修饰的伴侣蛋白10转让专利

申请号 : CN200680040617.X

文献号 : CN101309934B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 迪安·詹森·内勒芭芭拉·简·约翰逊卡罗琳·阿曼达·多宾克里斯托弗·布鲁斯·霍华德琳达·艾利森·沃德

申请人 : 悉生物有限公司

摘要 :

本发明涉及分离的伴侣蛋白10的多肽,所述多肽具有免疫调节活性,但没有或大体上没有蛋白折叠活性。

权利要求 :

1.分离的人Cpn10多肽,其中所述分离的人Cpn10多肽的可移动环区的如SEQ ID NO:

12所示的AETVTKGGIMLPEKSQ的16个氨基酸被删除。

2.如权利要求1所述的分离的人Cpn10多肽,其中所述Cpn10多肽为SEQ ID NO:3或

24给出的氨基酸序列。

3.如权利要求1或2所述的分离的人Cpn10多肽,其中所述多肽缺乏对应的野生型Cpn10多肽的可移动环区和顶部β-发夹区的部分,且所述多肽为SEQ ID NO:9或28给出的氨基酸序列。

4.编码权利要求1-3任一项所述分离的人Cpn10多肽的分离的人核酸。

5.如权利要求4所述分离的人核酸,其中所述人核酸的序列选自SEQ ID NO:4、5、10、

25和29。

6.包括如权利要求4或5所述分离的人核酸的表达构建体,所述表达构建体任选可操作地连接一个或多个调控序列。

7.宿主细胞,所述宿主细胞表达权利要求1-3中任一权利要求所述的分离的人Cpn10多肽,或包括权利要求4或5所述的分离的人核酸或权利要求6所述的表达构建体。

8.药物组合物,所述药物组合物包括权利要求1-3中任一权利要求所述的分离的人Cpn10多肽、权利要求4或5所述的分离的人核酸、权利要求6所述的表达构建体。

说明书 :

修饰的伴侣蛋白10

技术领域

[0001] 本发明涉及伴侣蛋白10的多肽和编码该多肽的核酸。本发明还涉及显示免疫调节活性的伴侣蛋白10的多肽、所述多肽的使用方法以及包括所述多肽的组合物。技术背景
[0002] 哺乳动物伴侣蛋白10(Cpn10),也称为热休克蛋白10(Hsp10)和早孕因子(EPF),通常以作为线粒体“分子伴侣”蛋白为特征,与伴侣蛋白60(Cpn60;Hsp60)一起参与蛋白质的折叠。Cpn10和Cpn60分别是细菌蛋白GroES和GroEL的同系物。GroES和Cpn10各自低聚成七元环,所述七元环作为盖子分别结合到包括14个GroEL或7个Cpn60分子的桶状结构上,这样将变性蛋白拴成复合体(Bukau and Horwich,1998,Cell 92:351-366;Harti and Hayer-Hartl,2002,Science295:1852-1858)。
[0003] Cpn10蛋白在物种间高度保守。人Cpn10与牛Cpn10有100%的一致性,与大鼠Cpn10仅在一个氨基酸位置处不同。人Cpn10与大肠杆菌(Escherichia coli)GroES共有30%序列一致性(60%相似性)。如大肠杆菌(E.coli)GroES的七聚物晶体结构所显示的(参见图1A;Xu et al.,1997,Nature 388:741-750)。Cpn10/GroES蛋白基本上由三个不同的结构域组成:一个反向平行的β-桶区,位于β-桶区两侧的一个“顶部(roof)”β-发夹环区和一个“可移动环”区。可移动环区调节与Cpn60/GroEL的相互作用,因此对形成与Cpn60/GroEL的复合物和“分子伴侣”(蛋白折叠活性)是关键的。
[0004] 然而,Cpn10除了作为分子伴侣的胞内作用外,也常见于细胞表面(参见Belles et al.,1999,Infect lmmun 67:4191-4200)和胞外液体中(参见Shin et al.,2003,J BIol Chem 278:7607-7616),并且逐渐被认为是免疫反应的调节剂。例如已证明Cpn10在实验性自身免疫性脑脊髓炎、迟发型超敏反应以及同种异体移植物排斥模型中具有免疫抑制活性(Zhang et al.,2003,J Neurol Sci 212:37-46;Morton et al,2000,ImmunolCell Biol 78:603-607)。
[0005] 最近本发明的发明人还证实了Cpn10在许多不同的人与鼠体外系统和鼠疾病模型中可抑制LPS诱导的NF-κB活化、减少LPS诱导的TNFα和RANTES分泌以及促进IL-10产生(Johnson et al.,2005,J BiolChem 280:4037-4047和国际专利申请PCT/AU2005/000041,其公开内容通过引用并入本申请),表明Cpn10具有相当大的潜能作为治疗自身免疫性疾病和炎性疾病的免疫治疗剂。
[0006] 然而,负责调节所述免疫调节活性的Cpn10分子的位置还不清楚。
[0007] 本发明涉及对Cpn10分子的修饰以及这些修饰对免疫调节活性的作用。
[0008] 发明概述
[0009] 因此,本发明提供了与野生型Cpn10相比包括一个或多个氨基酸取代、删除和/或添加的Cpn10多肽,所述多肽显示免疫调节活性。
[0010] 本发明第一方面提供了具有免疫调节活性但没有或大体上没有蛋白折叠活性的分离的Cpn10多肽。
[0011] 本发明第二方面提供了一种具有免疫调节活性的分离的Cpn10多肽,与对应的野生型Cpn10多肽相比,所述多肽包括可移动环区的一个或多个氨基酸取代、删除和/或添加。
[0012] 所述Cpn10多肽可显示至少类似于对应的野生型Cpn10多肽的免疫调节活性水平的免疫调节活性。
[0013] 在一个实施方案中,Cpn10多肽可移动环区IML三肽的一个或多个残基可被带电残基替代。
[0014] 在另一个实施方案中,包括IML三肽的Cpn10多肽被三肽EEE替代。SEQ ID NO:39给出了包括EEE三肽的Cpn10多肽。SEQ ID NO:40给出的核苷酸序列编码所述Cpn10多肽。
[0015] 在又一个实施方案中,包括IML三肽的Cpn10多肽被三肽III替代。SEQ ID NO:37给出了包括III三肽的Cpn10多肽。SEQ ID NO:38给出的核苷酸序列编码所述Cpn10多肽。
[0016] 在又一个实施方案中,包括IML三肽的Cpn10多肽被三肽IFI替代。SEQ ID NO:35给出了包括IFI三肽的Cpn10多肽。SEQ ID NO:36给出的核苷酸序列编码所述Cpn10多肽。
[0017] 本发明第三方面提供了一种具有免疫调节活性的分离的Cpn10多肽,所述多肽大体上没有对应的野生型Cpn10多肽的可移动环区。
[0018] 在一个实施方案中,大体上没有可移动环区的所述Cpn10多肽包括SEQ ID NO:3或24给出的氨基酸序列。SEQ ID NO:4、5或25给出的核苷酸序列编码大体上没有可移动环区的所述Cpn10多肽。
[0019] 所述Cpn10多肽可显示至少类似于对应的野生型Cpn10多肽的免疫调节活性水平的免疫调节活性。
[0020] 本发明第四方面提供了一种具有免疫调节活性的分离的Cpn10多肽,与对应的野生型Cpn10多肽相比,所述多肽包括顶部β-发夹区的一个或多个氨基酸取代、删除和/或添加。
[0021] 所述Cpn10多肽可显示至少类似于对应的野生型Cpn10多肽的免疫调节活性水平的免疫调节活性。
[0022] 本发明第五方面提供了一种具有免疫调节活性的分离的Cpn10多肽,与对应的野生型Cpn10多肽相比,所述多肽大体上没有顶部β-发夹区。
[0023] 在一个实施方案中,大体上没有顶部β-发夹区的所述Cpn10多肽(SEQ ID NO:13)包括SEQ ID NO:6或26给出的氨基酸序列。SEQ IDNO:7、8或27给出的核苷酸序列编码大体上没有顶部β-发夹区的所述Cpn10多肽。
[0024] 所述Cpn10多肽可显示至少类似于对应的野生型Cpn10多肽的免疫调节活性水平的免疫调节活性。
[0025] 本发明第六方面提供了一种具有免疫调节活性的分离的Cpn10多肽,与对应的野生型Cpn10多肽相比,所述多肽包括可移动环区和顶部β-发夹区的一个或多个氨基酸取代、删除和/或添加。
[0026] 本发明第七方面提供了一种分离的Cpn10多肽,所述多肽大体上没有对应的野生型Cpn10多肽的可移动环区和顶部β-发夹区。
[0027] 所述分离的Cpn10多肽可显示至少类似于对应的野生型Cpn10多肽的免疫调节活性水平的免疫调节活性。
[0028] 在一个实施方案中,所述Cpn10多肽包括SEQ ID NO:9或28给出的氨基酸序列。SEQ ID NO:10或29给出的核苷酸序列编码所述Cpn10多肽。
[0029] 本发明第八方面提供了一种具有免疫调节活性的分离的Cpn10多肽,与对应的野生型Cpn10多肽相比,所述多肽包括删除一个额外的N端丙氨酸残基。
[0030] 与对应的野生型Cpn10多肽相比,所述Cpn10多肽N端没有乙酰基。与对应的野生型Cpn10多肽的免疫调节活性水平相比,所述Cpn10多肽可显示免疫调节活性水平降低。
[0031] 在一个实施方案中,包括删除额外的N端丙氨酸残基的所述Cpn10多肽包括SEQ ID NO:23给出的氨基酸序列。SEQ ID NO:44给出的核苷酸序列编码包括删除额外的N端丙氨酸残基的所述Cpn10多肽。
[0032] 本发明第九方面提供了一种具有免疫调节活性的分离的Cpn10多肽,其中所述Cpn10多肽N端大体上被细菌Cpn10N端替代。
[0033] 细菌Cpn10可以是GroES。
[0034] 与对应的野生型Cpn10多肽的免疫调节活性水平相比时,所述Cpn10多肽显示免疫调节活性水平降低。
[0035] 在一个实施方案中,所述Cpn10多肽包括SEQ ID NO:14给出的氨基酸序列。SEQ ID NO:43给出的核苷酸序列编码所述Cpn10多肽。
[0036] 本发明第十方面提供了一种具有免疫调节活性的分离的Cpn10多肽,其中与对应的野生型Cpn10多肽相比,甘氨酸残基替代所述Cpn10多肽额外的N端丙氨酸残基。
[0037] 与对应的野生型Cpn10多肽的免疫调节活性水平相比,所述Cpn10多肽显示免疫调节活性水平降低。
[0038] 在一个实施方案中,所述Cpn10多肽包括SEQ ID NO:30给出的氨基酸序列。SEQ ID NO:31给出的核苷酸序列编码所述Cpn10多肽。本发明第十一方面提供了编码第一至十方面任一方面的所述Cpn10多肽的分离的核酸。
[0039] 本发明第十二方面提供了包括可操作地连接到一个或多个调控序列上的第十一方面核酸的表达构建体。
[0040] 本发明第十三方面提供了表达第一至十方面任一方面所述多肽或包括第十一方面所述核酸或第九方面所述表达构建体的宿主细胞。
[0041] 本发明第十四方面提供了选择性结合第一至十方面任一方面所述多肽的抗体。
[0042] 本发明第十五方面提供了包括第一至十方面任一方面所述多肽、第十一方面所述核酸、第十二方面所述表达构建体或第十四方面所述抗体的药物组合物。
[0043] 所述药物组合物可以包括一种或多种其它的试剂。例如对于治疗多发性硬化症,所述组合物还可以包括有效量的IFNβ。
[0044] 本发明第十六方面提供了治疗个体的方法,包括如下步骤:给予所述个体有效量的第一至十方面任一方面所述Cpn10多肽或第十一方面所述核酸。
[0045] 所述治疗可以调节个体中的免疫反应。通过调节Toll样受体信号传导可调节所述免疫反应。
[0046] 本发明第十七方面提供了用于治疗或预防个体疾病或状态的方法,所述方法包括给予个体有效量的第一至十方面任一方面所述Cpn10多肽或第十一方面所述核酸。
[0047] 所述疾病、病症或状态选自急性或慢性炎性疾病、哮喘、过敏症、多发性硬化症、GVHD或传染病。所述传染病由细菌或病毒感染引起。所述细菌为革兰氏阴性菌。
[0048] 本发明第十八方面提供了用于调节个体中或其至少一个细胞、组织或器官中TLR4信号传导的方法,所述方法包括给予有效量的第一至十方面任一方面所述Cpn10多肽或第十一方面所述核酸。
[0049] 通常,Cpn10调节激动剂诱导的TLR4信号传导。
[0050] 本发明第十九方面提供了用于调节个体中或其至少一个细胞、组织或器官中产生和/或分泌一种或多种免疫调节剂的方法,所述方法包括给予有效量的第一至十方面任一方面所述Cpn10多肽或第十一方面所述核酸。
[0051] 所述Cpn10调节来自TLR4的信号传导。
[0052] 所述免疫调节剂可以是促炎细胞因子或趋化因子或抗炎细胞因子或趋化因子。所述细胞因子或趋化因子选自TNF-α、IL-6、RANTES、IL-10、TGF-β或I型干扰素。I型干扰素可以为IFNα或1FNβ。
[0053] 本发明第二十方面提供了鉴定结合第一至十方面任一方面所述多肽的化合物的方法,所述方法包括如下步骤:
[0054] (a)将候选化合物与所述多肽接触;和
[0055] (b)测定候选化合物和所述多肽之间的复合物形成。
[0056] 所述复合物形成的测定可以是竞争性结合测定或双杂交测定。
[0057] 本发明第二十一方面提供了筛选调节第一至十方面任一方面所述多肽活性的化合物的方法,所述方法包括如下步骤:
[0058] (a)将所述多肽与候选化合物在适合使得所述候选化合物与所述多肽能够相互作用的条件下接触;和
[0059] (b)测定所述多肽活性。
[0060] 所述多肽活性的测定包括添加标记底物和测定标记底物的变化。
[0061] 本发明还考虑了前述方面和实施方案中修饰的Cpn10多肽和多核苷酸的变体、衍生物、同系物、类似物以及片段。
[0062] 根据前述方面和实施方案,所述Cpn10多肽和多核苷酸可以来自任意动物,可采用重组DNA技术产生或合成生成。通常,Cpn10为真核生物的Cpn10。
[0063] 根据前述方面,野生型Cpn10多肽为人Cpn10多肽,包括SEQ IDNO:1或21给出的氨基酸序列。
