全反射衰减型光学探针和使用该全反射衰减型光学探针的水溶液分光测定装置转让专利

申请号 : CN200780009223.2

文献号 : CN101400987B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 东升尾崎幸洋池羽田晶文

申请人 : 仓敷纺绩株式会社

摘要 :

光学探针包括:在远紫外区具有光透射特性的第一光学材料的第一部分和与上述面接触而配置的第二光学材料的第二部分。例如,第二光学材料在远紫外区具有比第一部分高的折射率。第二部分在与样品接触一侧具有全反射临界角以上的入射角的光的面。或者,光学探针由在远紫外区具有光透射性的光学材料构成,在与样品接触一侧具有全反射临界角以上的入射角的光的面,在该面附近的折射率在远紫外区高于其它部分的折射率。由此,能够进行溶解在水中的极微量的溶质成分等在远紫外区的分光测定。

权利要求 :

1.一种全反射衰减型光学探针,其特征在于,

包括:第一部分,其是在远紫外区具有光透射性的第一光学材质,具有比样品物质即测定介质的折射率低的折射率;第二部分,具有与所述第一部分接触的界面和与样品物质接触的平面,由在远紫外区具有比所述第一部分低的光透射率和比所述样品物质即测定介质的折射率高的折射率的第二光学材料构成,所述第二部分具有在测定波长具有至少10%以上的内部透射率的厚度,所述第一部分和第二部分之间的所述界面具有如下形状:从第一部分透射的光线进入所述第二部分,并能够以临界角以上的入射角入射到所述第二部分的所述平面。

2.如权利要求1的全反射衰减型光学探针,其特征在于,

所述第二部分的所述平面和所述界面相互垂直。

3.如权利要求2的全反射衰减型光学探针,其特征在于,

该全反射衰减型光学探针还具有由在远紫外区具有光透射特性的第三材料构成的第三部分,所述第二部分位于所述第一部分和所述第三部分之间。

4.如权利要求1的全反射衰减型光学探针,其特征在于,

所述界面是半圆状。

5.如权利要求1的全反射衰减型光学探针,其特征在于,

所述界面具有透射入射到所述平面的光的入射面和透射在所述平面反射的光的出射面。

6.如权利要求1的全反射衰减型光学探针,其特征在于,

所述第二部分具有等腰三角形的剖面,以所述等腰三角形的底边成为与所述第一部分的界面的方式与所述第一部分接触,所述等腰三角形的两个等边与所述样品物质接触。

7.如权利要求1~6中任一项的全反射衰减型光学探针,其特征在于,所述第一光学材料是氟化镁、氟化锂和氟化钙中的任一种,所述第二光学材料是合成石英、水晶、蓝宝石、硒化锌以及金刚石中的任一种。

8.如权利要求1~6中任一项的全反射衰减型光学探针,其特征在于,所述第一部分的光入射出射的面以及所述第一部分和所述第二部分之间的界面中的至少一个面具有抗反射涂层。

9.如权利要求1~6中任一项的全反射衰减型光学探针,其特征在于,还在所述光学探针的与样品物质接触的面具有比测定波长充分薄的厚度的涂层。

10.如权利要求7的全反射衰减型光学探针,其特征在于,所述第一部分的光入射出射的面以及所述第一部分和所述第二部分之间的界面中的至少一个面具有抗反射涂层。

11.一种全反射衰减型光学探针,由在远紫外区具有光透射性的光学材料构成,折射率至少在一部分连续地变化,其特征在于,在与样品物质接触一侧具有对临界角以上的入射角的光进行全反射的平面,包含所述平面一部分的第一部分的在远紫外区的折射率比其它部分和样品物质的折射率高。

12.如权利要求11的全反射衰减型光学探针,其特征在于,所述光学材料是氟化镁、氟化锂和氟化钙中的任一种,所述折射率连续变化的部分通过扩散或注入杂质离子而形成。

13.如权利要求11或12中任一项的全反射衰减型光学探针,其特征在于,还在所述光学探针的与样品物质接触的面具有比测定波长充分薄的厚度的涂层。

14.一种水溶液测定分光装置,其特征在于,

包括:与样品物质接触配置的如权利要求1、3或者11中任一项所述的全反射衰减型光学探针;向所述全反射衰减型光学探针照射远紫外光的光源;检测来自所述全反射衰减型光学探针的全反射光的光接收元件;在从所述光源至所述光接收元件的光路中对远紫外光进行分光的分光元件。

