发光元件转让专利

申请号 : CN200810128878.8

文献号 : CN101320780B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 一之濑升岛村清史金子由基夫恩卡纳西翁·安东尼娅·加西亚·比略拉青木和夫

申请人 : 株式会社光波

摘要 :

本发明涉及一种发光元件,所述发光元件包括:Ga2O3基板;n型AlzGa1-zN包覆层,形成在所述Ga2O3基板的第一表面上,其中0≤z<1;InmGa1-mN发光层,形成在所述n型AlGaN包覆层上,其中0≤m<1;p型AlpGa1-pN包覆层,形成在所述InGaN发光层上,其中0≤p<1,且p>z;n电极,设置在所述Ga2O3基板的第二表面上;和p电极,设置在所述p型AlpGa1-pN包覆层上。

权利要求 :

1.一种发光元件,包括:

β-Ga2O3单晶基板;

n型AlzGa1-zN包覆层,形成在所述β-Ga2O3单晶基板的第一表面上,其中0≤z<1;

InmGa1-mN发光层,形成在所述n型AlGaN包覆层上,其中0≤m<1;

p型AlpGa1-pN包覆层,形成在所述InmGa1-mN发光层上,其中0≤p<1,且p>z;

n电极,设置在所述β-Ga2O3单晶基板的第二表面上;和p电极,设置在所述p型AlpGa1-pN包覆层上。

2.如权利要求1所述的发光元件,进一步包括:AlyGa1-yN缓冲层,形成在所述β-Ga2O3单晶基板与所述n型AlzGa1-zN包覆层之间,其中0≤y≤1。

3.如权利要求2所述的发光元件,其中:所述p电极包括设置在所述p型AlpGa1-pN包覆层上的透明电极以及设置在所述透明电极上的键合电极。

4.如权利要求1所述的发光元件,进一步包括:印刷电路板,通过金属浆料所述发光元件安装在所述印刷电路板上,所述金属浆料反射透射通过所述β-Ga2O3单晶基板的发射的光。

说明书 :

技术领域

本发明涉及具有可从可见区到近紫外区发光的宽带隙的发光元件及其制造方法,特别涉及一种能够得到从可见区透过紫外区光的无色透明导电体的、可将该导电体用于基板作为垂直结构的、能够以基板一侧作为取光面的发光元件及其制造方法。

背景技术

作为传统的发光元件,已知的有在由SiC构成的基板上叠层由GaN构成的n型层及p型层的发光元件(例如,参照专利文献1)。
SiC具有茶褐色的透明性,由于可透过到约427nm的可见光,所以能够透过从基板一侧所发的光。
采用该SiC的发光元件的制造方法是,在SiC的单晶晶片上外延生长SiC薄膜,形成SiC外延基板,在该基板上形成由GaN构成的n型层及p型层,通过将上述层切断,最后形成多个发光元件。
专利文献1
特开2002-255692号公报(段落0008)
但是,由于单晶晶片的结晶性差,存在贯通单晶的垂直方向的所谓微管缺陷,必须避开上述微缩孔缺陷,形成n型层及p型层,切断SiC,作为发光元件存在生产率差的问题。
此外,SiC透过到篮色区的光,但不透过紫外区的光。因此,在从基板一侧取出所发的光时,由于不能透过从可见区发射紫外区的光的GaN所发光中的紫外区的光,所以存在不能以基板一侧为紫外光取出面的问题。此外,由于SiC着色,存在透过SiC的光的部分波长被吸收的问题。