[0064] 根据前述方面,野生型Cpn10多肽由SEQ ID NO:2或22给出的核苷酸序列编码。
[0065] 根据前述方面和实施方案,所述Cpn10多肽的免疫调节活性涉及产生所述多肽的七聚物。
[0066] 定义
[0067] 本说明书上下文中,术语“包括”指“主要包括,但不一定仅包括”。另外,单词“包括(comprising)”的变化形式,如“包括(comprise)”和“包括(comprises)”具有相应的不同含义。
[0068] 本文用到的与Cpn10多肽有关的术语“野生型”包括它们的天然或非天然形式多肽。例如,天然人Cpn10在其N端被乙酰化;就术语“野生型”的范围内,本发明考虑了乙酰化或非乙酰化多肽。此外,野生型Cpn10多肽包括在N端额外的丙氨酸(A)残基(WO2004/041300,其公开内容通过引用并入本申请)。
[0069] 术语“多肽”指由肽键连接到一起的氨基酸所形成的聚合物。尽管出于本发明目的,“多肽”构成全长蛋白质的一部分,但术语“多肽”和“蛋白质”在本文可替换使用。
[0070] 本文用到的术语“多核苷酸”指脱氧核糖核苷酸碱基、核糖核苷酸碱基或已知的天然核苷酸类似物的单链或双链聚合物或其混合物。除非另外说明,所述术语包括提及的特定序列和与其互补的序列。术语“多核苷酸”和“核苷酸”在本文可替换使用。
[0071] 术语“分离的”指所论及的分子已脱离自然环境或宿主,并且伴随的杂质减少或消除到使得所论及的分子为存在的主要物质(即在摩尔基础上它比组合物/样品中任何其他各物质量更丰富)。通常大体上纯化的部分为如下组合物:其中目标物质包括至少约30%存在的所有大分子物质(在摩尔基础上)。通常,大体上纯的组合物包括大于约80-90%组合物中存在的所有大分子物质。更典型地,目标物质被纯化到基本上同质(通过常规检测方法不能检测到组合物中的杂质),其中组合物基本上由单一大分子物质组成。
[0072] 本文用到的术语“大体上”指大多数但不一定是全部,因此提及“大体上”没有对应的野生型多肽组成区域的修饰多肽时,所述修饰多肽可保留一部分所述组成区域。例如,“大体上”没有对应的野生型多肽组成区域的修饰多肽可保留约50%或更少的组成区域序列,尽管由于所删除区域的序列部分通常使得组成区域结构上和/或功能上失活。
[0073] 本文用到的术语“保守氨基酸取代”指多肽链(蛋白的一级序列)中一个氨基酸取代或替代为具有相似特性的另一个氨基酸。例如,带电氨基酸谷氨酸(Glu)取代相似带电氨基酸天冬氨酸(Asp)为保守氨基酸取代。
[0074] 本文用到的术语“治疗(treatment)”、“治疗(treating)”及其变化形式指任意或全部如下应用:治疗疾病状态或症状;预防疾病建立;或其他无论以任何方式预防、阻止、延缓或逆转疾病进展或其他不期望的症状。
[0075] 本文用到的术语“有效量”在其含义中包括无毒但提供期望的治疗或预防效果的足够量的药剂或化合物。需要的精确量在个体之间个体的不同取决于很多因素,如被治疗的物种、个体的年龄和一般状态、被治疗状态的严重性、给药的特定药剂和给药方式等等。因此,不可能指定精确的“有效量”。然而,对任意给定情况,本领域普通技术人员仅采用常规试验就可确定适合的“有效量”。
[0076] 本文用到的术语“调节(modulating)”、“调节(modulates)”及其变化形式指:与没有本发明特定分子或药剂时的分子活性、产生、分泌或其他起作用的水平相比时,存在本发明特定分子或药剂的情况下增加或降低分子的活性、产生、分泌或起作用的水平。
[0077] 附图的简要说明
[0078] 图1:A为E.coli Cpn10(GroES)晶体结构,显示了反向平行的β-桶区、“顶部”β-发夹环区和可移动环区。Cpn10由七个相同的10kDa亚基组成。B为野生型人Cpn10单体的氨基酸序列。粗体斜体字为预测的18个氨基酸的可移动环。粗体下划线字为预测的14个氨基酸的顶部β-发夹。
[0079] 图2:人Ala-Cpn10和E.coli GroES对TLR4信号 传导的作 用。通过人Ala-Cpn10(CH001批)但不是E.coli GroES对LPS诱导的HIV-LTR活化(间接测量NFκB活性)的剂量应答抑制作用。图B以相对于单独LPS所产生的荧光素酶水平的荧光素酶活性(NFκB活性)百分比抑制作用显示由图A得到的结果。单独的LPS样品为4次重复的平均值,所有其他样品为2次重复的平均值。RLU=相对光单位。用5ng/ml脂多糖(LPS)诱导NFκB活性。
[0080] 图3:SDS-PAGE凝胶。除凝胶H外的凝胶A-O电泳泳道分配为:泳道1是分子量标记(kDa);泳道2-6分别是60μg、6μg、3μg、1.2ug和0.3μg Cpn10。A为纯化的Ala-Cpn10(CH001)用考马斯亮蓝(Coomassie brilliant blue)染色的4-12%SDS-PAGE凝胶;B为纯化的Ala-Cpn10(CH003)用考马斯亮蓝染色的4-12%SDS-PAGE凝胶;C为纯化的Ala-Cpn10-EEE-cHis用考马斯亮蓝染色的4-12%SDS-PAGE凝胶;D为纯化的Ala-Cpn10-cHis用考马斯亮蓝染色的4-12%SDS-PAGE凝胶;E为纯化的Ala-Cpn10-IFI用考马斯亮蓝染色的4-12%SDS-PAGE凝胶;F为纯化的Ala-Cpn10-III用考马斯亮蓝染色的4-12%SDS-PAGE凝胶;G为纯化的Ala-Cpn10-Δml用考马斯亮蓝染色的4-12%SDS-PAGE凝胶;H为Cpn10-Δml的部分戊二醛交联(泳道2)在银染的4-12%SDS-PAGE凝胶上显示的7条不同的带,显示了分子的七聚物结构。泳道1是分子量标记(kDa)。I为纯化的Ala-Cpn10-Δroof用考马斯亮蓝染色的4-12%SDS-PAGE凝胶;J为纯化的Ala-Cpn10-β-桶用考马斯亮蓝染色的4-12%SDS-PAGE凝胶;K为纯化的E.coliGroES用考马斯亮蓝染色的4-12%SDS-PAGE凝胶;L为纯化的Cpn10-NtermES用考马斯亮蓝染色的4-12%SDS-PAGE凝胶;M为纯化的E.coli GroES用考马斯亮蓝染色的4-12%SDS-PAGE凝胶;N为纯化的Gly-Cpn10用考马斯亮蓝染色的4-12%SDS-PAGE凝胶。
[0081] 图 4 为 Ala-Cpn10、Ala-Cpn10-III、Ala-Cpn10-IFI、Ala-Cpn10-EEE-cHis 和Ala-Cpn10-cHis对TLR4信号传导的作用。通过人Ala-Cpn10(CH001批)、Ala-Cpn10 C端六组氨酸标签(Ala-Cpn10-cHis)和许多可移动环变体对LPS诱导的HIV-LTR活化的剂量应答抑制作用。图B、D、F、H以相对于单独LPS所产生的荧光素酶水平的荧光素酶活性(NFκB活性)百分比抑制作用显示由图A、C、E、G得到的结果。单独的LPS样品为4次重复的平均值,所有其他样品为2次重复的平均值。RLU=相对光单位。用5ng/ml脂多糖(LPS)诱导NFκB活性。
[0082] 图5为Ala-Cpn10和Ala-Cpn10-Δml对TLR4信号传导的作用。通过 人Ala-Cpn10(CH001批)和Ala-Cpn10-Δml对LPS诱导的HIV-LTR活化的剂量应答抑制作用。图B以相对于单独LPS所产生的荧光素酶水平的荧光素酶活性(NFκB活性)百分比抑制作用显示由图A得到的结果。单独的LPS样品为4次重复的平均值,所有其他样品为
2次重复的平均值。RLU=相对光单位。用5ng/ml脂多糖(LPS)诱导NFκB活性。
[0083] 图6为Ala-Cpn10和Ala-Cpn10-Δroof和E.coli GroES对TLR4信号传导的作用。通过人Ala-Cpn10(CH001批)和Ala-Cpn10-Δroof对LPS诱导的HIV-LTR活化的剂量应答抑制作用。图B以相对于单独LPS所产生的荧光素酶水平的荧光素酶活性(NFκB活性)百分比抑制作用显示由图A得到的结果。单独的LPS样品为6次重复的平均值,所有其他样品为2次重复的平均值。CPS=每秒的相对计数。用5ng/ml脂多糖(LPS)诱导NFκB活性。
[0084] 图7为Ala-Cpn10和Ala-Cpn10-β-桶对TLR4信号传导的作用。通过人Ala-Cpn10(CH001批)和Ala-Cpn10-β-桶对LPS诱导的HIV-LTR活化的剂量应答抑制作用。图B以相对于单独LPS所产生的荧光素酶水平的荧光素酶活性(NFκB活性)百分比抑制作用显示由图A得到的结果。单独的LPS样品为6次重复的平均值,所有其他样品为
2次重复的平均值。CPS=每秒的相对计数。用5ng/ml脂多糖(LPS)诱导NFκB活性。
[0085] 图8为Ala-Cpn10和Cpn10-NtermES对TLR4信号传导的作用。通过人野生型Cpn10(CH001批)而不是Cpn10-NtermES对LPS诱导的HIV-LTR活化的剂量应答抑制作用。图B以相对于单独LPS所产生的荧光素酶水平的荧光素酶活性(NFκB活性)百分比抑制作用显示由图A得到的结果。单独的LPS样品为6次重复的平均值,所有其他样品为2次重复的平均值。CPS=每秒的相对计数。SD=标准偏差。用5ng/ml脂多糖(LPS)诱导NFκB活性。
[0086] 图9为Ala-Cpn10和X-Cpn10对TLR4信号传导的作用。通过人Ala-Cpn10(CH003批)和X-Cpn10对LPS诱导的HIV-LTR活化的剂量应答抑制作用。图B以相对于单独LPS所产生的荧光素酶水平的荧光素酶活性(NFκB活性)百分比抑制作用显示由图A得到的结果。单独的LPS样品为6次重复的平均值,所有其他样品为2次重复的平均值。CPS=每秒的相对计数。用5ng/ml脂多糖(LPS)诱导NFκB活性。
[0087] 图10 为Ala-Cpn10 和Gly-Cpn10 对 TLR4信 号 传 导 的 作 用。 通 过 人Ala-Cpn10(CH003批)和Gly-Cpn10对LPS诱导的HIV-LTR活化的剂量应答抑制作用。图B以相对于单独LPS所产生的荧光素酶水平的荧光素酶活性(NFκB活性)百分比抑制作用显示由图A得到的结果。单独的LPS样品为6次重复的平均值,所有其他样品为2次重复的平均值。CPS=每秒的相对计数。用5ng/ml脂多糖(LPS)诱导NFκB活性。
[0088] 图11为Ala-Cpn10和Ala-Cpn10-Δml对TLR4信号传导的作用。通过人Ala-Cpn10(CH003批)和Ala-Cpn10-Δml对LPS诱导的HIV-LTR活化的剂量应答抑制作用。图B以相对于单独LPS所产生的荧光素酶水平的荧光素酶活性(NFκB活性)百分比抑制作用显示由图A得到的结果。单独的LPS样品为6次重复的平均值,所有其他样品为2次重复的平均值。CPS=每秒的相对计数。用5ng/ml超纯脂多糖(LPS)诱导NFκB活性。
[0089] 图12为Ala-Cpn10和Ala-Cpn10-Δroof对TLR4信号传导的作用。通过人Ala-Cpn10(CH003批)和Ala-Cpn10-Δroof对LPS诱导的HIV-LTR活化的剂量应答抑制作用。图B以相对于单独LPS所产生的荧光素酶水平的荧光素酶活性(NFκB活性)抑制百分比作用显示由图A得到的结果。单独的LPS样品为6次重复的平均值,所有其他样品为2次重复的平均值。CPS=每秒的相对计数。用5ng/ml超纯脂多糖(LPS)诱导NFκB活性。
[0090] 图13为Ala-Cpn10和Ala-Cpn10-β-桶对TLR4信号传导的作用。通过人Ala-Cpn10(CH003批)和Ala-Cpn10-β-桶对LPS诱导的HIV-LTR活化的剂量应答抑制作用。图B以相对于单独LPS所产生的荧光素酶水平的荧光素酶活性(NFκB活性)百分比抑制作用显示由图A得到的结果。单独的LPS样品为6次重复的平均值,所有其他样品为2次重复的平均值。CPS=每秒的相对计数。用5ng/ml超纯脂多糖(LPS)诱导NFκB活性。
[0091] 图14 为Ala-Cpn10 和Gly-Cpn10 对 TLR4信 号 传 导 的 作 用。 通 过 人Ala-Cpn10(CH003批)和Gly-Cpn10对LPS诱导的HIV-LTR活化的剂量应答抑制作用。图B以相对于单独LPS所产生的荧光素酶水平的荧光素酶活性(NFκB活性)百分比抑制作用显示由图A得到的结果。单独的LPS样品为6次重复的平均值,所有其他样品为2次重复的平均值。CPS=每秒的相对计数。用5ng/ml超纯脂多糖(LPS)诱导NFκB活性。
[0092] 图15为内毒素血症的鼠炎症模型中的Cpn10活性。Cpn10和Cpn10变体降低LPS-诱导的血清TNF-α、IL-10和IL-6产生。采用CBA测定“LPS激发免疫反应的”小鼠(参见表1,第1、3、5、7、9和11组)或“盐水对照”小鼠(参见表1,第2、4、6、8、10和12组)中的炎症相关细胞因子(参见方法)。采用每组所显示的平均值(水平条)绘出A和B中TNF-α水平、图C和D中IL-6水平以及图E和F中IL-10细胞因子水平。采用杜凯氏事后检验(Tukey’s post-hoc test)对每个数据组进行单因素方差分析。用括号表示数据的统计学意义(p<0.05)(详细资料参见正文)。
[0093] 图16为乙酰基-Cpn10、Ala-Cpn10和Gly-Cpn10的N端图示。
[0094] 序列参考
[0095] 表1.如下参考表格提供了本说明书采用的Cpn10多肽的名称。该表格包括本文公开的Cpn10多肽特征的描述以及它们相应的氨基酸和核酸序列ID号。
[0096]Cpn10名称 特征 另外的特征 氨基酸 核酸
SEQ ID SEQ ID
NO. NO.
X-Cpn10(即非乙 不包括N端乙酰 不包括起始甲硫 23 44
酰化的) 基 氨酸
Cpn10(野生型) 不包括乙酰基 包括起始甲硫氨 1 2