说明书 :

全反射衰减型光学探针和使用该全反射衰减型光学探针的

水溶液分光测定装置

技术领域

[0001] 本发明涉及一种在远紫外区的分光分析。

背景技术

[0002] 近年来,对水的纯度及其性质的微弱变化高精度且不改变水质地进行测定这样的用途正在增加。 例如,半导体的制造工艺达到要求其电阻率接近理论极限值等级的纯度。 另外,近年来,逐渐利用对该纯度非常高的超纯水附加特定的功能的功能水。
[0003] 在水或水溶液成分的识别或定量分析中,分光分析作为非常有效的方法而多种多样地被利用。 该分光分析方法根据测定波长区域而大致分为紫外可见分光、近红外分光、红外分光。
[0004] 特别是在近红外分光中,反映水特有的氢键的吸收光谱显著观测到800~1400nm,例如在特开平3-175341号公报中提出利用了该光谱的水中的溶解成分的测定方法。 水分子在液体状态下相互进行氢结合,但是水中混入了其他溶解成分的情况下,该氢键的状态极其敏感地变化。 并且,通过调查其变化的样子,从而能够定量分析混入成分。 更具体地说,无机电解质在水溶液中发生离子电离时,由于因离子的水合作用而产生的离子附近的水分子和大量的水分子之间的氢键的切断或变形、由离子电场引起的水分子的分极的影响等,水分子自身的结合状态或氢结合后的水分子彼此间的结合状态受到影响,其近红外吸收光谱与纯水的情况不同。 因此,通过预先测量其变化,从而能够不根据归属离子种类的吸收光谱而根据水的吸收光谱的变化,测量该离子种类的浓度。
[0005] 另外,最近在日本特开平2005-214863号公报和APPLIEDSPECTROSCOPY Vol.58,No.8(2004),910-916中提出了如下方法:利用水的远紫外光谱与近红外光谱同样地密切关系到水的氢结合状态的情况,来测量水溶液中的水合物质的浓度。 更具体地*说,在150nm附近具有峰的水的n→σ 迁移引起的吸收光谱受到在水自身和溶解在水中的水合离子之间形成的电场的影响而向长波长侧偏移,利用光谱的一部分出现在能够由常用分光装置(不需要真空排气的分光装置)测定的区域的情况,进行水溶液的识别和微量成分浓度的定量分析。 利用水的远紫外线光谱吸收的方法相比利用近红外光谱的情况格外提高相对微量成分的检测和定量灵敏度,但是,由于水自身的吸光度非常大,所以迄今为止仅能在比透射光谱测定的极限即180nm长的波长区域利用。
[0006] 但是,在本发明中,作为测定吸收非常大的物质的吸收光谱的方法而着眼于全反射衰减吸光(Attenuated Total Reflectance)法,因而在这里对以往的全反射衰减吸光法进行说明。 根据全反射衰减吸光法,由于能够测定由光在光学探针表面全反射时形成的波长级的光的浸出(衰逝波:evanescent wave)引起的在样品内的光吸收量,所以理论上能够得到与由波长级的吸收池(cell)长度引起的透射光谱类似的吸收光谱。 在日本特开昭62-75230号公报中提出了由应用了光学探针的全反射衰减吸光法进行的浓厚溶液种类的测定方法。 作为光学探针的材质而使用了合成石英或蓝宝石的全反射衰减吸光法被以各种方式实现,提高全反射衰减吸光法自身的测定灵敏度的方法也提出在日本特开平7-12716号公报等中。
[0007] 也提出由多种光学材料构成的全反射衰减吸光法用的光学探针。 在美国专利第5703366号公报记载的光学分析用的光学系统中,在红外线光学系统中使用了在与样品物质接触的面使入射光全反射的探针。 在这里,为了消除由单独的结晶构件构成的探针的缺陷(耐腐蚀性、机械性质、高价格等),由第一结晶构件和与第一结晶构件接触的第二结晶构件构成探针。第二结晶构件具有与样品物质接触的面。 两个结晶构件实质上具有相同的折射率。 在第二结晶构件是透射红外线的材料即金刚石的情况下,第一结晶构件例如是硒化锌(ZnSe)。