发明内容

本发明的目的在于提供一种发光元件及其制造方法,利用该方法能够得到从可见区透过紫外区光的无色透明的导电体,该导电体可用于基板作为垂直结构,可将基板一侧作为取光面。此外,本发明的另一目的在于提供一种生产率高的发光元件及其制造方法。
为达到上述目的,本发明提供一种发光元件,其特征在于:含有镓氧化物的基板和在上述基板上形成的pn结。
为达到上述目的,本发明提供一种发光元件,其特征在于:在以Ga为主要成分的氧化物基板上生长化合物半导体薄膜。
为达到上述目的,本发明提供一种发光元件的制造方法,其特征在于:在可控制的气氛的高温炉中设置坩埚,坩埚中装有原料熔液和具有缝隙的缝模,原料熔液利用毛细管现象连续沿缝隙上升到熔液表面,通过缝模和坩埚,用EFG(Edge-Defined Film Fed Growth)法培养截面形状与上述缝模的上面相同的单晶,如此形成由以Ga为主要成分的氧化物基板,在上述基板上生长化合物半导体薄膜。
为达到上述目的,本发明提供一种发光元件的制造方法,其特征在于:准备Ga2O3系种晶及Ga2O3系结晶;使上述Ga2O3系种晶与Ga2O3系结晶接触,加热其接触部,熔融上述Ga2O3系种晶和Ga2O3系结晶,通过使熔融的上述Ga2O3系结晶随上述Ga2O3系种晶结晶化的FZ法,形成由以Ga为主要成分的氧化物构成的基板,在上述基板上生长化合物半导体薄膜。

附图说明

图1是表示β-Ga2O3的比电阻的温度变化的曲线图。
图2是表示插入在本发明所用的EFG法上引炉上的坩埚的部分剖面立体图。
图3是表示本发明所用的FZ法红外线加热单晶制造装置的主要部位的剖面图。
图4是表示在适合用于本发明的β-Ga2O3系单晶的基板的(101)面上生长由GaN的(001)面构成的薄膜时的原子排列图。
图5是表示在作为比较例的Al2O3系晶体的基板的(001)面上生长由GaN的(001)面构成的薄膜时的原子排列图。
图6是表示本发明所用的MOCVD法的简图。
图7是表示本发明实施例1的发光元件的剖面图。
图8是在本发明实施例1的发光元件上设置缓冲层的发光元件的剖面图。
图9是表示本发明实施例2的发光元件的剖面图。
图10是表示本发明实施例3的发光元件的剖面图。
图11是表示本发明实施例4的发光元件的剖面图。
图中:1:基板,1a:n-GaN层,1b:p-GaN层,1c:p电极,1d:n电极,1e:压焊点,1f:引线,6:坩埚,7:种晶,8:缝模,8a:缝隙,9:Ga2O3熔液,10:β-Ga2O3生长晶体,20:MOCVD装置,21:反应容器,22:托盘,23:加热器,24:控制轴,25:石英喷嘴,26:排气部,27:基板,31、32、33:气体发生装置,40:发光元件,41:基板,42:AlxGa1-xN缓冲层,43:n-GaN层,44:p-GaN层,45:透明电极,46:n-电极,47:键合电极,48:压焊点,49:引线,50:印刷基板,51:金属浆料,52:p电极,55:n-AlzGa1-zN包覆层,56:InmGa1-mN发光层,57:p-AlpGa1-pN包覆层,60:出射光,61:发射光,63、64:焊料球,65、66:引线框,100:红外线加热单晶制造装置,102:石英管,102a:保护气氛,103:籽晶旋转部,104:材料旋转部,105:加热部,106:控制部,107:种晶,108:单晶,108’:溶解物,109:多结晶材料,109a:上端部,131:下部驱动部,132:下部旋转轴,133:籽晶夹头,141:上部驱动部,142:下部旋转轴,43:材料夹头,51:卤灯,52:椭圆镜,53:电源部。