Cpn10-Δml 删除了可移动环 包括起始甲硫氨 3 4、5

Cpn10-Δroof 删除了顶部环 包括起始甲硫氨 6 7、8

Cpn10β-桶 删除了顶部环和 包括起始甲硫氨 9 10
可移动环 酸
E.coli Cpn10 Cpn10的细菌同 包括起始甲硫氨 11 34
(GroES) 系物 酸
只有可移动环 人Cpn10中可移 12
动环序列的实例
只有β发夹顶部 人Cpn10中顶部 13
(“顶部”)环 环序列的实例
Cpn10-NtermES 除E.coli N端外 包括起始甲硫氨 14 43
的人Cpn10 酸
EEE三肽的正向 EEE三肽位于可 15
引物 移动环
EEE三肽的反向 EEE三肽位于可 16
引物 移动环
产生IFI三肽的 IFI三肽位于可移 17
正向引物 动环
产生IFI三肽的 IFI三肽位于可移 18
反向引物 动环
产生III三肽的 III三肽位于可移 19
正向引物 动环
产生III三肽的 III三肽位于可移 20
反向引物 动环
Ala-Cpn10(野生 额外的N端丙氨 不包括起始甲硫 21 22
型Cpn10) 酸残基 氨酸
Ala-Cpn10-Δml 删除了可移动环 不包括起始甲硫 24 25
氨酸,但包括额外
的N端丙氨酸残