[0008] 此外,在日本特开昭64-56401号公报记载的红外线透射光学元件中,在由SiO2、ZnSe等红外线透射材料构成的光学元件的表面形成用于改善表面强度和耐湿性的金刚石薄膜或者包含金刚石结构的碳(DLC)薄膜(例如600nm的厚度)。 光学元件的一例是全反射衰减吸光测定附属装置的多重反射棱镜。关于在实施例所使用的DLC薄膜的光学性质,除了记载有不对红外域吸收光谱造成影响之外,只是记载有磨损试验或耐湿试验的结果。 即,作为金刚石薄膜的作用效果,仅机械性质和化学性质引人关注。
[0009] 另外,在日本特开平5-332920号公报提示的方法中,将样品(Si晶片)的分析面作为空气侧,在分析面的相反侧的面密接了具有比样品低的折射率的柔软的固体材料体棱镜,从固体材料侧入射红外线而在分析面使其反射,从而得到具有比棱镜材质大的折射率的样品表面的衰减全反射光谱。 该方法也是以复合材质的第二层(样品)是透射红外线的材质为前提。
[0010] 此外,在日本特开2001-91710号公报记载的全反射衰减吸光探针中,提出将光吸收大的第二层(例如氧化锌、二氧化锡)与透明的第一层(例如硅)镜面接合。 第二层是与样品接触的层。 在这里,第一层使用了折射率大的光学材料,第二层使用了折射率小的光学材料。 但是,在实施例1等中记载的端面角和入射角度中,向第一层入射的入射光在第一层和第二层的界面被全反射,在位于第二层的相反侧的样品之中仅第二层中的极少一部分的衰逝波能够到达,并且,由于在第二层中的光吸收大,所以结果是仅能进行S/N比非常低的吸光度测定。 该发明的思想不清楚。
[0011] 从以上说明的现有技术的例子可知,在由多种材质构成的棱镜中,仅在与样品接触一侧即第二层的折射率与第一层的折射率实质上相等或更大的情况下,才变为由复合材质构成的衰减全反射型棱镜。 并且,任一种情况下其提案的前提均是与复合棱镜的界面接触的样品的折射率小于棱镜的第一层的折射率。 并且,这些多种材质在透射红外线等测定光这样的条件下被选定。此外,在日本特开2001-91710号公报中记载有第二层折射率小于第一层折射率的复合棱镜的结构例。 在该情况下,衰减全反射在复合棱镜的第一层和第二层的界面产生,不能得到样品表面的全反射光谱,这种思想不清楚。
[0012] 专利文献1:日本特开平3-175341号公报;
[0013] 专利文献2:日本特开平2005-214863号公报;
[0014] 专利文献3:日本特开昭62-75230号公报;
[0015] 专利文献4:日本特开平7-12716号公报;
[0016] 专利文献5:美国专利第5703366号公报;
[0017] 专利文献6:日本特开昭64-56401号公报;
[0018] 专利文献7:日本特开平5-332920号公报;
[0019] 专利文献8:日本特开2001-91710号公报;
[0020] 非专利文献:APPLIED SPECTROSCOPY Vol.58,No.8(2004),910-916。
[0021] 在近红外出现的水的吸收光谱因本来禁止迁移而吸收较弱,不能够测定水中极微量的溶解成分浓度。 因此,需要在近红外光谱不会得到明显误差的极微量的溶解成分的浓度测定法。 另一方面,在水中在150nm附近具有大的吸收峰,相比根据该吸收光谱的变化利用近红外光谱的情况,能够以更高灵敏度进行水溶液中的溶解成分的检测或浓度测定。 但是,要在远紫外区测定水或水溶液的光谱,水的吸收成为分光测定的明显障碍。 在除水以外的物质中也在远紫外区有大的吸收的情况下,同样地该吸收成为分光测定的障碍。 此外,在红外域或可见域能够使用的上述现有的全反射衰减吸光测定法由于在远紫外区透射率并不充分,或者由于在光学探针与样品物质接触的平面不发生全反射,所以不能够利用。

