原动机输出扭矩均衡控制系统转让专利

申请号 : CN200710068505.1

文献号 : CN101302963B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 高峰

申请人 : 浙江工业大学

摘要 :

一种原动机输出扭矩均衡控制系统,包括液压油箱、蓄能器、与原动机输出轴传动连接的蓄能泵、助力马达,所述原动机输出轴与主液压泵的输出轴传动连接,所述蓄能泵的出口通过用于允许液压油从蓄能泵出口到蓄能器的进出口的第一单向阀连接所述蓄能器的出入口,所述蓄能器的出入口连接助力马达的入口,所述助力马达的入口还通过用于允许液压油从油箱到助力马达的入口的第二单向阀与液压油箱连接;所述控制系统还包括用以根据控制信号控制蓄能泵和主力马达排量的扭矩控制器。本发明提供一种结构简单、性能可靠、并可降低成本、适用范围广的原动机机输出扭矩调节系统,实现其输出扭矩的均衡控制。

权利要求 :

1.一种原动机输出扭矩均衡控制系统,所述控制系统包括液压油箱、蓄能器、与原动机输出轴传动连接的蓄能泵、助力马达,所述原动机输出轴与主液压泵的输入轴传动连接,所述蓄能泵的出口通过用于允许液压油从蓄能泵出口到蓄能器的进出口的第一单向阀连接所述蓄能器的出入口,所述蓄能器的出入口连接助力马达的入口,所述助力马达的入口还通过用于允许液压油从所述液压油箱到助力马达的入口的第二单向阀与液压油箱连接;所述控制系统还包括用以根据控制信号控制蓄能泵和助力马达排量的扭矩控制器;所述蓄能器上安装压力传感器;所述蓄能泵的出口还通过用于在没有控制信号的条件下阻止液压油从所述的蓄能泵的出口到液压油箱的第一受控单向阀连接液压油箱;所述扭矩控制器根据压力传感器的压力信号输出控制信号Pc,当压力信号大于设定预置的阈值时,向第一受控单向阀发出通路指令使Pc有效;其特征在于:所述控制系统还包括分动齿轮、与原动机输出轴连接的中心齿轮,蓄能泵的输入轴连接分动齿轮,分动齿轮与中心齿轮啮合,所述中心齿轮与主液压泵的输入轴连接,所述助力马达与蓄能泵或主液压泵同轴联接。

2.如权利要求1所述的原动机输出扭矩均衡控制系统,其特征在于:所述蓄能器的出入口通过用于在没有控制信号的条件下阻止液压油从所述的蓄能器的出入口到助力马达的入口的第二受控单向阀连接助力马达的入口;所述扭矩控制器根据工程机械的先导压力信号输出通路指令信号Pi,当先导压力信号大于设定预置的阈值时,向第二受控单向阀发出通路的所述通路指令信号Pi。

3.如权利要求2所述的原动机输出扭矩均衡控制系统,其特征在于:所述第一受控单向阀、第二受控单向阀为液控单向阀、液控截止阀或电磁截止阀。

4.如权利要求3所述的原动机输出扭矩均衡控制系统,其特征在于:所述蓄能泵为变排量结构或定排量结构的蓄能泵,所述助力马达为变排量结构或定排量结构的助力马达。

5.如权利要求1所述的原动机输出扭矩均衡控制系统,其特征在于:所述蓄能器的出口通过溢流阀连接液压油箱。

6.如权利要求1所述的原动机输出扭矩均衡控制系统,其特征在于:所述原动机输出轴与主液压泵的输入轴联接,所述助力马达、蓄能泵均与主液压泵同轴联接。

说明书 :