Ala-Cpn10-Δroof 删除了顶部环 不包括起始甲硫 26 27
氨酸,但包括额外
的N端丙氨酸残

Ala-Cpn10β-桶 删除了顶部环和 不包括起始甲硫 28 29
可移动环 氨酸,但包括额外
的N端丙氨酸残

Gly-Cpn10 甘氨酸替代额外 30 31
的N端丙氨酸残

[0097]Ala-Cpn10-IFI IFI三肽替代可移 额外的N端丙氨 35 36
动环中IML三肽 酸残基
Ala-Cpn10-III III三肽替代可移 额外的N端丙氨 37 38
动环中IML三肽 酸残基
Ala-Cpn10-EEE- EEE三肽替代可 额外的N端丙氨 39 40
cHis 移动环中IML三 酸残基和C端His
肽 标签
Ala-Cpn10-cHis 额外的N端丙氨 C端His标签 41 42
酸残基
[0098] 实施发明的最佳方式
[0099] Cpn10为相同10kDa亚基的半球形七聚环(参见图1)。半球形内表面亲水并高度带电。每个Cpn10亚基形成不规则的β-桶拓扑,由此突出两个大的延伸。第一个延伸为β-发夹环,它伸向七聚物的中心形成圆顶样结构。有趣的是,虽然GroES(E Coli Cpn10)顶部在生理条件下带负电,哺乳动物Cpn10顶部带正电,而噬菌体Cpn10(Gp31)顶部大部分完全不带电。所述分子还具有另一个延伸,它为从半球形底部延伸的柔性18个氨基酸的可移动环,介导与Cpn60的相互作用。定向诱变已鉴定出可移动环中与Cpn60相互作用的几个关键氨基酸残基,即构成结合Cpn60的实际位点的可移动环底部三个疏水残基(30-IML-32)和限制可移动环柔性的两个残基(26-T和33-P)(Richardsonet al.,2001,J Biol Chem276:4981-4987)。因此,Cpn10与Cpn60的结合由Cpn10的18个氨基酸的可移动环介导(参见图1D)。与哺乳动物Cpn10相比,E.coli GroES中结合Cpn60/GroEL位点的三肽疏水性(25-IVL-27)较小,可移动环更有柔性。这些变化降低了GroES对Cpn60/GroEL的亲和力,结果GroES不能形成与Cpn60的结果性相互作用,而Cpn10和GroES都可与GroEL作用。
[0100] 开始于这样的假设,即胞外Cpn10产生其免疫调节作用的机制涉及Cpn60(Johnson et al.,2005,J Biol Chem 280:4037-4047),本发明的发明人生成靶向可移动环区的位点特异性突变,在本文中证明干扰与Cpn60相互作用的突变保留免疫调节活性。
[0101] 因此,本发明一方面提供了显示免疫调节活性但大体上没有蛋白折叠活性的分离的Cpn10多肽。
[0102] 本文还证明删除Cpn10大部分可移动环区和/或顶部β-发夹区不会消除Cpn10调节来自Toll样受体TLR4的信号传导的能力。
[0103] 因此,本发明还提供了具有免疫调节活性的分离的Cpn10多肽,与对应的野生型Cpn10多肽相比,所述多肽包括可移动环区和顶部β-发夹区任一者或二者的一个或多个氨基酸取代、删除和/或添加。如本文所公开的,所删除的Cpn10的可移动环和顶部环称为Ala-Cpn10-β-桶多肽。
[0104] 本发明还提供了大体上没有对应的野生型Cpn10多肽的可移动环区和顶部β-发夹区任一者或二者的分离的Cpn10多肽。
[0105] 如本文所公开的,本发明的发明人还证明了E.coli GroES不能诱导人Cpn10所具有的免疫调节作用(通过调节TLR信号传导而测定)。另外,通过E.coli GroES中对应N端残基替代人Cpn10 N端残基使得Cpn10多肽失活证实了Cpn10的N端对免疫调节活性是必需的。
[0106] 如本文进一步公开的,本发明的发明人还证明了将甘氨酸残基添加到Cpn10 N端增强免疫调节活性。预期乙酰基或与乙酰基共有结构同源性的诸如丙氨酸残基或甘氨酸残基的氨基酸存在增强Cpn10的免疫调节活性。
[0107] 多肽
[0108] 如本文所公开的,本发明考虑了通常具有免疫调节活性的Cpn10多肽,与对应的野生型Cpn10多肽相比,所述多肽包括一个或多个氨基酸删除、添加或取代。通常野生型Cpn10多肽为真核生物的任意Cpn10多肽。例如Cpn10来自酵母(例如酿酒酵母(Saccharomycescerevisiae))、线虫(例如秀丽隐杆线虫(Caenorhabditis elegans))、青蛙(例如热带非洲蟾蜍属(Xenopus tropicalls))、鸡(例如原鸡(Gallus gallus))、斑马鱼(例如鲐(Danio rerio))、苍蝇(例如果蝇,如黑腹果蝇(Drosphilamelanogaster))、植物(例如拟南芥(Arabidopsis thaliana))或哺乳动物。哺乳动物Cpn10可以为灵长类、鼠类、羊、牛、犬、猫、猪或马的Cpn10。可选地,Cpn10可以为古细菌来源。在特定的实施方案中,Cpn10为人Cpn10。野生型人Cpn10的氨基酸序列可由SEQ ID NO:1或21给出。编码野生型Cpn10的核苷酸序列可由SEQ ID NO:2或22给出,或显示足以和SEQ ID NO:2或22的序列杂交的序列一致性。
[0109] 本发明涉及如本文所公开的野生型Cpn10多肽的修饰,包括通过在N端或C端添加、删除或取代一个或多个氨基酸残基修饰的野生型分子。例如,可由如下引起氨基酸添加:融合Cpn10多肽或其片段与另外的多肽或肽,如多组氨酸标签、麦芽糖结合蛋白融合物、谷光甘肽S转移酶融合物、绿色荧光蛋白融合物、或添加诸如FLAG或c-myc的表位标签。例如,野生型人Cpn10多肽的修饰包括添加甘氨酸(G)残基。Cpn10多肽可以包括或不包括N端起始甲硫氨酸。
[0110] 在免疫调节的情况下,本发明Cpn10多肽基于或大体上来自人Cpn10,这种多肽通常包括N端序列MAGQAFRKFL,任选地包括如上所述的一个或多个修饰。
[0111] 如本文所公开的,本发明Cpn10多肽包括可移动环区和顶部β-发夹区任一者或二者的一个或多个氨基酸添加、删除或取代。在一个实施方案中,在可移动环区,例如在负责与Cpn60相互作用的三肽序列中,进行一个或多个氨基酸取代,使得修饰的多肽保留免疫调节活性但不保留蛋白折叠活性。在一个可选的实施方案中,Cpn10多肽大体上没有可移动环区(例如通过SEQ ID NO:3或24给出的序列作为例证)或顶部β-发夹区(例如通过SEQ ID NO:6或26给出的序列作为例证),或大体上既没有可移动环区也没有顶部β-发夹区(例如通过SEQ IDNO:9或28给出的序列作为例证)。
[0112] 如本文所定义的,形成可移动环或顶部β-发夹的氨基酸是在E.coli Cpn10、GroES的序列和已知晶体结构基础上定义的。由于Cpn10序列的进化保守性和预测的三维蛋白质结构的保守性,预测真核Cpn10多肽的可移动环区和顶部β-发夹区的位置是相似的。然而,真核Cpn10多肽的可移动环区和顶部β-发夹区的精确边界与GroES中稍微不同。
[0113] 本文用到的术语“变体”指大体上相似的序列。通常,多肽序列变体具有共同的定性生物活性。另外,这些多肽序列变体共有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%的序列一致性。术语“变体”的意思还包括本发明多肽的同系物。同系物通常为来自不同物种但与本文公开的对应多肽大体上共有相同生物功能或活性的多肽。
[0114] 另外,术语“变体”还包括本发明多肽的类似物,其中术语“类似物”指为本发明多肽衍生物的多肽,其中衍生物包括一个或多个氨基酸添加、删除、取代,使得多肽大体上保留相同的功能。术语“保守氨基酸取代”指多肽链(蛋白质一级序列)中一个氨基酸取代或替代为具有相似特性的另一个氨基酸。
[0115] 本发明还考虑了本文所公开多肽的片段。术语“片段”指编码本发明多肽或其变体的组分的多肽分子或是本发明多肽或其变体的组分的多肽分子片段。通常所述片段与作为组分的多肽具有共同的定性生物活性。所述肽片段可以为约5-150个氨基酸长度、约5-100个氨基酸长度、约5-50个氨基酸长度或约5-25个氨基酸长度。可选地,所述肽片段可以为约5-15个氨基酸长度。
[0116] 通过在N和/或C端添加、删除或取代一个或多个氨基酸残基而修饰的Cpn10多肽也包括在本发明范围内。
[0117] 生产Cpn10
[0118] 根据本发明,可采用本领域技术人员公知的重组DNA和分子生物学标准技术生产Cpn10多肽。例如从诸如Sambrook et al.,MolecularCloning:A Laboratory Manual(分子克隆:实验室手册),Cold SpringHarbor,New York,1989和Ausubel et al.,Current Protocols in MolecularBiology(分子生物学现行规范),Greene Publ.Assoc,andWiley-Intersciences,1992的标准文本中可获得指导。Morton et al.,2000(Immunol Cell Biol 78:603-607);Ryan et al.,1995(J Biol Chem270:22037-22043)和Johnson et al.,2005(J Biol Chem 280:4037-4047)所公开的方法为适合的Cpn10多肽纯化方法的实例,但技术人员应理解本发明不受所采用的纯化或生产方法限定,任何其他方法可用于生产本发明方法和组合物中使用的Cpn10。用诸如endoLys-C、endoArg-C、endoGlu-C和葡萄球菌V8-蛋白酶的一种或多种蛋白酶降解多肽来制备Cpn10多肽。可通过例如高效液相层析(HPLC)技术纯化被降解的肽片段。
[0119] 本发明Cpn10多肽的纯化可以为放大或大规模生产的目的。例如,如本文所公开的,本发明的发明人开发了在E.coli中分批发酵生产大量(克)高纯、临床级Cpn10多肽的生物方法。
[0120] 通过本领域普通技术人员公知的液相或固相化学标准方法也可合成本发明Cpn10多肽以及其片段和变体。例如可根据Steward和Young的固相化学方法合成这样的分子(Steward,J.M.&.Young,J.D.,SolidPhase Peptide Synthesis(固相肽合成)(第二版)Pierce Chemical Co.,Illinois,USA(1984))。
[0121] 通常,这样的合成方法包括连续添加一个或多个氨基酸或适合被保护的氨基酸到生长的肽链上。通常,第一个氨基酸的或者氨基或者羧基被适合的保护基团保护。随后,被保护的氨基酸或者被连接到惰性固体支持物,或者在适合形成酰胺键的条件下,通过在序列中添加具有适合被保护的互补(氨基或羧基)基团的下一个氨基酸而在溶液中使用。接着从该新添加的氨基酸残基上除去保护基团,添加下一个(被保护的)氨基酸,等等。所有期望的氨基酸被连接之后,任何保留的保护基团和任何固体支持物(如果需要)顺序或同时被除去以生成最终的多肽。
[0122] 通过相关领域技术人员公知的技术可实现Cpn10多肽中的氨基酸变化。例如,通过包括添加、删除或取代核苷酸(保守和/或非保守)的核苷酸替代技术可实现所述氨基酸变化,附带条件为维持正确的读码框。示例性技术包括随机诱变、定向诱变、寡核苷酸介导的或多核苷酸介导的诱变、通过采用存在的或构建的限制酶位点删除选择区和聚合酶链式反应。
[0123] 由本发明Cpn10多肽产生免疫调节活性涉及形成Cpn10多肽七聚物。可通过本领域技术人员已知许多方法的任何一种测定用于本发明目的的免疫调节活性。如本文所例示的,通常在存在诸如脂多糖的TLR4激动剂的情况下,通过测定多肽调节来自Toll样受体TLR4的信号传导的能力,例如采用荧光素酶生物测定,来测定Cpn10多肽的免疫调节活性。可选地或另外地,采用其他体外、离体或体内测定法,例如通过测定诸如外周血单核细胞的细胞中NF-κB产生或细胞因子产生,来测定免疫调节活性。
[0124] 多核苷酸
[0125] 本发明实施方案提供了编码如上所述的Cpn10多肽的分离的多核苷酸和这种多核苷酸的变体与片段。编码野生型Cpn10的核苷酸序列可由SEQ ID NO:2或22给出,或显示足以和SEQ ID NO:2或22给出的序列杂交的序列一致性。
[0126] 具体地,编码本发明Cpn10-NtermES多肽的核苷酸序列可由SEQID NO:43给出,或显示足以和SEQ ID NO:43给出的序列杂交的序列一致性。
[0127] 编码本发明Ala-Cpn10多肽的核苷酸序列可由SEQ ID NO:22给出,或显示足以和SEQ ID NO:22给出的序列杂交的序列一致性。
[0128] 编码本发明Ala-Cpn10-Δml多肽的核苷酸序列可由SEQ ID NO:25给出,或显示足以和SEQ ID NO:25给出的序列杂交的序列一致性。
[0129] 编码本发明Ala-Cpn10-Δroof多肽的核苷酸序列可由SEQ IDNO:27给出,或显示足以和SEQ ID NO:27给出的序列杂交的序列一致性。
[0130] 编码本发明Cpn10β-桶多肽的核苷酸序列可由SEQ ID NO:10给出,或显示足以和SEQ ID NO:10给出的序列杂交的序列一致性。编码本发明Ala-Cpn10β-桶多肽的核苷酸序列可由SEQ ID NO:29给出,或显示足以和SEQ ID NO:29给出的序列杂交的序列一致性。
[0131] 编码本发明Gly-Cpn10多肽的核苷酸序列可由SEQ ID NO:31给出,或显示足以和SEQ ID NO:31给出的序列杂交的序列一致性。
[0132] 编码本发明Ala-Cpn10-IFI多肽的核苷酸序列可由SEQ ID NO:36给出,或显示足以和SEQ ID NO:36给出的序列杂交的序列一致性。
[0133] 编码本发明Ala-Cpn10-III多肽的核苷酸序列可由SEQ ID NO:38给出,或显示足以和SEQ ID NO:38给出的序列杂交的序列一致性。
[0134] 编码本发明Ala-Cpn10-EEE-cHis多肽的核苷酸序列可由SEQ IDNO:40给出,或显示足以和SEQ ID NO:40给出的序列杂交的序列一致性。
[0135] 编码本发明Ala-Cpn10-cHis多肽的核苷酸序列可由SEQ IDNO:42给出,或显示足以和SEQ ID NO:42给出的序列杂交的序列一致性。
[0136] 本发明考虑了编码Cpn10-Δml多肽的核苷酸序列,该序列可由SEQ ID NO:4或5给出,或显示足以和SEQ ID NO:4或5给出的序列杂交的序列一致性。
[0137] 本发明考虑了编码Cpn10-Δroof多肽的核苷酸序列,该序列可有SEQ ID NO:7或8给出,或显示足以和SEQ ID NO:7或8给出的序列杂交的序列一致性。
[0138] 本发明考虑了编码Cpn10β-桶多肽的核苷酸序列,该序列可有SEQ ID NO:10给出,或显示足以和SEQ ID NO:10给出的序列杂交的序列一致性。
[0139] 就上文所述的多肽来说,本文用到的术语“变体”指大体上相似的序列。通常,多核苷酸序列变体编码共有定性生物活性的多肽。另外,这些多核苷酸序列变体共有至少50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%的序列一致性。术语“变体”的含义还包括本发明多核苷酸的同系物。同系物通常为来自不同物种但大体上共有相同活性的多核苷酸。
[0140] 还考虑了本发明多核苷酸的片段。术语“片段”指编码本发明多核苷酸组分的核苷酸分子或是本发明多核苷酸组分的核苷酸分子。多核苷酸片段不一定需要编码保留生物活性的多肽。而所述片段可用作例如杂交探针或PCR引物。所述片段可衍生自本发明多核苷酸,或可选地可通过一些其他方法(例如化学合成)进行合成。采用本领域技术人员已知的技术可将本发明多核苷酸及其片段用于生产反义分子。
[0141] 因此,本发明考虑了基于本发明多核苷酸序列用作引物和探针的寡核苷酸和片段。寡核苷酸为适合用在诸如PCR的核酸扩增反应中的短延伸的核苷酸残基,通常为至少约10-50个核苷酸长度,更典型的为约15-30个核苷酸长度。探针为通常通过杂交用于检测同源系列的可变长度的核苷酸序列,例如约10至几千个核苷酸。序列之间的同源性(序列一致性)水平主要通过杂交条件的严紧性决定。特别地,在低严紧性、中等严紧性或高严紧性条件下,用作探针的核苷酸序列可与本文所公开的多核苷酸的同系物或其他变体杂交。低严紧性杂交条件对应于50℃在2×SSC中进行的杂交。可采用本领域技术人员公知的许多条件和因素改变杂交的严紧性。例如,与特定核苷酸杂交的核酸长度和特性(DNA、RNA、碱基组成);盐和其他组分的浓度,如有或没有甲酰胺、硫酸葡聚糖、聚乙二醇等;以及改变杂交和/或洗涤步骤的温度。例如在2×SSC、0.5%SDS和至少55℃(低严紧性)、至少60℃(中等严紧性)、至少65℃(中等/高严紧性)、至少70℃(高严紧性)或至少75℃(极高严紧性)条件下洗涤杂交滤器两次,每次30分钟。
[0142] 在特定的实施方案中,本发明的多核苷酸被克隆到载体中。所述载体可以为质粒载体、病毒载体,或适合插入外源序列、引入真核细胞和表达所引入序列的任何其他适合的载体。通常,所述载体为真核表达载体,包括表达对照和诸如启动子、增强子、核糖体结合位点、多腺苷酸化信号和转录终止序列的处理序列。