具体实施方式

基板
由于β-Ga2O3具有导电性,所以能够制作电极结构垂直型的LED,其结果由于能够使所有元件形成电流通路,降低电流密度,所以能够延长发光元件的寿命。
实际上,如图1所示,具有n型导电性的β-Ga2O3基板的测定结果表明,在室温下可得到0.1Ω·cm左右的值。此外,在作为发光元件所用的温度范围,由于比电阻的温度变化小,所以能够得到作为发光元件的稳定性。
此外,由于电极结构为垂直型,不需要通过蚀刻露出n层,结果元件制造工序数减少,基板上单位面积内组装的元件数增多,由此可降低生产成本。
在以蓝宝石作为基板时,由于电极结构为水平型,在生长了III-V族系化合物半导体薄膜后,由于在露出n层后安装n电极,所以另外需要掩蔽及蚀刻等工序。但是在电极结构为垂直型时,例如GaAs系发光元件,就不需上述的掩蔽及蚀刻等工序。
在采用SiC时,存在3C、4H、6H、15R等众多相,很难得到单相的基板。由于硬度非常高,加工性差,很难获得平坦的基板,在以原子标度观看时,基板表面上存在不同相的多个阶跃。在该基板上生长薄膜时,能够生长多个结晶性及缺陷密度不同的膜。这样,在采用SiC时,在一个基板上生长无数个不同质的核,结果,由于是按这些核合起来的形状生长的膜,很难提高膜的质量。实际上,SiC和GaN的晶格失配理论上为3.4%,但是,由于上述原因,目前实际晶格失配率还极高。
与此相反的是,由于β-Ga2O3为单相,而且达到原子级平坦,看不到象用SiC时看到的实际上较大的晶格失配。在带隙方面,在采用SiC时,例如6H-SiC时,由于带隙为3.03eV,在大约427nm以下的波长区不透明。在认为III-V族系化合物半导体的发光区大约在550~380nm时,SiC的可利用波长范围大约也只有上述波长的2/3。与此相反,在采用β-Ga2O3时,由于透过大约到260nm,能够在III-V族系化合物半导体的发光区的全波长范围内,特别在紫外区内可以利用β-Ga2O3。
本发明采用的基板以β-Ga2O3为基础,但也可以由以Ga为主要成分的、另外添加有从Cu、Ag、Zn、Cd、Al、In、Si、Ge及Sn等元素中选择的一种以上元素的氧化物构成。因为添加上述元素可控制晶格常数或能带隙。例如,可以采用以(AlxInyGa(1-x-y))2O3(其中0≤x≤1、0≤y≤1、0≤x+y≤1)表示的镓氧化物。
热膨胀系数
即使在热膨胀方面,相对于GaN的热膨胀系数5.6×10-6/K,β-Ga2O3的值为4.6×10-6/K,与蓝宝石(4.5×10-6/K,)大致相同,与6H-SiC(3.5×10-6/K)相比,具有优越性。从生成薄膜的质量角度考虑,热膨胀系数的差异也是主要因素。
大块单晶
β-Ga2O3的最大特长是能够得到其大块状单晶。在以GaAs系材料为主的从近红外区到红外区的范围内,一般能得到大块状单晶,在其导电性基板上能够得到晶格失配性极小的薄膜。此外,还容易低成本,高效率制造发光元件。事实上不可能期待用GaN系、ZnSe系的所谓蓝色发光元件材料制造大块状单晶。因此,具有导电性的并且在发光区透明的晶格失配性小的大块状单晶的开发十分活跃。但是,至今仍未真正解决该问题。对此,本发明提供的β-Ga2O3的基板可从根本上解决上问题。由于通过EFG法或FZ法能够得到直径2英寸的大块状单晶,所以与GaAs系发光元件一样,能够进行从蓝色到紫色区的发光元件的开发。
EFG法生长的Ga2O3单晶
图2示出了用于EFG法的坩埚。该坩埚6为被插入EFG法上引炉(未图示)中的坩埚。坩埚6例如为铱制坩埚,具有缝模8,缝模8具有通过毛细管现象使β-Ga2O3熔液9上升的缝隙8a。