原动机输出扭矩均衡控制系统

(一)技术领域

[0001] 本发明涉及流体传动控制以及原动机扭矩控制领域,适用于负载变化剧烈的各种原动机,尤其是负载变化剧烈的工程机械中的内燃机和其他原动机的输出扭矩均衡控制系统。(二)背景技术
[0002] 一些工程机械在施工过程中,由于负载的剧烈变化,导致其原动机的输出扭矩也随之发生大幅度的变化。例如,液压挖掘机在工作过程中,其工作负载变化剧烈,导致其液压系统工作压力也发生剧烈变化,而由于液压泵由柴油机直接驱动,因此作用在柴油机输出轴上的扭矩也发生很大变化,系统压力较高时柴油机负载扭矩也较大,系统压力较低时柴油机的负载扭矩也较小。这种情况直接导致了两种后果的产生。第一,为满足这些工程机械设备的正常工作要求,即使这些设备上的平均负载功率并不大,也必须按照可能出现的最大负载扭矩来选择柴油机,导致所选柴油机功率偏大,否则就容易出现柴油机频繁过载熄火的现象;第二,柴油机的高效工作点一般位于大扭矩区域,但由于柴油机输出扭矩随负载剧烈变化,因此导致柴油机工作点不稳定,在经济性较好的大扭矩区和经济性较差的小扭矩区之间来回变动,影响了柴油机的工作效率。由于这两个原因,使燃油得不到充分利用,造成能源的浪费。另外,大功率柴油机还将导致制造成本的上升。在以往传统的设计中,这是为满足最大负载下峰值功率的要求而必须付出的代价,因此形成了满足最大负载功率需求与制造成本上升和节约燃料之间的矛盾。
[0003] 为解决以上所提到的矛盾,通常采用油电混合动力技术,对内燃机等原动机的输出扭矩进行调节,使其稳定下来。在这种方案中,柴油机输出功率除了驱动液压泵外,还驱动一个发电机,或者柴油机输出功率全部用来驱动发电机,采用可充电电池和超级电容作为储能元件,在小负载或空载时(相当于先导操纵压力很小或者为零)向蓄电池和超级电容充电,在大负载时(相当于先导操纵压力较高)储存在超级电容和蓄电池中的电能则释放出来驱动电动机,由电动机辅助柴油机驱动液压泵或者液压泵直接由电动机单独驱动,这样就形成小负载时从柴油机吸收能量,大负载时辅助柴油机一起驱动液压泵,从而可以控制柴油机输出扭矩始终稳定在一个定值附近,进而控制柴油机工作点始终稳定地位于高效节能区。但由于受到目前技术发展的限制,电池容量和电池单体电压偏低,寿命也有限,用于大功率设备时体积较大,价格昂贵,与之对应的功率电路复杂,成本较高。如果采用超级电容作为储能元件,虽然在充电寿命上远高于电池,但其单体电压也是偏低,用于功率较大的设备时也存在体积庞大、电路复杂、成本高昂的的缺点。另外,由于在功率传递过程中存在多次“机械能→电能→机械能”的转换,使功率传递过程中的总效率大打折扣。除次之外,飞轮电池也是一种选择,但这种技术目前在大功率设备上应用还不成熟,成本也是居高不下。
[0004] 除了采用油电混合动力技术外,采用液压技术的静压传动和二次调节技术也是能有效调节原动机输出扭矩的有效手段,但这种结构采用了“柴油机→变量液压泵→蓄能器→变量液压马达→负载”的功率传递模式,只适用于以液压马达为驱动装置的设备,对于以液压泵为驱动装置的设备来讲则不合适。(三)发明内容
[0005] 为了克服已有的原动机或内燃机输出扭矩调节技术结构复杂、成本高、适用范围小的缺点,本发明提供一种结构简单、性能可靠、并可降低成本、适用范围广的原动机机输出扭矩调节系统,实现其输出扭矩的均衡控制。
[0006] 本发明解决其技术问题所采用的技术方案是:
[0007] 一种原动机输出扭矩均衡控制系统,包括液压油箱、蓄能器、与原动机输出轴传动连接的蓄能泵、助力马达,所述原动机输出轴与主液压泵的输出轴传动连接,所述蓄能泵的出口通过用于允许液压油从蓄能泵出口到蓄能器的进出口的第一单向阀连接所述蓄能器的出入口,所述蓄能器的出入口连接助力马达的入口,所述助力马达的入口还通过用于允许液压油从油箱到助力马达的入口的第二单向阀与液压油箱连接;所述控制系统还包括用以根据控制信号控制蓄能泵和主力马达排量的扭矩控制器。