[0143] 抗体
[0144] 本发明提供了选择性与本发明Cpn10多肽结合的抗体及其片段和类似物。适合的抗体包括但不限于多克隆、单克隆、嵌合体、人源化、单链、Fab片段和Fab表达文库。本发明抗体可作为Cpn10多肽的激动剂或拮抗剂或其片段或类似物。
[0145] 优选地,由本发明Cpn10多肽的不连续区域或片段,尤其是涉及赋予免疫调节活性和/或结合伙伴或底物的那些,来制备所述抗体。抗原性Cpn10多肽包含至少约5个氨基酸,优选地至少约10个氨基酸。
[0146] 本发明技术人员容易理解生成适合的抗体的方法。例如,采用Antibodies-A Laboratory Manual(抗体-实验室手册),Harlow and Lane,eds.,Cold Spring Harbor Laboratory,N.Y.(1988)中所述的杂交瘤技术可制备通常包含Fab部分的抗-Cpn10单克隆抗体。
[0147] 大体上,在制备定向于本发明Cpn10多肽的单克隆抗体中,可采用通过培养的连续细胞系提供抗体分子产生的任何技术。这些包括由Kohler et al.,Nature,256:495-497(1975)最初开发的杂交瘤技术、以及三源杂交瘤技术、人B-细胞杂交瘤技术[Kozbor et al.,ImmunologyToday,4:72(1983)]和生产人单克隆抗体的EBV-杂交瘤技术[Cole et al.,in Monoclonal Antibodies and Cancer Therapy(单克隆抗体和癌症治疗),pp.77-96,Alan R,Liss,Inc.,(1985)]。通过诸如用致癌DNA直接转化B淋巴细胞或用EB(Epstein-Barr)病毒转染的技术而不是融合来产生无限增殖生产抗体的细胞系。参见,例如M.Schreier et al.,″HybridomaTechniques″(杂交瘤技术)(1980);Hammerling et al.,″MonoclonalAntibodies and T-cell Hybridomas″(单克隆抗体和T-细胞杂交瘤)(1981);Kennett et al.,″Monoclonal Antibodies″(单克隆抗体)(1980)。
[0148] 总之,对于产生获得单克隆抗体的杂交瘤的方法,将骨髓瘤或其他自身延续细胞系与由哺乳动物脾脏获得的淋巴细胞融合,其中所述哺乳动物使用与所述杂交瘤识别因子结合部分或所述杂交瘤的识别因子或起源特异性DNA结合部分超免疫。通过与所述识别因子的免疫反应能力和抑制靶细胞中特定转录活性的能力来鉴定用于实施本发明的产生单克隆抗体的杂交瘤。
[0149] 通过开始包括营养培养基(含有分泌具有适合的抗原特异性的抗体分子的杂交瘤)的单克隆杂交瘤培养可生产用于实施本发明的单克隆抗体。在杂交瘤足以分泌抗体分子到培养基的条件和时间段中维持培养。随后收集含有抗体的培养基。接着通过公知技术进一步分离抗体分子。
[0150] 相似地,可采用本领域公知的多种方法生产本发明Cpn10多肽的多克隆抗体或其片段或类似物。对于生产Cpn10多克隆抗体,通过注射Cpn10多肽或其片段或类似物免疫不同的宿主动物,所述宿主动物包括但不限于兔、小鼠、大鼠、绵羊、山羊等。另外,可将Cpn10多肽或其片段或类似物与免疫原性载体偶联,例如牛血清白蛋白(BSA)或钥孔戚血蓝素(KLH)。也采用不同的佐剂增加免疫应答,包括但不限于弗氏(Freund′s)(完全和不完全)佐剂、诸如氢氧化铝的矿物质凝胶、诸如溶血卵磷脂的表面活性物质、普流罗尼多元醇、聚阴离子、肽、油乳胶、钥孔戚血蓝素、二硝基酚,以及诸如卡介苗(bacilleCalmette-Guerin)(BCG)和短小棒状杆菌(Corynebacterium parvum)的可能有用的人类佐剂。
[0151] 通过本领域已知的多种方法也可实现所期望抗体的筛选。抗体的免疫特异性结合测定法包括但不限于放射性免疫测定法、ELISA法(酶联免疫吸附测定法)、双抗夹心免疫测定法、免疫放射测定法、凝胶扩散沉淀反应、免疫扩散测定法、原位免疫测定法、蛋白质印迹(Westernblots)、沉淀反应、凝集反应测定法、补体结合测定法、免疫荧光测定法、蛋白A测定法和免疫电泳测定法等等(参见,例如Ausubel et al.,eds,1994,Current Protocols in Molecular Biology,Vol.1,John Wiley & Sons,Inc.,New York)。根据抗-Cpn10一级抗体上的可检测标记可检测抗体的结合。可选地,根据与适当标记的二级抗体或试剂的结合可检测抗-Cpn10的抗体。用于检测免疫测定中结合的多种方法为本领域已知并在本发明范围内。
[0152] 本发明抗体可用于本领域普通技术人员所公知的诊断方法和试剂盒中以定性或定量测定体液或组织中的Cpn10,或可选地,所述抗体可用于治疗各种疾病、病症和状态的方法和组合物中。
[0153] 所提出的针对本发明Cpn10多肽或其片段或类似物的抗体(或其片段)对Cpn105 -1
具有结合亲和力。优选地,所述抗体(或其片段)具有的结合亲和力或亲合力大于约10M ,
8 -1 7 -1 8 -1
更优选大于约10M ,还更优选大于约10M ,最优选大于约10M 。
[0154] 在获得适合量的本发明抗体方面,可采用无血清培养基分批发酵生产所述抗体。发酵后通过结合层析法和灭活/除去病毒步骤的多步骤纯化所述抗体。例如,首先通过蛋白A亲和层析分离所述抗体,然后用溶剂/洗涤剂处理灭活任何有脂质包膜病毒。通常通过阴离子和阳离子交换层析的进一步纯化用于除去残余的蛋白质、溶剂/洗涤剂和核酸。采用凝胶过滤柱进一步纯化所述纯化抗体并配制到0.9%盐水中。随后对制得的散装制剂进行灭菌,过滤病毒,并配药。
[0155] 激动剂和拮抗剂
[0156] 除了特异的抗-Cpn10抗体外,本发明多肽及其片段和变体特别用于筛选和鉴定与Cpn10相互作用的化合物和药剂。尤其是,期望的化合物为调节Cpn10免疫调节活性的化合物。这种化合物通过活化、增加、抑制或阻止Cpn10免疫调节活性而调节。适合的化合物依靠或者直接(例如结合)或者间接相互作用产生对Cpn10的作用。
[0157] 通过多种适合的方法可鉴定与本发明Cpn10多肽结合或者相互作用的化合物,特别是调节Cpn10活性的化合物。可采用标准竞争性结合测定法或双杂交测定系统测定相互作用和/或结合。
[0158] 例如,双杂交测定为通常用于测定蛋白-蛋白相互作用的基于酵母的遗传测定系统(Fields and Song,1989)。简言之,所述测定利用了转录活化因子的多结构域特性。例如,已知的转录活化因子的DNA结合结构域可与本发明Cpn10多肽或其片段或变体融合,转录活化因子的活化结构域可与候选蛋白融合。候选蛋白与Cpn10多肽或其片段或变体之间的相互作用使得转录活化因子的DNA结合结构域和活化结构域紧密接近。因此根据转录活化因子活化的特定报告基因的转录可测定相互作用。
[0159] 可选地,采用亲和层析鉴定Cpn10的结合伴侣蛋白。例如,可将本发明Cpn10多肽或其片段或变体固定在支持物(如琼脂糖凝胶)上,使得细胞溶解物经过柱子。接着可从柱子上洗脱结合到固定的Cpn10多肽或其片段或变体上的蛋白并进行鉴定。最初可通过例如N端氨基酸测序鉴定这种蛋白。
[0160] 可选地,在上述技术的改良中,采用Flanagan and Leder(1990)所述的免疫沉淀法的改良形式,通过将Cpn10多肽、片段或变体与诸如碱性磷酸酶的可检测标签融合产生融合蛋白。
[0161] 测定调节Cpn10活性的化合物的方法涉及将Cpn10多肽与候选化合物和适合的标记底物进行组合,以及通过底物的变化检测化合物对Cpn10的作用(可作为时间函数测定)。适合的标记底物包括用于例如基于比色测量、放射测量、荧光测量或荧光共振能量转移(FRET)的方法的标记底物。
[0162] 本发明Cpn10多肽及适合的片段和变体可用于高通量筛选中以测定候选化合物与Cpn10结合或者相互作用的能力。对于功能性Cpn10可进一步筛选这些候选化合物以测定化合物对Cpn10活性的作用。
[0163] 应理解上述方法仅为如下方法类型的实例:即可用于鉴定能与本发明Cpn10多肽及其片段和变体相互作用或调节它们的活性的化合物的方法。其他适合的方法为本领域技术人员所公知并在本发明范围内。
[0164] 由上述方法可鉴定活化(激动剂)或者抑制(拮抗剂)Cpn10活性的化合物。这种化合物可以为例如抗体、低分子量肽、核酸或非蛋白有机分子。
[0165] 通过本领域技术人员公知的许多方法可产生由上述方法筛选的Cpn10活性的可能的调节剂。例如,可采用组合化学的不同形式产生假定的非肽调节剂。另外,可采用诸如核磁共振(NMR)和X射线晶体学的技术建立Cpn10多肽、片段和变体的结构模型,以及采用计算机预测产生可能的调节剂。
[0166] 组合物和给药途径
[0167] 本发明Cpn10多肽和多核苷酸可用作治疗剂。通过给予个体治疗有效量的这些分子,可将这些分子用于例如治疗或预防所述个体的疾病或状态。通常,通过调节所述个体中的免疫应答能够治疗这样的疾病和状态。例如,这样的疾病和病症包括急性或慢性炎性疾病、哮喘、过敏症、多发性硬化症、GVHD和传染病。传染病可由细菌或病毒感染引起。因此,考虑了用于治疗或预防疾病和状态的包括Cpn10多肽和多核苷酸的药学上有用的组合物。
[0168] 本发明Cpn10多肽的激动剂和拮抗剂包括抗-Cpn10抗体也可用作治疗剂。因此本发明还考虑了采用所述激动剂和拮抗剂以及包括所述激动剂和拮抗剂的药物组合物的治疗方法。
[0169] 通常,用于本发明方法的适合组合物可根据本领域普通技术人员公知的方法和步骤制备,其因此可包括药学上可接受的载体、稀释剂和/或佐剂。
[0170] 可通过标准途径进行组合物的给药。通常,通过肠胃外(例如静脉内、脊柱内、皮下或肌肉内)途径、口服或局部途径进行所述组合物的给药。给药可以是全身性、区域性性或局部性。在任何给定情况下所采用的具体给药途径取决于许多因素,包括被治疗状态的性质、所述状态的严重性和程度、待递送的具体化合物的需要剂量以及所述化合物可能的副作用。
[0171] 通常,适合的组合物可根据本领域普通技术人员已知的方法制备,其可包括药学上可接受的稀释剂、佐剂和/或赋形剂。所述稀释剂、佐剂和赋形剂在与组合物的其他成分相容并且对其接受者无毒的方面必须是“可接受的”。
[0172] 药学上可接受的载体或稀释剂的实例为:软化水或蒸馏水;盐水溶液;诸如花生油(peanut oil)、红花油、橄榄油、棉籽油、玉米油、芝麻油、花生油(arachis oil)或椰子油的基于植物的油;硅油类,包括聚硅氧烷,如聚甲基硅氧烷、聚苯基硅氧烷和聚甲苯基硅氧烷;挥发性硅酮;诸如液状石蜡、软石蜡或角鲨烷的矿物油;诸如甲基纤维素、乙基纤维素、羧甲基纤维素、羧甲基纤维素钠或羟丙基甲基纤维素的纤维素衍生物;低级链烷醇,例如乙醇或异丙醇;低级芳烷醇;低级聚烷撑亚烷基二醇或低级烷撑二醇,例如聚乙二醇、聚丙二醇、乙二醇、丙二醇、1,3-丁二醇或甘油;脂肪酸酯,如棕榈酸异丙酯、肉豆蔻酸异丙酯或油酸乙酯;聚乙烯吡咯烷酮;琼脂;角叉菜胶;黄蓍树胶或阿拉伯树胶和凡士林。通常,所述一种或多种载体形成组合物重量的10-99.9%。
[0173] 本发明组合物可以为:适合通过注射给药的形式;适合口服的制剂形式(如胶囊剂、片剂、囊片、酏剂);适合外用给药的软膏、乳剂或洗剂形式;适合作为滴眼剂给药的形式;适合通过诸如鼻内吸入或口腔吸入的吸入给药的气雾剂形式;适合肠胃外即皮下、肌肉内或静脉内注射给药的形式。
[0174] 对于以可注射的溶液或悬浮液给药时,无毒的胃肠外可接受的稀释剂或载体包括林格氏(Ringer′s)溶液、等渗盐水、磷酸盐缓冲盐水、乙醇和1,2丙二醇。
[0175] 适于口服使用的载体、稀释剂、赋形剂和佐剂的一些实例包括花生油(peanut oil)、液状石蜡、羧甲基纤维素钠、甲基纤维素、海藻酸钠、阿拉伯树胶、黄蓍树胶、葡萄糖、蔗糖、山梨醇、甘露醇、白明胶和卵磷脂。此外,这些口服制剂包含适合的增香剂和着色剂。当以胶囊形式使用时,用诸如甘油单硬脂酸酯或甘油二硬脂酸酯的延迟崩解的化合物包被所述胶囊剂。
[0176] 佐剂通常包括润滑剂、乳化剂、增稠剂、防腐剂、杀菌剂和缓冲剂。
[0177] 口服给药的固体形式包含人和兽医制药实践中可接受的粘合剂、甜味剂、崩解剂、稀释剂、增香剂、包衣剂、防腐剂、润滑剂和/或时间延迟剂。适合的粘合剂包括阿拉伯树胶、白明胶、玉米淀粉、黄蓍树胶、海藻酸钠、羧甲基纤维素或聚乙二醇。适合的甜味剂包括蔗糖、乳糖、葡萄糖、阿斯巴特或糖精。适合的崩解剂包括玉米淀粉、甲基纤维素、聚乙烯吡咯烷酮、瓜尔胶、黄原胶、皂粘土、海藻酸或琼脂。适合的稀释剂包括乳糖、山梨醇、甘露醇、葡萄糖、高岭土、纤维素、碳酸钙、硅酸钙或磷酸二钙。适合的增香剂包括薄荷油、冬青油、樱桃、桔子或树莓增香剂。适合的包衣剂包括丙烯酸和/或甲基丙烯酸和/或它们的酯的聚合物或共聚物、蜡类、脂肪族醇类、玉米醇溶蛋白、虫胶或谷蛋白。适合的防腐剂包括苯甲酸钠、维生素E、α-生育酚、抗坏血酸、对羟基苯甲酸甲酯、对羟基苯甲酸丙酯或亚硫酸氢钠。适合的润滑剂包括硬脂酸镁、硬脂酸、油酸钠、氯化钠或滑石。适合的时间延迟剂包括甘油单硬脂酸酯或甘油二硬脂酸酯。
[0178] 除了上述制剂外,口服给药的液体形式还包含液体载体。适合的液体载体包括:水;油类,如橄榄油、花生油(peanut oil)、芝麻油、葵花籽油、红花油、花生油(arachis oil)、椰子油、液状石蜡、乙二醇、丙二醇、聚乙二醇、乙醇、丙醇、异丙醇、甘油、脂肪族醇类、甘油三酯类或其混合物。
[0179] 口服给药的悬浮液还包括分散剂和/或悬浮剂。适合的悬浮剂包括羧甲基纤维素钠、甲基纤维素、羟丙甲基纤维素、聚乙烯吡咯烷酮、海藻酸钠或乙酰基醇。适合的分散剂包括:卵磷脂,脂肪酸(诸如硬脂酸)的聚氧乙烯酯,聚氧乙烯山梨醇单油酸酯或聚氧乙烯山梨醇二油酸酯、聚氧乙烯山梨醇单硬脂酸酯或聚氧乙烯山梨醇二硬脂酸酯、聚氧乙烯山梨醇单月桂酸酯或聚氧乙烯山梨醇二月桂酸酯、聚氧乙烯山梨聚糖单油酸酯或聚氧乙烯山梨聚糖二油酸酯、聚氧乙烯山梨聚糖单硬脂酸酯或聚氧乙烯山梨聚糖二硬脂酸酯、聚氧乙烯山梨聚糖单月桂酸酯或聚氧乙烯山梨聚糖二月桂酸酯等等。
[0180] 口服给药的乳剂还包括一种或多种乳化剂。适合的乳化剂包括上述示例性分散剂或诸如瓜尔胶、阿拉伯树胶或黄蓍树胶的天然树胶。
[0181] 制备肠胃外给药组合物的方法对本领域技术人员而言是显而易见的,并详细描述在Remington′s Pharmaceutical Science(雷明顿药物科学),15th ed.,Mack Publishing Company,Easton,Pa.中,该文献由此通过引用并入本申请。
[0182] 本发明外用制剂包括活性成分和一种或多种可接受的载体以及任选的任何其他治疗成分。适合外用给药的制剂包括适合通过皮肤渗透到需要治疗部位的诸如搽剂、洗剂、乳剂、软膏或糊剂的液体制剂或半液体制剂,以及适于对眼睛、耳朵或鼻子给药的滴剂。
[0183] 本发明滴剂包括无菌水或油状溶液或悬浮液。这些滴剂的制备可通过将活性成分溶解在杀菌剂和/或杀真菌剂和/或任何其他适合的防腐剂的水溶液中,任选地包括表面活性剂。随后通过过滤澄清所得溶液,转移到适合的容器中并灭菌。通过在90℃-100℃高压蒸汽灭菌或维持半小时或通过滤过除菌法实现灭菌,接着通过无菌操作转移到容器中。适合包含在滴剂中的杀菌剂和杀真菌剂的实例为硝酸苯汞或醋酸苯汞(0.002%)、苯扎氯铵(0.01%)和醋酸氯己定(0.01%)。适合制备油状溶液的溶剂包括甘油、稀乙醇和丙二醇。
[0184] 本发明洗剂包括适合应用到皮肤或眼睛的洗剂。洗眼剂包括任选地含有杀菌剂的无菌水溶液,可通过类似于上述关于制备滴剂的方法制备。应用到皮肤的洗剂或搽剂还包括诸如乙醇或丙酮的快速干燥和冷却皮肤的制剂,和/或诸如甘油的湿润剂,或诸如蓖麻油或花生油(arachis oil)的油。
[0185] 本发明乳剂、软膏或糊剂为适合外用的活性成分的半固体制剂。它们的制备是通过将单独的磨成细粉或弄成粉状形式的活性成分或在水或非水液体溶液或悬浮液中的磨成细粉或弄成粉状形式的活性成分与油脂性基质或非油脂性基质混和。所述基质包括诸如硬石蜡、软石蜡、液体石蜡、甘油、蜂蜡、金属皂的烃类;诸如杏仁油、玉米油、花生油(arachis oil)、蓖麻油或橄榄油的天然来源的油;羊毛脂或其衍生物;或诸如硬脂酸或油酸的脂肪酸以及诸如丙二醇或聚乙二醇的醇。
[0186] 所述组合物可掺入任意适合的表面活性剂,如阴离子表面活性剂、阳离子表面活性剂或诸如山梨坦酯或其聚氧乙烯衍生物的非离子表面活性剂。还包括诸如天然树胶、纤维素衍生物的悬浮剂或诸如矽杂质(silicaceous)硅酸盐的无机物质以及诸如羊毛脂的其他成分。
[0187] 也以脂质体形式进行所述组合物的给药。脂质体通常衍生自磷脂类或其他脂质物质,并通过分散在水介质中的单层或多层含水液晶形成。可采用能形成脂质体的任何无毒生理学上可接受的并且可代谢的脂质。脂质体形式的所述组合物包含稳定剂、防腐剂和赋形剂等。优选的脂质为天然的与合成的磷脂类和磷酯酰胆碱(卵磷脂)。形成脂质体的方法为本领域已知,关于这方面可具体参考Prescott,Ed.,Methodsin Cell Biology(细胞生物学方法),Volume XIV,Academic Press,NewYork,N.Y.(1976),p.33 et seq.,其内容通过引用并入本申请。