利用EFG法生长下述单晶。将规定量的原料β-Ga2O3装入坩埚6中,加热熔化,形成β-Ga2O3熔液9。通过在坩埚6内配置的缝模8上形成的缝隙8a,利用毛细管现象使β-Ga2O3熔液9上升到缝模8上面,使β-Ga2O3熔液9与种晶7接触,然后冷却,形成具有任意形状截面的生长结晶10。
具体生长过程是,在内径48.5mm、厚1.5mm、高50mm的铱制坩埚6内,装入氧化镓原料75g,配置厚3mm×宽20mm×高40mm、缝隙间隔0.5mm的缝模8。该坩埚6维持在通常的氮气气氛、1个大气压、1760℃,氧分压维持在5×10-2大气压,使种晶7与利用毛细管现象沿缝隙8a上升的β-Ga2O3熔液9接触,以1mm/h的速度进行单晶培养。
由于在缝模8的上部培养由缝模8的形状规定的单晶,所以与CZ法相比,能够大大降低晶体生长界面的温度梯度。此外,由于通过缝隙8a供给β-Ga2O3熔液9,晶体的生长速度比β-Ga2O3熔液9内的扩散速度快,所以能够充分降低β-Ga2O3熔液9中的成分蒸发及β-Ga2O3熔液9的组成变动。所以,能够制造高质量的单晶。此外,由于缝模8的形状能够规定生长晶体10的形状,通过缝模8的大型化容易实现单晶的大型化。这样,就可用EFG法实现用CZ等方法很难实现的Ga2O3单晶的大型化、高质量化。
FZ法生长的Ga2O3单晶
图3示出了FZ法(区熔提纯法)制造β-Ga2O3单晶的红外线加热单晶制造装置。该红外线加热单晶制造装置100的大致构成有:石英管102、夹持转动β-Ga2O3种晶(以下简称“种晶”)107的籽晶旋转部103;夹持转动β-Ga2O3多晶原料(以下简称“多晶原料”)109的原料旋转部104;加热熔融多晶原料109的加热部105;以及控制籽晶旋转部103、原料旋转部104及加热部105的控制部106。
籽晶旋转部103具有夹持种晶107的籽晶夹头133、将转动传递给籽晶夹头133的下部旋转轴132、正转转动下部旋转轴132并同时使上下方向移动的上部驱动部131。
原料旋转部104具有夹持多晶原料109的上端部109a的原料夹头143、将转动传递给原料夹头143的上部旋转轴142、正转逆转转动上部旋转轴142头并同时使上下方向移动的上部驱动部141。
加热部105具有从径方向加热熔融多晶原料109的卤灯151、装有卤灯151的并将卤灯所发光聚光在多晶原料109的一定部位上的椭圆镜152、向卤灯151提供电源的电源部153。
石英管102上安装有下部旋转轴132、籽晶夹头133、上部旋转轴142、原料夹头143、多晶原料109、β-Ga2O3的单晶108及种晶107。能够密封并向石英管102内供给氧气和与作为惰性气体的氮气的混合气体。
为使β-Ga2O3的单晶生长,采用以下方法。首先,准备种晶107和多晶原料109。即,种晶107,例如,可以是沿劈开面切下来的β-Ga2O3的单晶,所以具有要生长晶体的五分之一以下的直径或5mm2以下的截面积,具有在生长β-Ga2O3的单晶时不破损的强度。在未图示的橡胶管内充填规定量的Ga2O3粉末,在500MPa下进行冷压缩,然后,1500℃烧结10小时,得到多晶原料109。
下面,将种晶107的一端夹持在籽晶夹头133中,棒状的多晶原料109的上端部109a夹持在原料夹头143中。调整上部旋转轴142的上下位置,使种晶107的上端与多晶原料109的下端接触。此外,调整上部旋转轴142及下部旋转轴132的上下位置,以使卤灯151的光聚光在种晶107的上端和多晶原料109的下端的部位。石英管102的保护气氛102a要充满总压1个大气压到2个大气压的氮和氧的混合气体(在从100%氮到100%氧之间变化)。