[0008] 作为优选的一种方案:所述蓄能器的出入口通过用于在没有控制信号的条件下阻止液压油从所述的蓄能器的出入口到助力马达的入口的第二受控单向阀连接助力马达的入口;所述扭矩控制器根据工程机械的先导压力信号输出控制信号Pi,当先导压力信号大于设定预置的阈值时,向第二受控单向阀发出通路指令信号Pi。
[0009] 作为优选的另一种方案:所述蓄能器上安装压力传感器;所述蓄能泵的出口还通过用于在没有控制信号的条件下阻止液压油从所述的蓄能泵的出口到油箱的第一受控单向阀连接油箱;所述扭矩控制器根据压力传感器的压力信号输出控制信号Pc,当压力信号大于设定预置的阈值时,向第一受控单向阀发出通路指令信号Pc。
[0010] 进一步,所述第一受控单向阀、第二受控单向阀可以为液控单向阀、液控截止阀或电磁截止阀。
[0011] 再进一步,所述蓄能泵为变排量结构或定排量结构的蓄能泵,所述助力马达为变排量结构或定排量结构的助力马达。
[0012] 更进一步,所述蓄能器的出口通过溢流阀连接油箱。设定蓄能器的最高安全工作压力。溢流阀能够起到安全作用。
[0013] 再进一步,蓄能泵、助力马达、原动机输出轴、主液压泵的输出轴的第一种传动关系为:所述控制系统还包括第一分动齿轮、第二分动齿轮、与原动机输出轴连接的中心齿轮,蓄能泵的输入轴连接第一分动齿轮,第一分动齿轮与中心齿轮啮合,所述中心齿轮与主液压泵的输入轴连接,所述助力马达的输出轴连接第二分动齿轮,第二分动齿轮与中心齿轮啮合。
[0014] 蓄能泵、助力马达、原动机输出轴、主液压泵的输出轴的第二种传动关系为:所述控制系统还包括分动齿轮、与原动机输出轴连接的中心齿轮,蓄能泵的输入轴连接分动齿轮,分动齿轮与中心齿轮啮合,所述中心齿轮与主液压泵的输入轴连接,所述助力马达的与蓄能泵同轴联接。
[0015] 分动齿轮可以分别位于中心齿轮的两侧。
[0016] 蓄能泵、助力马达、原动机输出轴、主液压泵的输出轴的第三种传动关系为:所述原动机输出轴与主液压泵的输出轴联接,所述助力马达、蓄能泵均与主液压泵同轴联接。
[0017] 或者,助力马达、蓄能泵的位置可以前后调换;再或者:助力马达、蓄能泵可以先跟原动机输出轴连接,然后再跟主液压泵的输入轴连接,且助力马达、蓄能泵的位置可以前后调换;又或者:助力马达先跟原动机输出轴连接,然后再跟主液压泵的输入轴、蓄能泵连接;更或者:蓄能泵先跟原动机输出轴连接,然后再跟主液压泵的输入轴、助力马达连接。
[0018] 蓄能泵、助力马达、原动机输出轴、主液压泵的输出轴的第四种传动关系为:所述控制系统还包括分动齿轮、与原动机输出轴连接的中心齿轮,蓄能泵的输入轴连接分动齿轮,分动齿轮与中心齿轮啮合,所述中心齿轮与主液压泵的输入轴连接,所述助力马达的与主液压泵同轴联接。
[0019] 助力马达也可以先跟中心齿轮连接,然后再跟主液压泵的输入轴连接。
[0020] 蓄能泵、助力马达、原动机输出轴、主液压泵的输出轴的第五种传动关系为:所述控制系统还包括分动齿轮、与原动机输出轴连接的中心齿轮,助力马达的输入轴连接分动齿轮,分动齿轮与中心齿轮啮合,所述中心齿轮与主液压泵的输入轴连接,所述蓄能泵的与主液压泵同轴联接。
[0021] 蓄能泵也可以先跟中心齿轮连接,然后再跟主液压泵的输入轴连接。
[0022] 本发明的技术构思为:蓄能泵通过齿轮传动被原动机输出轴驱动,向所述蓄能器储存能量;所述的蓄能器中存储的液压能则驱动所述的助力马达,助力马达再通过齿轮传动驱动柴油机输出轴;柴油机输出轴还直接驱动液压系统主泵。这样就能形成“原动机输出轴→蓄能泵→蓄能器→助力马达→原动机输出轴→主液压泵→负载”的功率传递路线。所述的蓄能泵入口与油箱相连,其输出口则通过第一单向阀与所述蓄能器入口相联,第一单向阀只允许液压油从泵流向蓄能器;所述的蓄能器入口又与所述的变量马达输入口相联;所述的变量马达入口还通过第二单向阀与油箱相联,第二单向阀只允许液压油从油箱流向变量马达入口。