[0188] 所述组合物可与大量的聚乙二醇(PEG)衍生物偶联。添加PEG到蛋白上(聚乙二醇化)为已成熟建立的方法,用于降低蛋白的血浆清除率,由此增加它们的效力(Nucci et al,1991,Adv.Drug Del.Rev.6:133)。聚乙二醇化的其他益处包括蛋白具有更强的稳定性、降低免疫原性、增强可溶性和降低对蛋白质水解的敏感性(Sheffield W.2001,CurrDrug Targets Cardiovasc Haematol Disord,1:1-22)。PEG分子包含基本重复结构(OCH3CH2)n-OH,并根据它们的分子量分类。PEG衍生物与蛋白偶联增加它们的水动力学半径,通常它们半衰期的增加直接与所结合的PEG链大小有关(Sheffield W.2001,Curr Drug TargetsCardiovasc Haematol Disord.1:1-22)。
[0189] 也以微粒形式进行所述组合物的给药。由多乳酸化合物(PLA)、多乳酸-共-乙交酯(PLGA)和ε-己内酯形成的可生物降解的微粒广泛用作药物载体以增加血浆半衰期,由此延长效力(R.Kumar,M.,2000,JPharm Pharmaceut Sci 3(2)234-258)。微粒被配制用于递送一系列药物候选物,包括疫苗、抗生素和DNA。另外,开发这些制剂用于不同的递送途径,包括胃肠外皮下注射、静脉注射和吸入。
[0190] 所述组合物可掺入由蔗糖醋酸异丁酸酯(SAIB)与有机溶剂或有机溶剂混合物组成的控制释放的基质。可将聚合物添加剂添加到作为释放改良剂的媒介物中以进一步增加粘性并降低释放率。SAIB为公知的食品添加剂。它是疏水性很强、完全酯化的蔗糖衍生物,标称比为异丁酸酯∶乙酸酯=6∶2。作为混和性酯,SAIB不结晶,但以澄清的粘性液体存在。将SAIB与诸如乙醇或苯甲醇的药学上可接受的有机溶剂混合降低混合物的粘性足以使得可用于注射。可将活性药物成分添加到SAIB递送媒介物以形成SAIB溶液或悬浮液制剂。当皮下注射所述制剂时,溶剂从基质中扩散使得SAIB-药物或SAIB-药物-聚合物的混合物原位形成储库。
[0191] 出于本发明目的,分子和药剂可作为组合物治疗性或者预防性给予个体。在治疗性应用中,可以以足以治疗或至少部分控制疾病和其并发症的量将所述组合物给予已患疾病的患者。所述组合物应提供足以有效治疗所述患者的分子或药剂量。
[0192] 对任何具体患者的治疗有效剂量水平取决于多种因素,包括被治疗的病症和病症的严重性;所采用的分子或药剂的活性;所采用的组合物;患者的年龄、体重、一般健康、性别和饮食;给药时间;给药途径;分子或药剂的隔离率;治疗的持续时间;用于联合或同时治疗的药物以及医学中公知的其他相关因素。
[0193] 通过常规实验,本领域技术人员能确定治疗可适用疾病和状态所需要的药剂或化合物的有效无毒量。
[0194] 一般地,期望的有效剂量为约0.0001-1000mg/kg体重/24小时;通常约0.001-750mg/kg体重/24小时;约0.01-500mg/kg体重/24小时;约0.1-500mg/kg体重/24小时;约0.1-250mg/kg体重/24小时;约1.0-250mg/kg体重/24小时。更典型地,期望的有效剂量为约1.0-200mg/kg体重/24小时;约1.0-100mg/kg体重/24小时;约1.0-50mg/kg体重/24小时;约1.0-25mg/kg体重/24小时;约5.0-50mg/kg体重/24小时;约5.0-20mg/kg体重/24小时;约5.0-15mg/kg体重/24小时。
[0195] 可选地,有效剂量高达约500mg/m2。通常,期望的有效剂量为约25-500mg/m2,2 2 2
优选地约25-350mg/m,更优选约25-300mg/m,还更优选约25-250mg/m,甚至更优选约
2 2
50-250mg/m,甚至还更优选约75-150mg/m。
[0196] 通常,治疗性应用中,在疾病状态的持续时间中治疗。
[0197] 另外,根据被治疗疾病状态的性质和程度,给药形式、途径和部位,,以及被治疗特定个体的自然状况确定个体剂量的最佳量和时间间隔,这对本领域普通技术人员而言是显而易见的。并且,通过常规技术可确定这种最佳条件。
[0198] 本领域技术人员采用常规疗程确定试验可确定最佳疗程,如在确定天数内,每天给予组合物剂量的次数,这对本领域普通技术人员而言也是显而易见的。
[0199] 本发明实施方案还考虑了进行编码Cpn10的多核苷酸的给药。在这种情形下,通常使多核苷酸可操作地连接引物,使得产生适合的多肽序列,接着给予个体所述多核苷酸。所述多核苷酸可在载体中给予个体。所述载体可以是质粒载体、病毒载体,或适合插入外源序列、引入真核细胞和表达所引入序列的任何其他适合的载体。通常所述载体为真核表达载体,包括表达对照和诸如启动子、增强子、核糖体结合位点、多腺苷酸化信号和转录终止序列的处理序列。给药的核酸构建体包括裸DNA或可为组合物形式,并包括一种或多种药学上可接受的载体。
[0200] 本领域技术人员应理解,根据本发明方法,本发明Cpn10多肽可单独给药或联合一种或多种另外的药剂给药。例如,本发明Cpn10多肽可与能刺激诸如TLR4的TLR受体的一种或多种激动剂一起给药。此外,本发明考虑了采用本发明Cpn10多肽与疾病和病症的其他疗法结合的联合疗法。例如,Cpn10多肽可用于治疗病毒疾病,该疾病响应采用诸如IFNβ或IFNc的I型干扰素的疗法,可将本发明Cpn10多肽与IFNβ联合用于治疗诸如多发性硬化症的自身免疫性疾病。
[0201] 对于这种联合疗法,联合疗法中的每个组分可同时给药、或以任意顺序连续给药或在不同时间给药以提供期望的效果。可选地,单一剂量单位的各组分可一起配制成组合产品。当分开给药时,优选地通过相同的给药途径给予所述各组分,但不一定必须这样。
[0202] 现在将参考具体实施例描述本发明,所述具体实施例不应解释为以任何方式限制本发明的范围。
[0203] 实施例
[0204] 实施例1:用于生产Cpn10多肽的遗传参数
[0205] 表2描述了用于生产下文所列的Cpn10多肽的遗传参数,具体为表达系统(即质粒名称、抗生素选择和宿主细胞)。
[0206] 表2:用于生产Cpn10多肽的遗传参数的描述
[0207]Cpn10多肽 质粒名称 生产系统
Ala-Cpn10 Ala-Cpn10_pPL550 具有pPL550 AmpR的
XL1-Blue细胞
X-Cpn10 X-Cpn10_pPL550 具有pPL550 AmpR的
XL1-Blue细胞
Ala-Cpn10-Δml Ala-Cpn10-Δml_pPL550 具有pPL550 AmpR的
XL1-Blue细胞
Ala-Cpn10-Δroof Ala-Cpn10-Δroof_pPL550 具有pPL550 AmpR的
XL1-Blue细胞
Ala-Cpn10-β-桶 Ala-Cpn10-β-桶_pET23a 具有pET23a AmpR的
BL21(DE3)STAR细胞
Gly-Cpn10 Gly-Cpn10_pET30a 具有pET30a KanR的
BL21(DE3)STAR细胞
GroES GroES_pET11a 具有pET11a AmpR的
BL21(DE3)STAR细胞
Ala-Cpn10-IFI Ala-Cpn10-IFI_pPL550 具有pPL550 AmpR的
XL1-Blue细胞
Ala-Cpn10-III Ala-Cpn10-III_pPL550 具有pPL550 AmpR的
XL1-Blue细胞
Ala-Cpn10-EEE-cH Ala-Cpn10-EEE-cHis_pET23a 具有pET23a AmpR的
is BL21(DE3)STAR细胞
Ala-Cpn10-cHis Ala-Cpn10-cHis_pET23a 具有pET23a AmpR的
BL21(DE3)STAR细胞
Cpn10-NtermES Cpn10-NtermES_pET23a 具有pET23a AmpR的
BL21(DE3)STAR细胞
[0208] 实施例2:生产Cpn10多肽的方法
[0209] 为进一步详细说明Cpn10的生产方法,下文以Ala-Cpn10作为例子论及生产方法。
[0210] 首先,根据Somodevilla-Torres et al.(2003,Prot.Exp,Purif.32:276-287)获得编码具有额外的N端丙氨酸残基的人Cpn10(Ala-Cpn10_pPL550)的热诱导表达质粒。随后将质粒载体转化到E.coli菌株XL1-Blue(Stratagene)中,并由单选择克隆建立原始细胞库。
[0211] 随后基本上如Ryan等人(1995,J Biol Chem 270:22037-22043)所述在E.coli中生产Ala-Cpn10。另外,没有结合Macro-Prep High Q(BioRad)的物质通过S-Sepharose进一步纯化,接着凝胶过滤(Superdex200,Amersham Biosciences)。根据厂商说明(Pall Corporation,Ann Arbor,M1.Cat No.MSTG5E3)将在50mM Tris-HCl(pH 7.6)和150mM NaCl缓冲剂中的纯化的Cpn10经过装有0.2mm Mustang E膜的Acrodisc过滤以除去残余的内毒素,贮存在-70℃。通过SDS-PAGE测定Cpn10纯度>99%。使用之前解冻等分部分。
[0212] 在GroEL介导的硫氰酸酶再折叠测定中,大多数的人Cpn10多肽显示与E.coli GroES相同的摩尔活力(Brinker et al.,2001,Cell,107223-233)(数据未显示)。通过鲎变形细胞溶解物分析(LimulusAmebocyte Lysate assay)(BioWhittaker,Walkersville,MD)测定Cpn10的LPS杂质,对纯化的Cpn10蛋白为<0.03EU/mg。
[0213] 由上述生产方法获得Cpn10多肽的可靠性通过质谱法逐批测定。如下表3所显示的,预测和计算的质量是一致的。
[0214] 表3:Cpn10多肽的质谱数据和理论值
[0215]Ala-Cpn10-Δroof 10201.8 10202.0
Ala-Cpn10-β-桶 8530.8 8531.0
Gly-Cpn10 10857.5 10857.0
GroES 10386.9 10386.0
Ala-Cpn10-IFI 10887.5 10885.8
Ala-Cpn10-III 10853.5 10851.9
Ala-Cpn10-EEE-cHis 11966.5 11966.0
Ala-Cpn10-cHis 11936.7 11936.0
Cpn10-NtermES 10295.9 10295.0
[0216] 实施例3:确定Cpn10多肽的免疫调节活性的RAW264-HIV-LTR-LUC生物测定[0217] 基本上采用如国际专利申请PCT/AU2005/000041所述的RAW264-HIV-LTR荧光素酶生物测定来测试Cpn10多肽的免疫调节活性。在存在脂多糖(LPS)的情况下,这种测定测量Cpn10或其变体、突变体或衍生物调节来自Toll样受体TLR4的信号传导的能力。
[0218] 在RAW264-HIV-LTR-LUC细胞从液氮中恢复后,在G418(200mg/ml)存在的2
情况下培养5天,在75cm 的烧瓶中作为悬浮培养物培养(Greiner Labortechnik,Frickenhausen,Germany)。通过反复吸液解聚RAW264-HIV-LTR-LUC细胞,并以每
5
孔2.5×10 个细胞接种在24孔板中培养过夜(37℃和5%CO2)。将来自E.coli(Cat No.L-6529,055:B5株,Sigma)的粗制LPS和来自E.coli(Cat No.tirl-pelps,0111:B4株,Invivogen)的超纯LPS溶解在无菌蒸馏水中,并在4℃分别以1mg/ml或5mg/ml贮存在玻璃瓶中。进行等分前剧烈涡旋所述溶液并即刻使用。添加指定浓度的LPS之前,将Cpn10与所述细胞一起预培养2h。再次培养2h之后处理粘附细胞用于荧光素酶测定(Luciferase AssaySystem(荧光素酶测定系统),Promega,Madison,W1)。采用TumerDesigns光度计TD
20/20(RLU)或者Perkin-Elmer Wallace Victor 2Multilabel Counter(多标记计数器)(CPS)测定荧光素酶活性。
[0219] 实施例4:采用体外GroEL介导的硫氰酸酶再折叠测定分析Cpn10多肽的协同伴侣蛋白活性
[0220] 采用根据Weber F.和Hayer-Hartl M.K.(Chaperonin Protocols,EdSchneider C.,Humana Press Inc.,2000,p117-126)的适合方法通过体外测定硫氰酸酶再折叠来确定Cpn10多肽联合GroEL作为分子伴侣和折叠蛋白的能力。在含有5M盐酸胍和8mM DTT的20mM MOPS-KOH(pH7.5)、100mM KCl和20mM MgCl2(缓冲剂A)中使天然牛硫氰酸酶(30μM,SIGMA)变性,随后从变性剂稀释(75倍)到含有GroEL(400nM)的缓冲剂A中,使得硫氰酸酶的终浓度为400nM。GroEL快速稳定地结合变性硫氰酸酶(D-Rho),然而在单独的缓冲剂中,D-Rho错误折叠并聚集(即无效的自发再折叠)。添加Cpn10(参见下文)和ATP(20.6mM)到结合了GroEL的硫氰酸酶所形成的稳定复合物中使得高效再折叠继续进行。在无Cpn10的情况下,添加ATP导致D-Rho以折叠不全的方式循环性结合与离开GroEL,并最终导致错误折叠和聚集(这个反应作为适合的测定空白对照)。每个折叠反应具有290μL的总体积,在特定的时点(即0、15、30、45、60、75、90分钟),移去30μL等分物,并与70μL硫氰酸酶活性测定混合物(57.1mM KH2PO4(pH7.5)、71.4mM EDTA、71.4mM硫代硫酸钠和71.4mM KCN)组合6分钟。与ATP的再折叠反应开始前,取30μL等分物作为T=0分钟的再折叠
2+
时点。硫氰酸酶活性测定混合物中的EDTA螯合Mg ,这防止GroEL结合ATP,结果折叠反应立即停止。随后,在添加50μL 15%(v/v)甲醛(终浓度为5%v/v)后6分钟硫氰酸酶活性停止。
[0221] 硫氰酸酶催化由硫代硫酸盐和氰化物形成硫氰酸盐(“硫氰化物”)。通过在存在硝酸铁的情况下形成其红色铁复合物容易比色测定(450nm吸光度)硫氰酸盐。通过添加150μL硝酸铁试剂(164.5mM硝酸铁和9.2%v/v硝酸)进行硫氰酸酶活性的测定(150μL)。于96孔微板中在A450nm读取硫氰酸酶活性测定值。
[0222] 通常的硫氰酸酶折叠反应随达到折叠的硫氰酸酶最高产量的时间在硫氰酸酶活性(即折叠的硫氰酸酶)上呈指数倾向。在固定量的GroEL(400nM)和硫氰酸酶(400nM)情况下,随着Cpn10量增加直到达到Cpn10(7mer)与GroEL(14mer)的摩尔浓度相等(即400nM)时观察到线性关系(硫氰酸酶活性和时间之间)。在Cpn10浓度超过400nM时,硫氰酸酶活性快速增加到最大。该测定包括5个标准物(双份)和测试样品(双份)。Cpn10的标准物浓度为0nM、140nM、250nM、280nM和350nM。对于在30、45、60、75和90分钟时点的硫氰酸酶活性(即Cpn10活性)测量值取平均值。0nM Cpn10标准物作为测定背景活性的适合度量,因此从所有其他计算的吸光度值(或活性值)减去0nMCpn10标准物的吸光度值。
在背景校正后,将280nM Cpn10标准物的吸光度值指定为100%活性,所有其他吸光度值转换为基于100%标准物的相对%活性。通过比较双份测量值除去异常值数据点,双份之间的偏差>30%认为是不可接受的。用五个标准浓度0nM Cpn10(0%活性)、140nM Cpn10(50%活性)、250nM Cpn10(89.3%活性)、280nMCpn10(100%活性)和350nM Cpn10(125%活性)采用可接受的数据生成线性校准曲线。针对Cpn10浓度绘出硫氰酸酶活性(即Cpn10活性)。为校正测定偏差,采用由线性校准曲线产生的方程式重新计算测试样品的%活性值。
[0223] 采用蛋白的低聚分子量(MW)计算伴侣蛋白浓度,而采用单体MW计算硫氰酸酶浓度;即E coli GroEL 14 mer(SwissProt P06139)=800,766.4g/mol;人Cpn10 7 mer(SwissProt Q04984)=76,100.5g/mol以及牛硫氰酸酶1mer(SwisProt P00586)=33,164.6g/mol。
[0224] 表4显示了逐批测定并以Ala-Cpn10活性的百分比计算的Cpn10多肽的再折叠活性。
[0225] 表4:Cpn10多肽再折叠活性
[0226]GroES 109