操作者一打开未图示的电源开关,控制部106根据控制程序控制各部位,按如下进行单晶生长的控制。给加热部105通入电源,卤灯151加热种晶107的上端和多晶原料109的下端的部位,熔化其加热部位,形成熔滴。此时,只使种晶107旋转。
然后,一边向反方向转动该部一边熔化,以使多晶原料109和种晶107充分熔化。在形成适度的β-Ga2O3的单晶的熔化物108’时,停止多晶原料109的旋转,只使种晶107旋转,向相互反方向拉伸多晶原料109及种晶107,形成比种晶107更细的缓冲颈。
然后,按20rpm的转速,向相互反方向一边旋转种晶107及多晶原料109,一边用卤灯151加热,并且通过上部旋转轴142,按5mm/h的比例向上方拉伸多晶原料109。通过卤灯151加热多晶原料109,多晶原料109熔化形成熔化物108’,同时生长成直径与多晶原料109同等或比多晶原料109小的β-Ga2O3单晶108。形成适度长度的单晶后,取出生长的β-Ga2O3单晶108。
下面,说明由β-Ga2O3单晶108形成的基板的制作方法。在β-Ga2O3单晶108是在b轴<010>方位结晶生长的情况下,由于(100)面的辟开性变强,所以在与(100)面平行的面和垂直的面切断制作基板。在a轴<100>方位、c轴<001>方位结晶生长时,由于(100)面、(001)面的辟开性变弱,各面的加工性变好,不限制在上述那样的切断面。
下面,说明用FZ法生长本实施方式的Ga2O3单晶的效果。
(1)由于在规定的方向生长晶体,所以能够得到直径1cm以上的较大β-Ga2O3单晶108。
(2)该β-Ga2O3单晶108,通过以a轴<100>方位、b轴<010>方位或c轴<001>方位为结晶轴,能够减少裂缝、双晶化倾向,得到较高的结晶性。
(3)由于能够再现性良好地生长上述β-Ga2O3单晶108,其作为半导体等基板的利用价值也高。
II-VI族系化合物ZnSe薄膜的形成
在β-Ga2O3系单晶的(101)面上,用MOCVD(Metal Organic ChemicalVapor Deposition)法,在350℃形成由ZnSe构成的显示p型导电性的薄膜。ZnSe采用二甲基锌和H2Se,作为p型掺杂剂,在NH3保护气氛中掺杂N。此时,N作为受体置换Se。此时,作为II族元素可以采用Zn、Cd、Hg,作为VI族元素可以采用O、S、Se、Te、Po。作为II-VI族系化合物,例如有ZnSe、ZnO等。
III-V族系化合物薄膜的形成方法
用MOCVD法形成III-V族系化合物薄膜。作为III族元素,采用B、Al、Ga、In、Tl;作为V族元素,采用N、P、As、Sb、Bi;作为III-V族系化合物,例如有GaN、GaAs等。
图4表示在β-Ga2O3系单晶的基板的(101)面上生长由GaN构成的薄膜时的原子排列。此时,GaN的(001)面生长在β-Ga2O3系单晶的(101)面上。在β-Ga2O3系单晶的(101)面上排列有O(氧)原子70、70、…。图中的O原子70用实线的正圆圈表示。在β-Ga2O3系单晶的(101)面上的晶格常数为a=b=0.289nm,γ约为116°。在GaN的(001)面上的晶格常数为aG=bG=0.319nm,γG约为120°。图中GaN的N(氮)原子80用虚线的正圆圈表示。
在β-Ga2O3系单晶的(101)面上生长GaN的(001)面,形成由GaN构成的薄膜时,晶格常数的失配约达到10%,角度失配约达到3%。因此,由于β-Ga2O3系单晶的O原子及GaN的N原子的原子失配大致相同,所以由GaN构成的薄膜能够具有均匀的平面结构。为此,在β-Ga2O3系单晶的(101)面上即使形成由GaN构成的薄膜,不用缓冲层也不产生晶格失配。