[0023] 所述的变量泵和变量马达的排量受扭矩控制器的控制,扭矩控制器根据压力传感器信号、先导操纵压力信号、柴油机转速信号、以及主液压系统压力信号控制所述的变量泵和变量马达排量。在整个系统工作于小负载或较低的系统工作压力时,控制所述的蓄能泵流量大于所述的助力马达流量,助力马达吸收不了的流量则进入所述的蓄能器储存起来;当整个系统工作于大负载工况或较高的系统工作压力时,则控制所述的蓄能泵流量小于所述的助力马达流量,助力马达不足的流量则由所述的蓄能器中储存的液压油补充,形成蓄能器与液压泵共同驱动液压马达的工作状况。
[0024] 这样就能实现在主液压系统压力较高时由所述的蓄能器辅助柴油机驱动主液压泵,减轻柴油机负载扭矩;而在主液压系统压力较低时由所述的蓄能器吸收柴油机的输出功率并储存起来,增加柴油机负载。最终,柴油机的输出扭矩趋于均衡状态,有利于稳定柴油机的工作点,为柴油机的节能控制提供了条件。由于所述的蓄能泵和助力马达排量都可以调节,因此柴油机上的负载扭矩大小也可以调节,有助于将柴油机工作点始终控制在高效节能区。
[0025] 为保证可靠控制,在所述的蓄能泵出口处引出一个旁通油路,通过第一受控单向阀通油箱。第一受控单向阀的功能是,当有控制信号时,所述蓄能泵输出的液压油可以直接回油箱,实现卸荷功能;当没有控制信号时,所述蓄能泵输出的液压油则不能回油箱,只能流入所述的蓄能器或助力马达。另外,在所述蓄能器出入口到所述的液压变量马达的入口通路上还可以设置第二受控单向阀。第二受控单向阀的功能是,当有控制信号时允许液压油从所述的蓄能器出入口流向所述的助力马达入口;当没有控制信号时,阻止液压油从所述的蓄能器流向所述的助力马达。
[0026] 本发明的有益效果主要表现在:1、结构简单、性能可靠;2、能稳定原动机或内燃机的工作点,适用于负载变化剧烈的工程机械,能够使工程机械等设备的设计中采用小功率发动机,使发动机的效率更高,更节省燃油,同时也降低了发动机成本;3、适用范围广。(四)附图说明
[0027] 图1是本发明的机械结构原理图。
[0028] 图2是第二种机械结构原理图。
[0029] 图3是第三种机械结构原理图。
[0030] 图4是第四种机械结构原理图。
[0031] 图5是第五种机械结构原理图。
[0032] 图6是第六种机械结构原理图。
[0033] 图7是第七种机械结构原理图。
[0034] 图8是第八种机械结构原理图。
[0035] 图9是第九种机械结构原理图。
[0036] 图10是第十种机械结构原理图。
[0037] 图11是第十一种机械结构原理图。
[0038] 图12是第十二种机械结构原理图。
[0039] 图13是第十三种机械结构原理图。
[0040] 图14是本发明的液压结构原理图。
[0041] 图15是本发明的第二种液压结构原理图。
[0042] 图16是本发明的第三种液压结构原理图。(五)具体实施方式
[0043] 下面结合附图对本发明作进一步描述。
[0044] 实施例1
[0045] 参照图1、图14,一种原动机输出扭矩均衡控制系统,所述控制系统包括蓄能泵5、蓄能器4,助力马达2、分动齿轮11、14和与内燃机12输出轴连接的中心齿轮13,蓄能泵5的输入轴连接第一分动齿轮14,第一分动齿轮14与中心齿轮13啮合,所述中心齿轮13与主液压泵的输入轴15连接,所述助力马达2的输出轴连接第二分动齿轮11,第二分动齿轮11与中心齿轮13啮合,所述的蓄能泵5与助力马达2传动连接;所述蓄能泵5的出口通过第一单向阀3连接所述蓄能器4的出入口,第一单向阀3只允许液压油从蓄能泵5出口流向蓄能器4的进出口;所述蓄能器4的出入口直接连接助力马达2的入口,所述助力马2达的入口还通过第二单向阀1与液压油箱8连接,第二单向阀1只允许液压油从油箱8流向助力马达的入口;所述控制系统还包括用以根据控制信号控制蓄能泵和主力马达排量的扭矩控制器。