Ala-Cpn10-IFI 114
Ala-Cpn10-III 41
Ala-Cpn10-EEE-cHis 0
Ala-Cpn10-cHis 40
Cpn10-NtermES 12
[0227] 实施例5:E coli GroES不抑制LPS介导的HIV-LTR活性
[0228] 纯化重组的E coli GroES,显示基本上无内毒素杂质(0.14EU/mg)(参见图3K)。纯化的GroES与如上所述的Ala-Cpn10一起在RAW264.7-HIV-LTR-LUC抑制测定中测定。如图2所示,在任意测试浓度(25-100μg/ml)GroES不抑制LPS-诱导的HIV-LTR活化。这些结果证实所观察到的Cpn10的免疫调节活性是真实和有意义的生物学效应。
[0229] 实施例6:构建人Cpn10突变体
[0230] IML23-25的位点特异性突变体
[0231] 致可移动环区中疏水IML部分(残基23-25)突变以改变Cpn10和Cpn60之间相互作用的强度(参见表1)。用带电三肽EEE替代IML,预测这干扰与Cpn60的相互作用。还致IML突变为III或者IFI部分,预测两者都增加疏水性,由此可能增强Cpn10与Cpn60的相互作用。图3C、E和F呈现了显示Ala-Cpn10-EEE-cHis、Ala-Cpn10-IFI、Ala-Cpn10-III的纯化的SDS-PAGE凝胶。
[0232] 采 用 引 物 互 补 配 对 根 据 厂 商 说 明 由 Quick ChangeSite-DirectedMutagenesis(快速改变定点诱变)(Stratagene)产生Ala-Cpn10-III、Ala-Cpn10-IFI 和 Ala-Cpn10-EEE-cHis,如 表 1 所 述。 对 于 Ala-Cpn10-III 和Ala-Cpn10-IFI,采用Ala-Cpn10_pPL550质粒作为DNA模板。对于Ala-Cpn10-EEE-cHis,采用Ala-Cpn10-cHis_pET23质粒作为DNA模板(参见下文)。
[0233] Ala-Cpn10
[0234] 被预测包括Ala-Cpn10的氨基酸序列由SEQ ID NO:21列出。将编码Ala-Cpn10(SEQ ID NO:22)的合成DNA序列在Nco1和EcoR1位点处插入到pPL550质粒中(Somodevilla-Torres et al.,2003,Prot.Exp.Purif.32:276-287)。图3A和B分别呈现了显示CH001批和CH003批中Ala-Cpn10的纯化的SDS-PAGE凝胶。
[0235] Ala-Cpn10-cHis
[0236] 被预测包括Ala-Cpn10-cHis的氨基酸序列由SEQ ID NO:41列出。通过将减去终止密码子的Ala-Cpn10 DNA序列(SEQ ID NO:22)在Ndel和Xhol位点处插入到pET23a质粒(Novagen)中来制备编码Ala-Cpn10-cHis(SEQ ID NO:42)的合成DNA序列。该克隆使得Ala-Cpn10上具有C端6组氨酸标签。图3D呈现了显示Ala-Cpn10-cHis的纯化的SDS-PAGE凝胶。
[0237] Ala-Cpn10-Δml
[0238] 从Cpn10可移动环区(SEQ ID NO:12)除去16个氨基酸产生86个氨基酸的变体,命名为Ala-Cpn10-Δml(SEQ ID NO:24)。将编码Ala-Cpn10-Δml(SEQ ID NO:25)的合成DNA序列在Nco1和EcoR1位点处插入到pPL550质粒中(Somodevilla-Torres et al.,2003,Prot.Exp.Purif.32:276-287)。由于可移动环位于Cpn10多肽链的中间,保留可移动环中的两个残基(两端的任一个)以连接N端片段与C端片段,确保正确折叠和组装成七聚物。
[0239] 图3G呈现了显示Ala-Cpn10-Δml的纯化的SDS-PAGE凝胶。Ala-Cpn10-Δml的部分戊二醛交联(图3H,泳道2)在银染的4-12%SDS-PAGE凝胶上显示7条不同的带,证实了所述分子的七聚物结构。将PBS(pH 7.4)中580μg量的Ala-Cpn10-Δml与0.01%(w/w)戊二醛(APS)在300μl总体积中25℃孵育30分钟。添加15μl 2M Tris-HCl(pH8.0)结束反应。在Superdex 200HR 10/30(GE Biosciences)大小排阻柱子中用磷酸盐缓冲盐水(PBS)以0.5ml/分钟流速洗脱等份100μl反应混合物。以两个0.5ml部分收集在相同保留时间洗脱的作为未交联Cpn10低聚物的峰值,随后通过SDS-PAGE和银染测定。
[0240] Ala-Cpn10-Δroof
[0241] 从β-发夹区(SEQ ID NO:13)除去7个氨基酸产生95个氨基酸的变体,命名为Ala-Cpn10-Δroof。将编码Ala-Cpn10-Δroof(SEQ ID NO:27)的合成DNA序列在Nco1和EcoR1位点处插入到pPL550质粒中(Somodevilla-Torres et al.,2003,Prot.Exp.Purif.32:276-287)。Ala-Cpn10-Δroof的氨基酸序列由SEQ ID NO:26给出。另外,编码该多肽的多核苷酸由SEQ ID NO:27给出。图3I呈现了显示Ala-Cpn10-Δroof的纯化的SDS-PAGE凝胶。
[0242] Ala-Cpn10-β-桶
[0243] 被预测包括Ala-Cpn10-β-桶的氨基酸序列由SEQ ID NO:28给出。图3D呈现了显示Cpn10-β-桶的纯化的SDS-PAGE凝胶。将编码Ala-Cpn10-β-桶(SEQ ID NO:29)的合成DNA序列在Nco1和EcoR1位点处插入到pPL550质粒中(Somodevilla-Torres et al.,2003,Prot.Exp.Purif.32:276-287)。图3J呈现了显示Ala-Cpn10-β-桶的纯化的SDS-PAGE凝胶。
[0244] Gly-Cpn10
[0245] 被预测包括Gly-Cpn10的氨基酸序列由SEQ ID NO:30给出。将编码Gly-Cpn10(SEQ ID NO:31)的合成DNA序列插入到pET30a质粒中。图3N呈现了显示Gly-Cpn10的纯化的SDS-PAGE凝胶。
[0246] X-Cpn10
[0247] 被预测包括X-Cpn10氨基酸序列由SEQ ID NO:23给出。将编码X-Cpn10(SEQ ID NO:44) 的 合 成DNA 序 列 在 Nco1和 EcoR1位 点 处 插 入 到 pPL550质 粒 中(Somodevilla-Torres et al.,2003,Prot.Exp.Purif.32:276-287)。图3M呈现了显示X-Cpn10的纯化的SDS-PAGE凝胶。
[0248] GroES
[0249] 被预测包括E.coli GroES(SwissProt P05380)的氨基酸序列由SEQID NO:11给出。将编码GroES(SEQ ID NO:34)的合成DNA序列插入到pET11a质粒中。图3K呈现了显示GroES的纯化的SDS-PAGE凝胶。
[0250] Cpn10-NtermES
[0251] 被预测包括Cpn10-NtermES的氨基酸序列由SEQ ID NO:14给出。通过用E.coli GroES(SEQ ID NO:11)的残基1-MNIR-4替代人X-Cpn10(SEQ ID NO:23)的残基1-AGQAFRKFL-9来制得Cpn10-NtermES蛋白。将编码Cpn10-NtermES(SEQ ID NO:43)的合成DNA序列插入到pET23a质粒中。图3L呈现了显示Cpn10-NtermES的纯化的SDS-PAGE凝胶。
[0252] 实施例7:Cpn10的IML三肽突变体活性
[0253] 产生可移动环(决定与Cpn60的相互作用以及由此决定蛋白折叠)中IML三肽突变体以干扰或增强可移动环与Cpn60的相互作用(参见实施例6)。
[0254] EEE可移动环Ala-Cpn10突变体蛋白(Ala-Cpn10-EEE-cHis)消除了硫氰酸酶体外再折叠过程中Cpn10与GroEL(E.coli Cpn60)作用的能力,而III和IFI突变体仍具有活性(参见表3)。
[0255] 结果显示Ala-Cpn10-EEE-cHis对GroEL的亲和力实际上显著降低。与蛋白折叠测定对比,RAW264.7-HIV-LTR-LUC抑制测定证明所有三肽突变体(包括Ala-Cpn10-cHis)能调节TLR4信号传导,具有类似于Ala-Cpn10的活性,表明可移动环(和由此的Cpn60)对Cpn10的这种免疫调节活性是不重要的(参见图4B、D、F和H)。
[0256] 实施例8:Ala-Cpn10-Δml与GroEL在硫氰酸酶再折叠中不协同
[0257] 为确定可移动环区(和由此的Cpn60)对免疫调节活性不是必需的,从可移动环区(SEQ ID NO:12)删除16个氨基酸产生86个氨基酸的变体,命名为Ala-Cpn10-Δml(参见实施例6)。Ala-Cpn10-Δml的氨基酸序列由SEQ ID NO:24给出。
[0258] 在硫氰酸酶再折叠过程中测定Ala-Cpn10-Δml与GroEL(E.coliCpn60)结果性相互作用的能力。在相同测定中Ala-Cpn10作为阳性对照,导致约100%的活性(参见表3)。测定Ala-Cpn10-Δml的活性为约0%活性,表明它不与GroEL相互作用,因此在蛋白折叠过程中不作为协同伴侣蛋白起作用。在等摩尔浓度下测定Ala-Cpn10和Ala-Cpn10-Δml多肽。
[0259] 实施例9:Ala-Cpn10-Δml抑制LPS诱导的HIV LTR活化
[0260] 采用RAW264.7-HIV-LTR-LUC抑制测定与Ala-Cpn10一起测定Ala-Cpn10-Δml。在这个测定中,荧光素酶报道基因间接与NFκB信号转导连接。NFκB为由LPS诱导的初级转录因子。根据所采用的仪器以相对光单位(RLU)或每秒计数(CPS)测定荧光素酶活性。
如图5A和5B所显示的,浓度为1-100μg/ml的Ala-Cpn10-Δml抑制LPS诱导的HIV-LTR活化。尽管该测定为单一测定,在分开的微量滴定板上设置两次重复试验,证明了相同的活性。在这个数据组中,Ala-Cpn10-Δml始终显示比Ala-Cpn10具有更强的抑制活性。
[0261] 如上述实施例8所述的,在硫氰酸酶再折叠过程中Ala-Cpn10-Δml不能作为GroEL的协同伴侣蛋白起作用。然而,在存在LPS的情况下采用RAW264.7-HIV-LTR-LUC抑制测定时,观察到Ala-Cpn10-Δml活性的Ala-Cpn10水平。即,Ala-Cpn10-Δml剂量依赖性地抑制LPS诱导的HIV-LTR受体活化。这些结果显然排除了在Cpn10调节TLR4信号传导的能力中涉及Cpn60。
[0262] 实施例10:Ala-Cpn10-Δroof抑制LPS诱导的HIV LTR活化
[0263] Cpn10的β-发夹顶部环区(参见图1)在哺乳动物中包含净正电荷,而在细菌中包含净负电荷(例如由E coli GroES所代表的)。有趣的是细菌噬菌体T4包含专门的Cpn10(Gp31),所述专门的Cpn10(Gp31)与E.coli GroEL一起作用而折叠T4主要衣壳蛋白Gp23。GroES和Cpn10都不能实现这种功能。Gp31和Cpn10/GroES的主要差异为Gp31完全没有顶部β-发夹环,这可能解释Gp31的不寻常功能和能力(Hunt et al.,1997,Cell90:361-371)。
[0264] 为确定顶部β-发夹区对Cpn10免疫调节活性的作用,从β-发夹区(SEQ ID NO:13)删除7个氨基酸产生95个氨基酸的变体,命名为Ala-Cpn10-Δroof(参见实施例6)。
Ala-Cpn10-Δroof的氨基酸序列如SEQ ID NO:26所述。
[0265] 在存在LPS的情况下,在RAW264.7-HIV-LTR-LUC抑制测定中与Ala-Cpn10和E coli GroES一起测定Ala-Cpn10-Δroof。如图6所显示的,浓度为50-100μg/ml的Ala-Cpn10-Δroof抑制LPS诱导的HIV-TLR活化。尽管该测定为单一测定,在分开的微量滴定板上设置两次重复试验,证明了相同的活性。在这个数据组中,Ala-Cpn10-Δroof显示始终具有约80%的Ala-Cpn10活性。这些结果证明所述分子中没有功能性顶部β-发夹区时能发生Cpn10对TLR4信号传导的调节。
[0266] 实施例11:Ala-Cpn10-β-桶突变体显示免疫调节活性
[0267] 为了证实实施例9和10所述的上述数据,发明人生成了既没有可移动环又没有β-发夹顶部环的人Ala-Cpn10突变体(称为“Ala-Cpn10-β-桶”;SEQ ID NO:28;参见实施例6)。有趣的是与Ala-Cpn10和Ala-Cpn10-Δml突变体相比,Ala-Cpn10-β-桶突变体在凝胶过滤层析中为稍大的实体。这意味着顶部帮助保持亚基为紧密结合构象。比较起来,可移动环使得七聚物不稳定,导致了更高效的解体,尽管该七聚物比分解的单体在能量上更有利。
[0268] 在存在LPS的情况下在RAW264.7-HIV-LTR-LUC抑制测定中与Ala-Cpn10和E coli GroES一起测定Ala-Cpn10-β-桶多肽。如图7所显示的,该突变体显示约50%的Ala-Cpn10调节TLR4信号传导的活性,暗示了免疫调节活性部分归因于β-发夹顶部环或可能归因于七聚物的稳定性。两个独立试验反映了所显示的结果。
[0269] 实施例12:N端Cpn10突变体的免疫调节活性
[0270] 已知Cpn10 N端有助于靶向线粒体基质(在胞液中合成之后)。然而,尽管大多数线粒体基质蛋白具有可裂解的N端靶向序列,但Cpn10N端没有被裂解,表明它具有其他功能。
[0271] 发明人研究了人Cpn10 N端突变体体外调节免疫反应的能力。测试的突变体(本文称为“Cpn10-NtermES”)具有E.coli GroES的N端序列“MNIR”替代人N端序列“MAGQAFRKFL”。SEQ ID N0:14提供了Cpn10-NtermES的氨基酸序列。
[0272] 在伴侣蛋白介导的硫氰酸酶再折叠中,Cpn10-NtermES显示仅有约12%的Ala-Cpn10活性(与GroEL;参见表3)。然而通过凝胶过滤层析证实Cpn10-NtermES为具有GroEL(Cpn60)结合的完整可移动环的七聚物(数据未显示)。
[0273] 如图8A和8B所显示的,与所观察到的Ala-Cpn10的活性相比,Cpn10-NtermES突变体失去了免疫调节LPS诱导的HIV-TLR活化的能力。这表明Cpn10N端对涉及TLR4的Cpn10免疫调节活性是必需的。因此,如同E.coli(GroES),ES-Nterm-Cpn10不能抑制由LPS诱导的NF-κB(即TLR4调节)(参见图8B)。
[0274] 实施例13:X-Cpn10抑制LPS诱导的HIV-TLR活化能力的降低
[0275] 采用RAW264.7-HIV-LTR-LUC抑制测定与Ala-Cpn10一起测定X-Cpn10。如实施例6所述的,X-Cpn10缺乏天然人Cpn10中存在的额外的N端丙氨酸残基和乙酰基。在这个测定中,荧光素酶报道基因间接与NFκB信号转导连接。NFκB为由LPS诱导的初级转录因子。根据所采用的仪器以相对光单位(RLU)或每秒计数(CPS)测定荧光素酶活性。如图9A和9B所显示的,X-Cpn10部分抑制LPS诱导的HIV-LTR活化(约50%的Ala-Cpn10或Gly-Cpn10活性)。在这个数据组中,显示在Cpn10N端诸如丙氨酸的额外的残基有助于TLR4信号传导的免疫调节活性。
[0276] 实施例14:Gly-Cpn10抑制LPS诱导的HIV-LTR活化
[0277] 采用RAW264.7-HIV-LTR-LUC抑制测定与Ala-Cpn10一起测定Gly-Cpn10。如实施例6所述的,Gly-Cpn10包含甘氨酸残基,所述甘氨酸残基替代Ala-Cpn10中的额外的N端丙氨酸残基。在这个测定中,荧光素酶报道基因间接与NFκB信号转导连接。NFκB为由LPS诱导的初级转录因子。根据所采用的仪器以相对光单位(RLU)或每秒计数(CPS)测定荧光素酶活性。如图10A和10B所显示的,Gly-Cpn10抑制LPS诱导的HIV-LTR活化达到大于Ala-Cpn10的程度。
[0278] 如图16所显示的,乙酰基比丙氨酸残基结构上更类似于甘氨酸残基。因此预期乙酰基-Cpn10(即天然Cpn10)多肽活性类似于Gly-Cpn10。
[0279] 实施例15:在RAW264.7-HIV-LTR-LUC抑制测定中采用超纯LPS
[0280] 在RAW264.7-HIV-LTR-LUC抑制测定中采用粗制LPS产生图5-7和图10所显示的数据。在图11-14中,采用对于TLR4具有特异性的超纯LPS。图11(Ala-Cpn10-Δml)、图12(Ala-Cpn10-Δroof)、图13(Ala-Cpn10-β-桶)和图14(Gly-Cpn10)的结果非常类似于图5-7和图10所显示的对应部分。这表明本文所采用和公开的用于产生Cpn10免疫调节活性的测定对于TLR4具有特异性。
[0281] 实施例16:小鼠内毒素血症研究
[0282] 采用小鼠败血症模型进行小鼠内毒素血症研究以确定各种Cpn10多肽(即Ala-Cpn10-Δml、Ala-Cpn10-Δroof和X-Cpn10)体外免疫调节活性是否反映体内活性。
[0283] 通过系统地改变或删除Cpn10分子假定的活性区,以及通过测定多种生物界Cpn10同系物,可描述最佳活性所必需的最小结构区和/或基于序列的基序,最终使得能设计用于治疗的更有效的分子。为了研究这些区域对免疫调节活性的重要性,至今已获得Cpn10的几种变体或突变体(参见图1)。
[0284] 从这些体外研究已观察到:相对于Ala-Cpn10,在Cpn10可移动环或顶部环区中具有删除的构建体(即分别为Ala-Cpn10-Δml或Ala-Cpn10-Δroof)在响应TLR4与LPS结合中降低NFκB活化方面显示了可比较的活性。另一方面,采用这种体外活性评价,非乙酰化的Cpn10(X-Cpn10)显示显著降低下调NFκB活性的能力。
[0285] 在本试验中,发现许多Cpn10变体在炎症(即内毒素血症)体内模型中具有与Ala-Cpn10类似的活性。小鼠内毒素血症模型测定Cpn10降低LPS诱导的炎症细胞因子产生的能力。
[0286] 实施例16a:小鼠内毒素血症研究的材料和方法
[0287] 下文实施例17a(1)-17a(2)描述了在小鼠内毒素血症研究中采用的下述材料和方法。
[0288] 实施例16a(1):内毒素血症研究采用的小鼠
[0289] 对84只雌性Balb/c小鼠进行研究。所有小鼠均为成年(年龄>9周,平均体重约约20g(0.02kg))并被分成12组,每组7只(参见表5)。小鼠以12/12光亮/黑暗循环饲养,并任意进食标准实验室食物(SpecialtyFeeds,Glen Forrest,Australia)和水。开始注射前测定每只小鼠的重量。所有组均接受如下文所示的通过静脉内(IV)途径进入尾静脉的如下注射(参见表5)。
[0290] 实施例16a(2):小鼠内毒素血症研究的药物/溶液
[0291] 小鼠内毒素血症研究中采用的药物/溶液如下((A)-(H)所列的)。
[0292] (A)蛋白制剂缓冲剂(FB):该缓冲剂为研究中的阴性对照,包括50mMTris-HCl(pH 7.6)+150mM NaCl(<0.02EU/ml)。所述缓冲剂可用作检品,并作为阳性对照以及测试样品的稀释剂。
[0293] (B)Ala-Cpn10:该Cpn10多肽为研究中的阳性对照,具有5mg/ml(<0.01EU/mg)的贮存浓度。通过将400μl蛋白溶液稀释到1.6ml制剂缓冲剂中制得1mg/ml工作溶液。
[0294] (C)Ala-Cpn10-Δml:该Cpn10多肽具有3.5mg/ml(<0.03EU/mg)的贮存浓度。通过将571μl蛋白溶液稀释到1.429ml制剂缓冲剂中制得1mg/ml工作溶液。
[0295] (D)Ala-Cpn10-Δroof:该Cpn10多肽具有4.2mg/ml(<0.1EU/mg)的贮存浓度。通过将477μl蛋白溶液稀释到1.523ml制剂缓冲剂中制得1mg/ml工作溶液。
[0296] (F)X-Cpn10:该Cpn10多肽具有5mg/ml(<0.04EU/mg)的贮存浓度。通过将400μl蛋白溶液稀释到1.6ml制剂缓冲剂中制得1mg/ml工作溶液。
[0297] (G)内毒素:从Sigma化学品公司(Cat.No.L6529)获得脂多糖(LPS)。使用之前立即将小瓶内容物(1mg)重溶解于1ml无菌盐水中。每组注射前将所述内容物在无菌盐水中进一步稀释(1/10)到100μg/ml。
[0298] (H)内毒素对照:从Pfizer,Australia(Cat.No.DW-SC0010)获得浓度为900mg/ml(0.9%)(<0.01EU/ml)的注射用无菌盐水。
[0299] 实施例16b:小鼠内毒素血症研究的给药和血液收集
[0300] 不同组小鼠的给药方案如表5所示(参见下文)。通过在有意识的受限制小鼠中尾静脉注射100μl量进行所有给药。所有LPS剂量均为每只小鼠10μg。所有Cpn10变体均以每只小鼠100μg(体积为100μL)注射。
[0301] 血液收集方案列于下文表5中。通过氟烷麻醉心脏穿刺(ZenecaLtd.,Macclesfield,UK)(SOP ET-011)或通过死后打开心脏取血收集血液样品。血液收集到没有抗凝剂(凝块活化剂)的小儿用血清管中(Greiner-bio-one,USA,Cat#450401)。