此外,通过在β-Ga2O3系单晶中添加晶格常数调整用的In,可以使GaN的(001)面的晶格常数更接近β-Ga2O3系单晶的(101)面上的晶格常数,由GaN构成的薄膜能够具有更均匀的平面结构。
另一方面,图5示出了在Al2O3系晶体的基板上生长由GaN构成的薄膜时的原子序列。在Al2O3系晶体的(001)面上排列有O(氧)原子75、75、…。图中的O原子75用实线的正圆圈表示。Al2O3系晶体的(001)面上的晶格常数为aA=bA=0.475nm,γA约为120°。在GaN的(001)面上的晶格常数为aG=bG=0.319nm,γG约为120°。图中N原子用虚线的正圆圈表示。在Al2O3系晶体的(001)面上生长GaN的(001)面,形成由GaN构成的薄膜时,晶格常数的失配约达到30%。因此,在Al2O3系晶体上形成由GaN构成的薄膜时需要形成缓冲层,如果不形成缓冲层,会产生晶格失配,恐怕不能得到均匀的平面结构。
薄膜的形成方法
图6是表示MOCVD法的简图,表示MOCVD装置主要部位的大体剖面。图7表示用MOCVD法得到的发光元件。MOCVD装置20具有与装有真空泵及排气装置(未图示)的排气部26连接的反应容器21、放置基板27的托盘22、加热托盘22的加热器23、转动托盘22并使其上下移动的控制轴24、向基板27倾斜或水平方向提供原料气体的石英喷嘴25、产生各种原料气体的TMG(三甲基镓)气体发生装置31、TMA(三甲基铝)气体发生装置32、TMI(三甲基铱)气体发生装置33等。此外,根据需要,也可以增减气体发生装置的数量。采用NH3作氮源,采用H2作运载气体。在形成GaN薄膜时采用TMG和NH3,在形成AlGaN薄膜时采用TMA、TMG和NH3,在形成InGaN薄膜时采用TMI、TMG和NH3。
用MOCVD装置20形成薄膜,例如,按如下所述进行。首先,将基板27使形成薄膜的一面朝上放在托盘22上,设置在反应容器21内。然后,升温1020℃,以54×10-6摩尔/min速度通入TMG,以4L/min的速度通入NH3,以2L/min的速度通入H2,以22×10-11摩尔/min速度通入甲硅烷(SiH4),生长60分钟,最后生长成膜厚3μm的Si掺杂Ga0.9Al0.1N(n-GaN层)1a。
此外,升温1030℃,以54×10-6摩尔/min速度通入TMG、以4L/min的速度通入NH3、以2L/min的速度通入H2,以3.6×10-6摩尔/min速度通入二茂(合)镁(Cp2Mg)20分钟,生长成膜厚1μm的Mg掺杂GaN(p-GaN层)1b。在其上面蒸镀透明电极(Au/Ni)1h,随后p型化Mg掺杂GaN1b。然后,在透明电极1h上安装p电极1c,通过压焊点1e安装引线1f。在基板1的下面安装n电极1d,由此构成发光元件。
通过在显示p型导电性的薄膜或基板上、或显示n型导电性的薄膜或基板上蒸镀、溅射等形成电极。用能够得到欧姆接触的材料形成电极。例如,可在显示n型导电性的薄膜或基板上形成电极的材料有Au、Al、Co、Ge、Ti、Sn、In、Ni、Pt、W、Mo、Cr、Cu、Pb等单一金属,及至少两种以上上述金属的合金(例如Au-Ge合金),将上述金属形成双层结构的材料(例如,Al/Ti、Au/Ni、Au/Co)或ITO。可在显示p型导电性的薄膜或基板上形成电极的材料有Au、Al、Be、Ni、Pt、In、Sn、Cr、Ti、Zn等金属单体,及至少两种以上上述金属的合金(例如Au-Zn合金、Au-Be合金),将上述金属形成双层结构的材料(例如,Ni/Au)或ITO。