[0046] 本实施例的原动机以内燃机为例,采用柴油机,当然也可以为其他原动机。
[0047] 本实施例中,蓄能泵5和助力马达2的排量受扭矩控制器的控制,扭矩控制器根据蓄能器4的压力和主液压泵15输入轴上的负载扭矩对蓄能泵5和助力马达2的排量进行控制。
[0048] 在图1~图13中,表示出了柴油机12、助力马达2、蓄能泵5、液压主泵15这几个部件在机械传动上的连接关系。可以看出,柴油机12除了直接驱动液压主泵15外,还通过齿轮传动或直接同轴连接驱动蓄能泵5,而助力马达2则通过齿轮传动或与柴油机输出轴直接同轴连接,在扭矩控制器的控制下除了在输入压力较低时可以被柴油机12驱动外,在输入压力较高时还反过来驱动柴油机12的输出轴,与柴油机12一起驱动主液压泵15和蓄能泵5。
[0049] 其中,参照图2中,蓄能泵5和助力马达2为通轴联接方式,助力马达2安装在蓄能泵5的尾部,前提是蓄能泵5是通轴型的泵,蓄能泵5的输入轴上装有第一分动齿轮14,第一分动齿轮14则与装在柴油机12的输出轴上的中心齿轮13啮合,中心齿轮13与主液压泵15的输出轴连接。
[0050] 参照图3中,蓄能泵5和助力马达2仍为通轴联接方式,蓄能泵5安装在助力马达2的尾部,前提是助力马达2是通轴型的马达,助力马达2的输出轴上装有第二分,中心齿轮
13与主液压泵15的输出轴连接动齿轮11,第二分动齿轮11则与装在柴油机12的输出轴上的中心齿轮13啮合。
[0051] 参照图4中,助力马达2的输出轴上装有第二分动齿轮11,第二分动齿轮11则与装在柴油机12的输出轴上的中心齿轮13啮合,中心齿轮13与主液压泵15的输出轴连接,主液压泵15的输出轴连接与蓄能泵5连接。
[0052] 参照图5中,助力马达2的输出轴上装有第二分动齿轮11,第二分动齿轮11则与装在柴油机12的输出轴上的中心齿轮13啮合,中心齿轮13与蓄能泵5连接,蓄能泵5与主液压泵15的输出轴连接。
[0053] 参照图6中,蓄能泵5的输出轴上装有第二分动齿轮11,第二分动齿轮11则与装在柴油机12的输出轴上的中心齿轮13啮合,中心齿轮13与主液压泵15的输出轴连接,主液压泵15的输出轴连接与助力马达2连接。
[0054] 参照图7中,蓄能泵5的输出轴上装有第二分动齿轮11,第二分动齿轮11则与装在柴油机12的输出轴上的中心齿轮13啮合,中心齿轮13与助力马达2连接,助力马达2与主液压泵15的输出轴连接。
[0055] 参照图8~13中,所述柴油机12的输出轴与主液压泵15的输出轴联接,所述助力马达2、蓄能泵5均与主液压泵15同轴联接。对于主液压泵15、助力马达2、蓄能泵5的前后位置进行组合,得到六种不同的传动关系。
[0056] 在图1~图13的结构形式下,扭矩控制器自动检测主液压泵15的负载扭矩,根据检测到的主液压泵15的负载扭矩大小以及当前蓄能器4的压力,控制蓄能泵5和助力马达2的排量。在图1~图13的结构形式下,适当控制蓄能泵5和助力马达2的流量之比,就能控制蓄能器4或者从柴油机12的输出轴中吸收能量,或者向柴油机12的输出轴输出能量。
具体原理是:根据主液压泵15的负载扭矩大小以及当前蓄能器4的压力,在主液压泵15处于小负载状况时控制蓄能泵5的流量大于助力马达2的流量,助力马达2吸收不了的液压油则进入蓄能器4,此时蓄能器4从柴油机12的输出轴吸收能量,相当于增加了柴油机12输出轴上的扭矩负担。在主液压泵15处于大负载状况时,则控制蓄能泵5的流量小于助力马达流量,此时蓄能泵5的流量不足以驱动助力马达2,这一不足的液压油流量则自然由蓄能器4提供,形成助力马达2由蓄能泵5和蓄能器4共同驱动的局面。此时助力马达2对柴油机12的输出轴有驱动作用,相当于蓄能器4向柴油机12的输出轴输出能量,使蓄能器