发明内容

[0022] 本发明的目的是在180nm以下的远紫外区能够容易地进行水的分光测定,高灵敏度地检测水溶液中的微量的溶解成分等,并能够定量分析。
[0023] 为了解决该问题,如下提出能够在远紫外区域测定水溶液的全反射衰减型光学棱镜。
[0024] 本发明的第一全反射衰减型光学探针包括:第一部分,其是在远紫外区具有光透射性的第一光学材质,具有比样品物质即测定介质的折射率低的折射率;第二部分,具有与所述第一部分接触的界面和与样品物质接触的平面,由在远紫外区具有比所述第一部分低的光透射率和比所述样品物质即测定介质的折射率高的折射率的第二光学材料构成,所述第一部分和第二部分之间的所述界面具有如下形状:透射第一部分的光线进入所述第二部分,并能够临界角以上的入射角入射到所述第二部分的所述平面。 若样品物质的折射率小于第二光学材料的折射率,则即使在大于第一光学物质的折射率的情况下,也在与样品物质接触的平面发生全反射。
[0025] 在第一全反射衰减型光学探针中,例如,所述第二部分的与所述样品物质接触的平面与所述第一部分和第二部分之间的界面相互平行。 优选该全反射衰减型光学探针还具有由在远紫外区具有光透射特性的第三材料构成的第三部分,该第三部分与所述第二部分相关处于所述平面和所述界面相互垂直的位置关系,但是位于与所述第一部分相反一侧。 另外,在第一全反射衰减型光学探针中,例如所述界面是半圆状。另外,在第一全反射衰减型光学探针中,例如所述第二部分的所述平面和所述界面相互垂直。
[0026] 在第一全反射衰减型光学探针中,优选所述第一光学材料是氟化镁、氟化锂和氟化钙中的任一种,所述第二光学材料是合成石英、水晶、蓝宝石、硒化锌以及金刚石中的任一种。
[0027] 在第一全反射衰减型光学探针中,优选所述第一部分和第二部分之间的界面具有如下形状:从所述第一部分透射的光能够垂直地入射到所述第二部分,且从所述面被全反射的光在从所述第二部分进入到所述第一部分时能够垂直地入射。
[0028] 本发明的第二全反射衰减型光学探针,由在远紫外区具有光透射性的光学材料构成,折射率至少在一部分连续地变化。 该探针在与样品物质接触一侧具有全反射临界角以上的入射角的光的平面,在包含所述平面一部分的第一部分的在远紫外区的折射率比其它部分高。 所述光学材料例如是氟化镁,所述折射率连续变化的部分是通过离子掺杂或离子注入将杂质离子扩散或注入到所述光学材料中而形成的。
[0029] 优选第一或第二全反射衰减型光学探针在与水接触一侧的面具有比测定波长充分薄的厚度的涂层(例如石英、水晶或金刚石的薄膜)。
[0030] 本发明的水溶液测定分光装置包括:与水或水溶液接触配置的上述任一种全反射衰减型光学探针;向全反射衰减型光学探针照射远紫外光的光源;检测来自全反射衰减型光学探针的全反射光的光接收元件;在从光源至光接收元件的光路中对远紫外光分光的分光元件。 光路中的氧气被置换为在远紫外区不产生吸收的气体或排气到真空状态。
[0031] 在本发明中,能够对在远紫外区吸光度大的物质进行在远紫外区的分光测定。由此,能够容易地高灵敏度地检测水溶液中的微量的溶解成分等并进行定量分析。

附图说明

[0032] 图1是HCl水溶液的远紫外光谱的图。
[0033] 图2是表示对HCl的浓度进行预测的校准线模型的相关性的曲线图。
[0034] 图3是表示一般的反射衰减吸收光学探针的结构的图。
[0035] 图4a是用于说明双层结构中的光的透射和反射的图。
[0036] 图4b是用于说明双层结构中的光的透射和反射的图。
[0037] 图5是表示第一实施方式的纵型三层结构的光学探针结构的图。
[0038] 图6是表示图5的光学探针的变形例的结构的图。
[0039] 图7是表示图5的光学探针的其他变形例的结构的图。
[0040] 图8是表示半圆双层结构的光学探针的结构的图。
[0041] 图9a是现实的光学探针配置和折射率分布的图。
[0042] 图9b是现实的其他光学探针配置和折射率分布的图。
[0043] 图10是表示第二实施方式的双层结构光学探针的其他变形例的图。
[0044] 图11是表示进行表面改性情况下的光学探针的结构的图。
[0045] 图12是使折射率连续地变化的光学探针的图。
[0046] 图13是表示远紫外区中的各光学材料的折射率的波长依存性的曲线图。
[0047] 图14是表示使用合成石英的光学探针的吸光度的入射角依存性的曲线图。
[0048] 图15是表示使用合成石英的光学探针的吸光度的入射角依存性的实验数据的曲线图。
[0049] 图16是表示使用合成石英的光学探针的衰逝波的潜入深度的曲线图。
[0050] 图17是表示使用合成石英的光学探针的吸光度的由溶质浓度引起的变化的实验数据的曲线图。
[0051] 图18是表示表面改性后的光学探针的吸光度的由溶质浓度引起的变化的实验数据的曲线图。
[0052] 图19是远紫外分光应用微量成分浓度计的框图。
[0053] 图20是除水之外的物质的光谱的曲线图。
[0054] 其中,附图标记说明如下:
[0055] 10第一部分、12界面、14第二部分、18样品物质、20与样品接触的面、22涂层、40高折射率光学材质层、42第一保持材、44第二保持材、46样品物质、48与样品接触的面、52界面、54界面、100样品通路、102光学探针、104紫外光源、106衍射光栅反射镜、112紫外光传感器、114信号处理部。