载流子浓度不同的薄膜的形成
例如,在由GaN构成的n-GaN层上面形成载流子浓度比n-GaN层低的由GaN构成的n-GaN层,在该载流子浓度低的n-GaN层上面依次叠层由GaN构成的n-GaN层及载流子浓度比p-GaN层高的由GaN构成的p-GaN层。例如,可以利用变化n型掺杂剂或p-型掺杂剂的剂量等方法改变载流子浓度。
通过采用β-Ga2O3系单晶作基板,形成载流子浓度不同的多个n-层及多个p-层,可以得到如下效果:
(1)通过形成比基板的载流子浓度低的n-GaN层的载流子浓度,提高了在其上面形成的p-GaN层的结晶性,由此提高了发光效率。
(2)由于通过接合n-GaN层和p-GaN层,能够形成PN结的发光元件,所以能够通过具有GaN的带隙得到更短波长的发光。
(3)由于采用β-Ga2O3系单晶作基板,能够形成显示具有高结晶性的n型导电性的基板。
(4)用于基板的β-Ga2O3系单晶,由于透过紫外区的光,可以从基板一侧取出从紫外光到可见光的发射光。
缓冲层的形成方法
图8示出了在图7所示的发光元件中所设的缓冲层。在本发明所得的β-Ga2O3的基板1和n-GaN层1a之间,设置了AlxGa1-xN缓冲层(其中0≤x≤1)1g。该缓冲层利用上述MOCVD装置形成。在该缓冲层上按上述的“成膜方法”形成pn接合结构。
实施例
以下,说明本发明的实施例。
实施例1:在显示p型导电性的基板上形成n型GaN薄膜的方法
按以下所述制作显示p型导电性的基板。首先,用FZ法形成β-Ga2O3晶体。例如,均匀混合作为原料的例如含MgO(p-型掺杂源)的β-Ga2O3,将混合物装入橡胶管中,在500MPa下冷压缩形成棒状。将形成物在大气中1500℃烧结10小时,得到含Mg的β-Ga2O3系多晶材料。准备β-Ga2O3种晶,在生长保护气氛为总压1~2大气压下,一边按500ml/min的流量通入N2及O2混合气体,一边使β-Ga2O3种晶在石英管中与β-Ga2O3系多晶材料接触,加热其接触部位,在β-Ga2O3种晶和β-Ga2O3系多晶材料的接触部熔化两者。如果一边按反方向和20r pm的转度,随β-Ga2O3种晶旋转熔解的β-Ga2O3系多晶材料,并一边按5mm/h的生长速度生长,在β-Ga2O3种晶上生长透明的、含Mg的绝缘性的β-Ga2O3系单晶。利用该β-Ga2O3系单晶制作基板,如果在保护气氛中,在规定的温度(如950℃)下,按规定的时间进行退火,可减少氧缺陷,得到显示p型导电性的基板。
在上述基板上形成显示n型导电性的薄膜。用MOCVD法气相生长形成薄膜。首先,将显示p型导电性的基板装入MOCVD装置。基板温度保持在1150℃,在30分钟内,按20/分的比例供给H2,按10/分的比例供给NH3,按1.7×10-4摩尔/分的比例供给TMG,按200ml/分的比例供给用H2稀释到0.86ppm的甲硅烷(SiH4),形成由显示载流子浓度1.5×1018/cm2的n型导电性的GaN构成的膜厚约2.2μm的薄膜。
实施例2:具有pn结的发光元件的形成方法
图9示出了本发明实施例2的发光元件。该发光元件40的构成包括:由β-Ga2O3系单晶构成的Ga2O3基板41、在Ga2O3基板41的上面形成的由AlxGa1-xN构成的缓冲层(其中0≤x≤1)42、在AlxGa1-xN缓冲层42的上面形成的由GaN构成的n-GaN层43、在n-GaN层43的上面形成的由GaN构成的p-GaN层44、在p-GaN层44的上面形成的透明电极45、在透明电极45的部分上面形成的由Au等构成的键合电极47、在Ga2O3基板41的下面形成的n电极46。该发光元件40借助键合电极47,通过压焊点48安装引线49,借助金属浆料51搭接在基板50上。