4与柴油机12一起驱动主液压泵15,减轻柴油机12输出轴上的扭矩负担。这样,通过控制蓄能泵5和助力马达2的流量比值,无论主液压泵15处于小负载状况还是大负载状况,最终都将控制柴油机12输出轴上的负载扭矩基本保持不变。
[0057] 溢流阀7起安全作用。
[0058] 实施例2
[0059] 参照图1~13、图15、图16,本实施例的蓄能器4的出入口通过第二受控单向阀9连接助力马达2的入口,此受控单向阀9在没有控制信号的条件下阻止液压油从蓄能器
4的出入口到助力马达2的入口;所述扭矩控制器根据工程机械的先导压力输出信号Pi,当先导压力信号大于设定预置的阈值时,向第二受控单向阀9发出通路指令信号Pi。所述的蓄能器4上装有压力传感器6,所述蓄能泵5的出口还通过第一受控单向阀10连接油箱8,此受控单向阀10在没有控制信号的条件下阻止液压油从所述的蓄能泵5的出口到油箱8;
所述扭矩控制器根据压力传感器6的压力信号发出Pc,当压力信号大于设定预置的阈值时,向第一受控单向阀9发出控制信号Pc使通路指令有效,使蓄能泵5通过第一受控单向阀9卸荷。
[0060] 第一受控单向阀9、第二受控单向阀10可以为液控单向阀、液控截止阀或电磁截止阀。
[0061] 参照图15,蓄能器4的进出口也可以通过第二受控单向阀9与与助力马达2的入口相连,第二受控单向阀9在没有液控信号时阻止液压油从蓄能器4流向助力马达2的进油口。借助第二受控单向阀9和先导操纵压力信号使Pi信号有效,可以控制蓄能器是从柴油机12的输出轴吸收能量还是向柴油机12的输出轴释放能量。在工程机械没有操作时,Pi信号无效,工程机械处于空载状态,第二受控单向阀9阻止液压油从蓄能器4流向助力马达2的入口,使蓄能泵5向蓄能器4蓄能,蓄能器4从柴油机12的输出轴吸收能量,同时助力马达进油口通过第二单向阀1从油箱8中吸收液压油以避免吸空;在工程机械有操作时,Pi信号为有效,工程机械处于工作状态,第二受控单向阀9处于直通状态,此时由于第二单向阀1的作用阻止高压油流入油箱8,蓄能器4中的高压液压油可以全部直接输入到助力马达2的入口,使助力马达2辅助柴油机12驱动主液压泵15,以满足工程机械的工作需要。
[0062] 参照图15,蓄能泵5的出油口还可以通过一个装有第一受控单向阀10的支路通向油箱8,第一受控单向阀10在没有液控信号时能够阻止液压油从蓄能泵5的出口流向油箱8。在没有控制信号Pc时,第一受控单向阀10处于单向状态,阻止液压油从蓄能泵5的出口流向油箱8,蓄能泵5输出的液压油只能流入蓄能器4进行蓄能。在蓄能过程中,蓄能器4中的压力逐渐升高,当控制器利用压力传感器6检测到蓄能器4中的压力高于一定值的时候,发出一个信号使控制信号Pc有效,从而使第一受控单向阀10处于直通状态,使蓄能泵5的输出可以直接流入油箱,为蓄能泵5提供卸荷功能,避免了由于蓄能器4压力过高而导致其中的液压油从溢流阀7中溢流所造成的功率损失,与此同时,第一单向阀3则阻止了蓄能器4中的液压油通过第一受控单向阀10流入油箱,从而保存了先前所蓄的能量。
[0063] 在这一实施例中,蓄能泵5和助力马达2既可以是变排量结构,也可以是定排量结构。在定排量结构下,虽然不能完全实现柴油机12输出扭矩的均衡控制,至少在一定程度上降低了柴油机12输出扭矩的不均衡性。在蓄能泵5和助力马达2变排量结构下,应用与实施例一同样的扭矩均衡控制器控制策略,也可以实现与实施例一同样效果的扭矩均衡控制。
[0064] 图16中用第二液控截止阀9A替代图15中的第二受控单向阀9,第一液控截止阀10A替代图15中的第一受控单向阀10。
[0065] 其余结构和工作过程与实施例1相同。