而可避免不被车辆操作者希望的内燃机停止,例如当操作者压下加速器踏板时不停止内燃机。
[0036] 第一步骤包括控制内燃机操作以停止给内燃机点火。当内燃机包括火花点火内燃机时,停止内燃机点火包括停止燃料输送和火花能量。当内燃机包括压缩点火内燃机时,停止内燃机点火包括停止燃料输送。停止给内燃机点火可包括使进气歧管绝对压力(MAP)最小。内燃机通过在内燃机仍被供给燃料的情况下将内燃机的节气门关闭至最小开度而使MAP最小,所述最小开度典型地是零百分比开度。关闭节气门可通过将电控进气管理阀的位置控制到零节气门开度而实现。这种动作显著减小内燃机停止期间的曲轴转矩振动。通过电机MA和MB控制系统转矩而保持内燃机怠速。当使用火花点火内燃机时,以斜坡增大(rampedin)点火延迟以使在此过程中产生的内燃机转矩最小。当使用压缩点火内燃机时,调节内燃机燃料喷射的定时以使内燃机产生的转矩最小。根据内燃机气缸点火顺序顺序地停止燃料喷射,以便使每个燃烧室在停止内燃机之前都没有任何燃烧进气。当内燃机机构包括可变凸轮相位装置时,在此期间优选地将其控制到停止(parked)位置。根据内燃机设计和限制,可变凸轮相位装置的停止位置可以是完全延迟位置和完全提前位置中的任意一个。
[0037] 随后,通过离合器C5致动装置20的阻尼器离合器,该阻尼器离合器可操作以锁定内燃机和机电变速器的转动。离合器C5优选地被致动为阶跃输入,而没有斜坡增大时间。因为内燃机MAP处于低水平,因此振动被基本减小,并且在系统动力学特性方面的影响也最小。
[0038] 接下来,选择性地控制来自第一和第二电机的转矩输出以减小内燃机速度,即,控制内燃机转动的减速。在此期间,内燃机处于燃料中断模式,并且电机控制内燃机速度。优选的内燃机速度减速速率包括使内燃机和系统动力学特性最小的最大速度变化。回收少量的惯量能量,并且停止内燃机的总时间最小,允许为随后的重新启动事件快速转变。这也用于限制穿过废气后处理系统的新鲜空气(即,稀薄的废气供给流)的量,以限制对尾气排放物的任何影响,并限制催化剂装置的长期恶化。选择性地控制来自第一和第二电机的转矩输出以减小内燃机速度包括执行包括系统方程的计算机代码,以确定来自第一和第二电机中的每个的电机转矩输出。
[0039] 当示例性变速器在无级变速模式中的一个下操作时,MA、MB、NI和NO之间的速度关系限定为如下所示的方程1:
[0040]
[0041] 其中NI包括来自内燃机14的输入速度,NO是变速器输出速度,NA和NB是MA 56和MB 72的操作速度,并且b11、b12、b21、b22是为了在特定操作范围状态下特定应用而确定的已知的标量值。因此b11、b12、b21、b22的确定的标量值对于每个模式1和模式2而言是特定的。在该应用中,当变速器输出速度NO和NI已知时,可确定电机速度NA和NB。
[0042] 优选地使用以下方程2所述的转矩关系控制在无级变速操作模式中的一个下的系统转矩控制和管理:
[0043]
[0044] 其中:
[0045] TA是MA的转矩;TB是MB的转矩;
[0046] TI是在轴12处到变速器的输入转矩,并且是基于内燃机转矩的;
[0047] TO是在轴64处来自变速器的输出转矩;
[0048] NI_DOT是输入轴12到变速器的输入速度线;
[0049] NO_DOT是变速器的输出轴64的输出速度线,指示车辆的加速度;
[0050] 以及
[0051] Kn包括通过变速器硬件齿轮和轴相互连接确定的参数以及可应用于当前驱动范围的估计的硬件惯量的2×4矩阵。
[0052] 转矩TA和TB受到最小和最大极限TA_MAX、TA_MIN、TB_MAX、TB_MIN的限制,如图4所示,所述最大和最小极限包括通过蓄电池的限制强加的极限。方程1的内容优选地被转换成主流在控制模块中的一个中的算法,该算法在每6.25毫秒循环期间执行。控制方案确定并应用用于所述电机转矩TA、TB的优选地参数控制值。
[0053] 再次参照图4,示出用于示例性系统的操作区域的图形表述,用于在无级变速模式1操作中操作该系统。通过绘制在x轴上的MA 56的转矩输出范围(TA_MIN,TA_MAX)和绘制在y轴上的MB 72的转矩输出范围(TB_MIN,TB_MAX)限定第一操作空间。通过基于蓄电池电力限制——即PBAT_MIN和PBAT_MAX——限定的第二操作空间限制转矩输出范围。基于方程1和2所述的关系,对于给定的固定的或恒定的输出转矩TO和优选的输入速度曲线NI_DOT,有输入转矩的允许范围TI_MIN到TI_MAX,所述输入转矩可被产生并传递至内燃机,以在预料到停止内燃机的转动时转动内燃机以满足输入速度线NI_DOT。可从预定的受控内燃机速度减速线确定输入速度线NI_DOT,并且与图4所示的内燃机速度一致地控制内燃机停止时的内燃机位置,以满足操作者需求和内燃机与动力传动系的限制。在此所述的控制方案可操作电机MA和MB。