该发光元件40在n-GaN层43和p-GaN层44接合的pn接合部发光,产生的发射光,作为透过透明电极45向上方出射的出射光60,除向外部射出外,例如通过金属浆料,反射朝Ga2O3基板41的下面的发射光61,向上方出射。所以,与发射光直接向外部出射相比,发光强度增大。
实施例3:倒装片型发光元件
图10示出了本发明实施例3的发光元件。该发光元件40的构成包括:由β-Ga2O3单晶构成的Ga2O3基板41、在Ga2O3基板41的下部形成的由AlxGa1-xN构成的缓冲层(其中0≤x≤1)42、在AlxGa1-xN缓冲层42的下部形成的由GaN构成的n-GaN层43、在n-GaN层43的下部的部分区域形成的由GaN构成的p-GaN层44及n电极46、在p-GaN层44的下部的p电极52。p电极52和n电极46分别借助焊料球63、64,分别与引线框架65、66连接。
该发光元件40在n-GaN层43和p-GaN层44接合的pn接合部发光,所发的光透过Ga2O3基板41,作为出射光60,向上方出射。
实施例4:具有双异质结构的发光元件
图11示出了本发明实施例4的发光元件。该发光元件40的构成包括:由β-Ga2O3系单晶构成的Ga2O3基板41、在Ga2O3基板41的上面形成的由AlYGa1-YN构成的缓冲层(其中0≤Y≤1)42、在缓冲层42的上面形成的由AlzGa1-zN构成的n-AlzGa1-zN包覆层(其中0≤z<1)55、在n-AlzGa1-zN包覆层55的上面形成的由InmGa1-mN构成的InmGa1-mN发光层(其中0≤m<1)56、在InmGa1-mN发光层56的上面形成的由AlpGa1-pN构成的p-AlpGa1-pN包覆层(其中0≤p<1、p>z)57、在p-AlpGa1-pN包覆层57的上面形成的透明电极45、在透明电极45的部分上面形成的由Au等构成的键合电极47、在Ga2O3基板41的下面形成的n电极46。该发光元件40借助键合电极47,通过压焊点48安装引线49,借助金属浆料搭接在基板50上。
n-AlzGa1-zN包覆层55的能带隙比InmGa1-mN发光层56的能带隙大,p-AlpGa1-pN包覆层57的能带隙比InmGa1-mN发光层56的能带隙大,如此进行形成。
该发光元件40由于具有双异质结构,成为载流子的电子和空穴被关闭在InmGa1-mN发光层56上,再结合的概率增高,所以能够大幅度提高发光率。此外,由于发射光,作为透过透明电极45向上方出射的出射光60,除向外部射出外,例如通过金属浆料51,反射朝Ga2O3基板41的下面的发射光61,向上方出射,所以与发射光直接向外部出射相比,发光强度增大。
如果采用本发明,能够提供一种以可制作透明导电体、大块状单晶的材料为基板的GaN系发光元件及其制造方法,由于在发光元件的上下面安装电极,结构简单,提高了生产率和出光效率。
此外,通过采用以Ga为主要成分的氧化物为基板,能够提供一种发光元件及其制造方法,利用该方法能够得到从可见区透过紫外区光的无色透明的导电体,该导电体可用于基板作为垂直结构,可将基板一侧作为取光面。
此外,能够得到比传统的基板材料蓝宝石及SiC加工性好得多的Ga2O3单晶。
本申请是2003年5月30日向专利局提交的、申请号为03138280.0且发明名称为“发光元件及其制造方法”的发明专利申请的分案申请。