室温放置样品约5分钟以促进凝结,接着在室温以12000rpm离心5分钟(Biofuge 13,HeraeusInstruments)。在干冰运输前将血清转移到新管并于-20℃放置。
[0302] 所有给药时间和血液收集时间均记录在临床记录册(IMVS 2061/A表)。采用相同的记录册监测整个试验过程的一般状况。
[0303] 表5:Cpn10内毒素血症研究方案
[0304]5 29-35 Ala-Cpn10-Δml LPS 所有
6 36-42 Ala-Cpn10-Δml 盐水 所有
7 43-49 Ala-Cpn10-Δroof LPS 所有
8 50-56 Ala-Cpn10-Δroof 盐水 所有
11 71-77 X-Cpn10 LPS 所有
12 78-84 X-Cpn10 盐水 所有
[0305] 实施例16c:细胞计数珠测定(CBA)分析
[0306] 对血清样品进行小鼠炎症CBA分析(Cat#552364,BD Biosdences)以评价炎症相关细胞因子(即TNFα、IL6、IL-10、MCP-1、IL12p70、IFN-γ)水平的变化。在分析前将来自LPS激发的小鼠(表5,组1、3、5、7、9和11)或盐水对照小鼠(表5,组2、4、6、8、10和12)的血清在测定稀释剂中稀释为适合浓度(对LPS处理组为1∶5,对盐水对照为1∶2)。根据厂商说明采用装有CBA软件的BD FACS测定仪器重复两次分析每个样品。
[0307] 实施例16d:细胞因子水平百分比降低测定
[0308] 采用下述公式确定Cpn10处理对LPS激发的小鼠的作用。相对于未预处理小鼠(即对照),用Cpn10变体预处理的小鼠(即试验小鼠)中LPS诱导的细胞因子的百分比降低根据下述公式计算:%降低=100-[(试验小鼠的平均细胞因子水平/对照的平均细胞因子水平)×100]。
[0309] 实施例16e:ELISA分析
[0310] 根据厂商说明采用RnD Systems Duoset ELISA试剂盒(Cat#DY410)进行小鼠TNF-αELISA以证实CBA分析。采用PBS+10%FCS作为稀释剂稀释样品(1∶3稀释)和标准物。样品分析重复两次。
[0311] 实施例16f:临床观察
[0312] LPS或盐水注射之后与通过心脏穿刺取血之前的90分钟时间段内检测表5所述不同组小鼠的行为。所有观察结果记录和总结在表6中。
[0313] LPS/盐水注射之后与通过心脏穿刺(C.P.)取血之前立即观察。相对于组1、2或3进行临床观察比较。通常,用LPS单独处理的小鼠(组1)在注射15分钟内显示LPS诱导的败血症效果。LPS处理的小鼠表现灵活性降低以及较少响应刺激(例如噪音或碰触)具有较小的反应性。该研究的任何小鼠中没有观察到由于LPS激发导致的一些典型副作用,诸如腹泻或皮毛起皱。这反映了这种情况下所采用的大量LPS的相对效力。盐水处理的对照小鼠(组2)对较多响应刺激,显示正常反应和灵活性。
[0314] 相对于未处理的LPS对照组,用Cpn10和各种Cpn10突变体预处理的小鼠响应LPS激发显示稍微不同的行为。用Ala-Cpn10和Ala-Cpn10-Δroof(组3和组7)预处理的小鼠在大部分观察期内显示较少抑制刺激、稍较警惕和响应刺激,但持续蜷缩在一起。有趣的是,用Ala-Cpn10-Δml(组5)预处理的小鼠在整个观察期内稍微更加活跃,并且不蜷缩。LPS激发在用乙酰基-Cpn10预处理的小鼠(组9)中的效果也与其他组所观察到的不同。
尽管这些小鼠在LPS注射后第一个30-45分钟内显示与组3类似的行为,但在观察期结束时这些小鼠似乎恢复并表现灵活性与警惕性增加。相比之下,用X-Cpn10预处理的小鼠显示与组1非常类似的行为。这些小鼠在大部分观察期内非常不活跃,较少响应刺激并蜷缩在一起。每个Cpn10突变体组(即组4、6、8、10和12)的盐水对照证实没有类似于未处理盐水组(组2)中对照动物的不良临床症状。
[0315] LPS激发的小鼠中取血通常具有较多问题,因为这些小鼠通常血压过低(败血症相关症状)。相对于未接受LPS的小鼠,在这些小鼠中由于降低的收集血液量心脏穿刺取血较慢。对不能通过直接心脏穿刺取血的小鼠,进行死后打开心脏取血。Cpn10处理显示不影响或改进LPS处理的小鼠中血液收集,然而与LPS对照动物相比较,注意到Cpn10处理的小鼠中血液通过直接心脏穿刺而不借助于打开心脏取血进行收集。在该研究中从每只小鼠收集至少400μl血液。与正常取血和收集的所有偏差均记录在有关临床记录册中。
[0316] 表6:用各种Cpn10预处理并随后用LPS/盐水注射的小鼠的临床观察
[0317]处理的组号 行为 临床体征
1.FB+LPS 不活跃 无皮毛起皱或腹泻
不响应刺激 较慢/难于取血
蜷缩
2.FB+盐水 活跃、警惕 正常取血
响应刺激
3.Ala-Cpn10+LPS 活跃性降低 正常取血
响应刺激降低
蜷缩
4.Ala-Cpn10+盐水 活跃、警惕 正常取血
响应刺激
5.Ala-Cpn10-Δml+LPS 活跃性降低 正常取血
响应刺激降低
蜷缩降低
6.Ala-Cpn10-Δml+盐水 活跃、警惕 正常取血
响应刺激
7.Ala-Cpn10-Δroof+LPS 较少的活跃性 有些难于取血
较少响应刺激
蜷缩
8.Ala-Cpn10-Δroof+盐水 活跃、警惕 正常取血
响应刺激
11.X-Cpn10+LPS 不活跃 无皮毛起皱或腹泻
响应刺激降低 较慢/难于取血
蜷缩
12.X-Cpn10+盐水 活跃、警惕 正常取血
响应刺激
[0318] 实施例16g:小鼠细胞因子减少
[0319] 显示了LPS激发的小鼠中TNF-α、IL-6和IL-10细胞因子的平均水平(参见图15)。用星号表示相对于未用Cpn10处理的动物表现促炎细胞因子统计上显著减少的Cpn10处理组。用括号表示相对于未预处理的小鼠所分析的用各种Cpn10预处理的小鼠中各种细胞因子减少的百分比(如表5所显示的)。
[0320] 表7:用各种Cpn10突变体处理的LPS激发的小鼠中LPS诱导的促炎细胞因子减少的平均值和百分比
[0321]
[0322] 血清细胞因子水平的CBA分析
[0323] 采用基准剂量小鼠炎症CBA测定(BD Mouse inflammation CBAassay)分析每只小鼠的血清样品以测定循环的促炎细胞因子。所述测定检测试验样品中的TNFα、IL-6、IL-10、IL-12p70、MCP-1和IFN-γ细胞因子。对于连续稀释(参见实施例16a)到测定范围内用于最佳检测的样品进行所述分析。所有样品分析重复两次。
[0324] 测定对照中相对于Cpn10处理动物的细胞因子TNF-α、IL-6和IL-10的相对表达,这些细胞因子作为所述小鼠败血症模型中炎症的指标。在所述内毒素血症研究的时间范围内(LPS给药90分钟),IFN-γ、MCP-1和IL-12p70细胞因子的水平通常超出该测定的检测范围,因此数据没有在此显示。这样,本研究没有测定这些细胞因子。在分析CBA结果之前,我们评价了基于重复一致性的数据鲁棒性,其中数据点在标准曲线的有关线性范围内。分析中排除了极端异常值。
[0325] 图15显示了本研究不同组小鼠中循环的TNF-α、IL-6和IL-10的绝对值和平均值。如所期望的,来自LPS激发的小鼠中血清的TNF-α、IL-6和IL-10的细胞因子平均水平比它们的盐水对照中的高(分别为图15A、C、E对B、E、F)。这表明本研究采用的LPS量诱导炎症应答以及这些细胞因子的背景水平在这些小鼠中非常低。在一些盐水对照样品(图15F“X-Cpn10+盐水”)中所检测到的IL-10水平与LPS激发的对照(即组1“FB+LPS”)中所检测到的一样高。在非常浓缩形式下测定这些样品,因此内源血清因子可能干扰测定的读数,由此使得这种数据不准确。数据还显示,与无Cpn10预处理的小鼠相比较,当用任意Cpn10蛋白预处理时,LPS激发的小鼠血清TNF-α、IL-6和IL-10的细胞因子水平降低(分别为图15A、C和E)。对每个细胞因子分布图进行单因素方差分析(采用杜凯氏事后检验)。分析发现不同组中TNF-α和IL-6水平而不是IL-10细胞因子水平的一些平均值存在统计上差异(图15A、C和E)。尽管图中显示平均细胞因子水平显著降低,但IL-10细胞因子水平没有统计上差异,这很可能是由于IL-10细胞因子在单独对照组中的巨大变化造成(图15E,“FB+LPS”)。较大取样数可提高将来研究的这些观察值的统计显著性。
[0326] Turkey氏post-hoc检验显示在用Ala-Cpn10-Δroof或X-Cpn10预处理的组(即组7和组11)中TNF-α和IL-6细胞因子水平的平均值比未处理组(即组1)统计上较低(表7)。然而,在一些组中,仅在一种细胞因子分布图中看到促炎细胞因子统计上显著减少(比未处理组)。例如,相对于未处理组,Ala-Cpn10-Δml预处理组的TNF-α而不是IL-6细胞因子水平的平均值减少,反之,相对于未处理组,Ala-Cpn10预处理组的IL-6而不是TNF-α细胞因子水平的平均值减少(表7)。另外,统计分析没有发现Cpn10变体预处理组相互之间的细胞因子水平平均值存在差异。
[0327] 尽管仅在一些Cpn10变体预处理组中统计上显著减少,但总趋势显示所有Cpn10变体均减少LPS激发的小鼠中炎症相关细胞因子。观察到这些小鼠中TNF-α、IL-6和IL-10细胞因子水平总共减少约30-50%(表7)。
[0328] 讨论和结论
[0329] 本 研 究 显 示 了 用 各 种 Cpn10 多 肽( 即 Ala-Cpn10、Ala-Cpn10-Δml、Ala-Cpn10-Δroof和X-Cpn10)预处理小鼠表现为降低LPS诱导的内毒素血症的临床效应。单独接受LPS的小鼠显示内毒素血症的典型症状(即活跃性、响应和警惕性降低)。另一方面,用任意Cpn10蛋白预处理的小鼠表现较少受到LPS激发的影响(即对刺激更加响应和灵活)(表6)。
[0330] 炎症相关细胞因子的CBA分析显示LPS注射前所有Cpn10变体预处理的小鼠血清比单独接受LPS的小鼠血清具有降低的TNF-α、IL-6和IL-10细胞因子水平。如所期望的,用Ala-Cpn10预处理的小鼠显示降低的TNF-α和IL-6细胞因子水平,这与我们之前的结果一致(Johnson et al,2005)。当前的结果暗示了Ala-Cpn10可降低下响应所有TLR激动剂中的IL-10产生。我们接着确定了在用许多Cpn10变体预处理的小鼠中这些炎症相关细胞因子水平的类似降低(表7)。尽管统计分析显示:相对于未处理组,TNF-α和IL-6细胞因子水平的降低仅在一些Cpn10变体预处理中是显著的(图15A和C,表7),总趋势显示本研究所采用的所有Cpn10蛋白表现为下调LPS炎症应答。
[0331] 体内 内毒 素血 症结 果显 示研 究的 所有 Cpn10多肽(即 Ala-Cpn10、Ala-Cpn10-Δml、Ala-Cpn10-Δroof和X-Cpn10)具有与Ala-Cpn10类似的活性。这再次证实Cpn10的可移动环区或顶部环区对调节响应TLR4-LPS连接不是必需的。由于Cpn10变体预处理组之间细胞因子平均水平不存在统计上差异,在内毒素血症研究中就不能评价所观察到的X-Cpn10体外活性变化。
[0332] 实施例17:纯化来自E.coli分批发酵物的Cpn10
[0333] 已开发了生产Cpn10多肽的生物方法。如下文所显示的,该方法已成功用于自100-1升E.coil发酵物生产约20g重组人Cpn10,具有>99%纯度、≤0.03EU mg 内毒素以及-1
≤155.3pg mg DNA。下文列出了所述方法。
[0334] 发酵
[0335] 由原始细胞库恢复包含具有AlaCpn10 pPL550质粒的E.coil菌株XL1-Blue的小瓶,并在无抗生素补充剂的大豆肉汤(Soya Broth)中30℃过夜预培养。随后准备接种培养物用于维持上述培养基和生长温度参数的100L生物反应器中。将等分的该接种物分配到100L生物反应器中不含动物源性产物和抗生素补充剂的基于大豆的富集蛋白胨的基础培养基(BresaGen,SA,Australia)。生物反应器培养不需要分批补料,而且整个生长期的温度维持在30±0.1℃。通过添加氨维持pH在7.0±0.2。Cpn10的诱导通过下述步骤实现:
在OD600为10时改变温度到42℃,以及在42±0.1℃时再孵育3小时,发酵达到OD600为
20-25。
[0336] 细胞溶解以及制备可溶的溶解物
[0337] 完成发酵三小时内通过离心(5,000×g)沉淀细菌细胞(约3.5kg净重),用25mM Tris-HCl(pH 8.0)再悬浮,并经APV Gaulin Model 30CD压力匀浆器在7000psi(APV,USA)通过3步溶解。采用流通WestfaliaMSB-7离心机沉淀细胞碎片后收集细菌溶解物中包含的可溶Cpn10。约20L澄清的溶解物4℃贮存过夜。
[0338] 纯化Cpn10
[0339] 已开发了纯化Cpn10的三步下游方法:结合Big BeadSulfopropyl-Sepharose(大珠磺丙基琼脂糖凝胶,BBSP)阳离子交换层析、Q-Sepharose Fast Flow(QFF)阴离子交换层析以及High PerformanceSepharose SP(HPSP)阳离子交换层析。采用K-prime 40-II生物处理单位(Millipore)进行层析。
[0340] 层析柱、容器和缓冲剂的去热原
[0341] 通过1M NaOH洗涤去除所有离子交换层析柱的热原,并用缓冲剂平衡,直到洗出液回复到特定缓冲剂的pH和电导率。缓冲剂贮存和各纯化步骤中收集柱洗出液采用的所有容器为无热原的。采用注射用水(WFI)产生纯化所采用的所有缓冲剂。
[0342] 大珠磺丙基琼脂糖凝胶层析
[0343] 经20-40分钟将溶解物上样到用25mM Tris-HCl、pH8.0(缓冲剂A)预平衡的BBSP阳离子交换柱上(具有8.6L BBSP SP琼脂糖凝胶树脂的BPG 300/500,GE Biosciences),线流速75cm/小时,上样率直到每升树脂10g Cpn10。用缓冲剂A洗涤后,用含有150mM NaCl的缓冲剂A洗脱捕获的Cpn10,收集到1L馏分。SDS-PAGE分析显示BBSP汇集样品纯度>95%。
[0344] Q-Sepharose Fast Flow层析
[0345] 以两次15倍体积缓冲剂A的变化于室温除去BBSP洗出液盐分。第一次透析步骤进行2-3小时,接着转移到新鲜缓冲剂A容器中继续过夜透析。根据校准标准通过测定透析液电导率(Cyberscan 100,Eutech Instruments,Singapore)检测从透析袋重分配到容器缓冲剂中的NaCl。将透析的BBSP汇集样品上样到用缓冲剂A预平衡的具有4.7LQFF阴离子交换树脂填充的BPG 200/500柱子(GE Biosciences)上,线流速75cm/小时,上样率直到每升树脂15g Cpn10。收集流经QFF阴离子交换树脂的Cpn10。上样条件下大多数E.coli细胞蛋白、核酸和内毒素仍与基质结合。
[0346] 磺丙基琼脂糖凝胶高效层析
[0347] 以每升树脂15-20g Cpn10将QFF流通应用到用50mM Tris-HCl、pH7.6(缓冲剂B)预平衡的具有1.67L SPHP树脂填充的BPG 100/500柱子(GE Biosciences)上。用超过15L的0-120mM NaCl的线性梯度洗脱结合的Cpn10,收集到0.5L馏分。根据大小排阻层析(SEC)、HPLC和SDS-PAGE分析汇集各馏分。分别通过280nm紫外吸光度和离子选择电极方法(IDEXX,Australia)测定Cpn10蛋白和NaCl离子浓度。制剂
[0348] 基于Na+和Cl-的离子测定与汇集的SPHP馏分的电导率测定组合,调节缓冲剂为含有150mM NaCl的50mM Tris-HCl pH 7.6的最终制剂。无菌条件下将配制的Cpn10经0.2μm过滤器过滤。将过滤的溶液分配到500ml无热原的塑料瓶中,每瓶收集500ml,每瓶共2.5gCpn10。
[0349] SDS-PAGE分析
[0350] 根据厂商说明采用NuPAGE 4-12%Bis-Tris梯度凝胶(Invitrogen,Carlsbad,CA)对E.coli细胞溶解物和层析馏分进行SDS PAGE分析。对凝胶进行考马斯亮蓝染色,各凝胶包括Cpn10蛋白和分子量标准。
[0351] 通过分光光度法定量纯化的Cpn10
[0352] 通过280nm处的紫外吸光度(BioRad SmartSpec-3000分光光度计)采用-1 -1 -1
0.353mg mL cm 的消光系数测定纯化的Cpn10浓度。应注意BioRad SmartSpec-3000通常返回牛血清白蛋白(Pierce)的A280nm值为0.59,而文献值为0.67(Pierce技术资源号TR0006.0)。
[0353] 表8显示了整个上述纯化过程中Cpn10纯度和产量的概述。(A)中通过BCA蛋白测定(Sigma)确定总蛋白浓度,通过光密度测定法测定每次纯化步骤后的细胞溶解物和含有Cpn10馏分的Cpn10纯度。(B)比较了三次Cpn10纯化的最终纯度和产量。从100L E.coli分批发酵物制备各纯化物。所有的制备物通过考马斯染色的SDS-PAGE均具有>99%的最终Cpn10纯度。内毒素单位(EU)用EU/mg Cpn10表达,而DNA水平用pg/mg Cpn10表示。
[0354] 表8A
[0355]纯化步骤 总Cpn10 总体积(L) Cpn10纯度 步骤产率(%)
蛋白(g) (%)
E.coli可溶性 95 20.8 - -
溶解物
大珠磺丙基琼 28.8 6.2 >98 30
脂糖凝胶
Q-Sepharose 26.1 8.6 >99 91
Fast Flow
磺丙基琼脂糖 21.3 2.1 >99 82
凝胶高效液相
[0356] 表8B
[0357]批号 Cpn10 总Cpn10 内毒素 宿主DNA
(g L-1) (g) (EU mg-1) (pg mg-1)
1 4.84 20.6 0.02 <122.9
2 5.03 19.0 <0.01 <155.3
3 4.96 22.9 0.03 <133.3
[0358] 实施例18:组合物
[0359] 本发明分子和药剂以及通过本发明方法鉴定的分子和药剂可用于治疗或预防各种疾病状态和状况。可单独进行这种分子和药剂的给药,但更典型地将其作为药物组合物给药。
[0360] 根据实施本文所提供的发明的最佳方式,下文列出了具体优选的组合物。下述应解释为仅是组合物的示例性实例,而不是以任意方式限制本发明范围。
[0361] 实施例18(a):肠胃外给药的组合物
[0362] 肌肉内注射组合物可被制备成含有1mL无菌缓冲水和1mg适合的药剂或分子。
[0363] 同样地,静脉输注组合物可包括250ml无菌林格氏(Ringer′s)溶液和5mg适合的药剂或分子。
[0364] 实施例18(b):可注射的肠胃外组合物
[0365] 通过将1%重量的适合药剂或分子混合到10%体积的丙二醇和水中制得适合注射给药的组合物。通过滤过除菌法对所述溶液进行灭菌。
[0366] 实施例18(c):胶囊剂组合物
[0367] 通过用50mg粉状形式的药剂或分子、100mg乳糖、35mg滑石和10mg硬脂酸镁充填标准的两段式硬胶囊来制备胶囊剂形式的适合的药剂或分子的组合物。
[0368] 实施例18(d):滴眼剂组合物
[0369] 通常作为滴眼剂递送的组合物概述如下:
[0370] 适合的药剂或化合物 0.3g
[0371] 羟苯甲酯 0.005g
[0372] 羟苯丙酯 0.06g
[0373] 纯水 约100.00ml
[0374] 在75℃将羟苯甲酯和羟苯丙酯溶解在70ml纯水中,冷却所得溶液。接着添加适合的药剂或分子,通过滤过除菌法经膜滤器(0.22μm孔大小)对所述溶液进行灭菌,无菌装入灭菌容器中。
[0375] 实施例18(e):吸入给药组合物
[0376] 对容量为20-30ml的气雾剂容器,将0.5-0.8%重量的诸如聚山梨酯85或油酸的润滑剂与10mg适合的药剂或化合物的混合物分散在诸如氟利昂的喷射剂中,装入适合的气雾剂容器中用于或者鼻内或口腔吸入给药。
[0377] 实施例18(f):软膏组合物
[0378] 通常作为软膏递送的组合物包括将1.0g适合的药剂或分子与100.0g白软石蜡一起分散产生光滑均一的产物。
[0379] 实施例18(g):外用乳剂组合物
[0380] 通常作为外用乳剂递送的组合物概述如下:
[0381] 适合的药剂或分子 1.0g
[0382] 乳化蜡GP 200 25.0g
[0383] 无水羊毛脂 3.0g
[0384] 白蜂蜡 4.5g
[0385] 羟苯甲酯 0.1g
[0386] 去离子与无菌水 100.0g
[0387] 乳化蜡、蜂蜡和羊毛脂一起在60℃加热,添加羟苯甲酯溶液,采用高速搅拌达到匀浆化。接着使温度降到50℃。随后添加药剂或分子,使得完全分散,采用低速搅拌冷却所述组合物。
[0388] 实施例18(h):外用洗剂组合物
[0389] 通常作为外用洗剂递送的组合物概述如下:
[0390] 适合的药剂或分子 1.2g
[0391] 月桂山梨坦 0.8g
[0392] 聚山梨酯20 0.7g
[0393] 十八醇十六醇混合物 1.5g
[0394] 甘油 7.0g
[0395] 羟苯甲酯 0.4g
[0396] 无菌水 约100.00ml
[0397] 在75℃将羟苯甲酯和甘油溶解在70ml水中。将月桂山梨坦、聚山梨酯20和十八醇十六醇混合物一起在75℃融化并添加到水溶液中。均质化所得乳剂,采用连续搅拌冷却,将药剂或分子作为悬浮液添加到剩余的水中。搅拌整个悬浮液直到均质化。