因而,在所述实施例中,停止内燃机包括使用方程1和2基于已知的为TI、TO、NI_DOT和NO_DOT选择的值产生用于TA和TB的初始转矩值。在内燃机停止开始时,在图4所示的允许的速度线NI_DOT操作窗口内,基于用于停止内燃机的转动所经过的优选的时间确定输入速度线NI_DOT。输出转矩TO和输出速度线NO_DOT是预先确定的值,并且TI包括内燃机转矩。通过TPIM控制电机MA和MB以传递TA和TB的确定的转矩值,并且当内燃机速度根据确定的内燃机输入速度线NI_DOT减小时,该过程在每个6.25毫秒循环的循环期间重复。因而控制系统控制用于MA和MB的转矩输出TA和TB。
[0054] 来自第一和第二电机的转矩输出被顺序地控制,以使内燃机的转动减速并停止在基本靠近目标曲轴角度位置。如上所述,基于输入速度线NI_DOT控制转矩输出,以实现内燃机停止在或靠近目标曲轴角度。内燃机减速包括计算的线,该线等同于内燃机停止转动的预定的转动角度数,例如1000度。在一内燃机角度值处开始计算内燃机减速,并且闭环控制内燃机速度以到达最终内燃机角度目标。
[0055] 原先关闭的内燃机节气门可在内燃机停止转动之后随后重新打开。电控进气管理阀典型地具有大于零节气门位置的“停止”位置,以便允许在系统故障事件中的内燃机操作。因而进气管理阀被主动地控制以到达零节气门位置,并且包括一电负荷。允许停止位置减小了电负荷。
[0056] 在内燃机停止期间,优选地控制阻尼器离合器以将内燃机的转动锁定至机电变速器。共同审理中的美国专利申请No.11/743,945(律师记录No.GP-308341-PTH-CD)提供了关于使用分解器确定内燃机位置的额外细节,该专利申请名称为“确定内燃机的转动位置的方法和装置”,其内容通过参考包含于此。来自分解器的位置信息提供内燃机位置的绝对测量,并且具有比曲轴位置传感器高的测量分辨率。分解器可操作以当应用电力时立即提供轴角度的准确测量,并且在进行中的操作期间连续地提供轴角度的准确测量,实现改进的控制和准确度。
[0057] 锁定阻尼器离合器C5以在内燃机停止期间锁定阻尼器20的动作使得控制系统能通过主动地控制来自电机的转矩输出消除在临界系统频率处出现的振动。典型地共振的临界频率包括在大约2Hz(30rpm)下出现的车辆摇摆、在大约4Hz(60rpm)下出现的传动系共振、在大约14Hz(200rpm)下出现的动力传动系安装件共振和在9-12Hz(125rpm)的范围中的阻尼器共振。
[0058] 称为TI(反拖)的内燃机反拖转矩包括当内燃机不点火时的内燃机曲轴转矩的测量。内燃机反拖转矩包括对于每个气缸计算的气缸转矩,并且优选地通过在控制系统中执行仿真模型而确定。仿真模型实时地计算作为内燃机反拖角度的函数的每个气缸的气缸压力。气缸压力基于通过曲轴转动的动作产生的压缩脉冲,其中每个气缸中的每个活塞的运动都受到捕集在气缸的燃烧室内的空气的抵抗,阻力通过内燃机的进气门和排气门的位置确定。通过转矩比率乘以气缸压力确定每个气缸转矩。转矩比率对于每个气缸而言确定为曲轴角度的函数,该函数包含了气缸几何尺寸和气缸摩擦的变化。转矩比率优选地是存储在存储器中的预先标定的值的数组,并且可基于曲轴角度获取。在共同审理中的美国专利申请No.11/669522(律师记录No.GP-309392-PTH-CD)中描述了使用仿真模型确定内燃机反拖转矩的示例性方法,该专利申请的名称为“确定未点火的燃烧室中的压力的方法和装置”,其内容通过参考包含于此。在每个6.25毫秒循环期间,示例性的仿真模型优选地在控制模块中的一个中执行,并且确定内燃机反拖转矩TI(反拖)的参数值。示例性仿真模型适于改变操作和环境条件,并且当内燃机不点火时确定内燃机反拖转矩的参数值。
[0059] 特定的可替代实施例包括采用单个电机的混合动力系统,所述电机可操作地连接至内燃机以控制反拖转矩,所述混合动力系统包括例如带式交流发电机起动机动力传动系和采用用于产生转矩和电能的单个电机的机电变速器系统。另一个可替代的实施例包括使用压缩点火内燃机,其中内燃机起动程序使用燃料输送定时和量,以实现起动和来自内燃机的转矩输出,这对于本领域的技术人员是已知的。
[0060] 应理解,在本发明的范围内可做出修改。已具体参照其实施例和修改说明了本发明。当阅读并理解说明书时,其他人可做出其它的修改和替代方案。意在当它们落入本发明的范围内时,将所有这种修改和替代方案包括在本发明内。