具体实施方式

[0056] 下面,参照附图来说明本发明的实施方式。
[0057] 在近红外域出现的水的吸收光谱因本来禁止迁移而吸收弱,不能够测定极微量的溶解成分的浓度。 因此,发明人着眼于远紫外光谱进行研究的结果发现:纯水在远紫外区的150nm附近具有非常大的尖锐的吸收峰,通过测定该尖锐的吸收的末端部分的变化,从而能够测定在水溶液中水合的极微量的溶解成分的浓度。 也就是,水自身从150nm附近的吸收峰到200nm附近的吸收谷显示出非常陡峭的吸收光谱的减少,且该吸收光带的峰位置和光带宽度也因极微量的溶质成分的水合而变化。 因此,该吸收峰的稍微的波长偏移在该尖锐的吸收的倾斜部分中非常高灵敏度地被捕捉,能够利用于水溶液中的极微量成分的浓度测定。(该内容记载在日本特开2005-214863号公报中。)即,测定水的吸收峰的末端部分的光谱,并通过在多个波长下的吸光度的多变量分析而作成校准线,从而能够测定出极微量的溶解成分。例如,图1表示0~20ppm范围内的11种浓度(1、2、3、4、5、6、8、10、12、16、20ppm)的HCl水溶液的远紫外光谱,图2表示对HCl浓度进行预测的校准线模型的相关性。模型的相关系数R和标准偏差σ为0.9987和0.18ppm。 从而可知,至少到100ppm为止,能够以高精度定量测定微量的HCl。 在本测定例中的水溶液中的HCl的检测极限是0.5ppm。
[0058] 在上述的水和水溶液的测定例中,测定波长限定在处于180~210nm的水的吸收光带的末端部分。这是因为考虑到:水的在150nm附近具有峰的吸收光带的吸收系数非常大,为了得到180nm以下的测定波长的透射光谱,而需要将测定吸收池长度薄到数百nm,另外,需要除去测定环境中的氧气,等等,难以实现。但是,为了进一步实施高灵敏度的成分分析,而需要测定光谱吸收的变化更明显出现的160nm~180nm的强大的吸收倾斜部分。
[0059] 要在存在于远紫外区的水的吸收峰附近(150nm)测量水或水溶液的光谱,需要使吸收池长度短到100nm左右,但是这很困难。 因此,发明人着眼于作为测定吸收非常大的物质的吸收光谱的方法而众所周知的全反射衰减吸光法(ATR法)。 日本特开2005-214863号公报之前的由远紫外分光法进行的水溶液中的溶解成分浓度测定方法都是根据溶质的吸收光带测定特定物质的浓度,而不是根据溶媒即水的光谱变化测定溶质的浓度。 但是,通过使用下面说明的全反射衰减吸光法的光学探针(在下面称为全反射衰减光学探针)和远紫外分光测定装置测,根据溶媒即水的光谱变化测定溶质的浓度,通过使该测定波长区域向160nm~180nm扩张,而能够使上述方法高灵敏度化。
[0060] 首先,针对全反射衰减吸光法进行说明。如图1所示,在折射率更高的介质(例如合成石英)和折射率更低的介质(测定对象的样品物质)(例如水)之间的界面位于图的上侧的情况下,当光线从折射率更高的介质侧照射时,在入射角θ大于临界角的情况下,光线被全反射。 但此时,光线也向折射率更低的介质潜入波长级的一定距离,并在界面方向前进,然后被反射。将该潜入到折射率更低的介质中的光线称为衰逝波。 衰逝波的电场强度在反射点最大,朝着界面方向和与界面铅垂的方向立刻衰减。 此外,在图1的上侧的面的上侧示意性地表示衰逝波在与界面铅垂的方向的电场强度的变化,而将衰逝波的电场强度衰减到1/e的距离称为潜入深度(penetration depth)。 根据该方法,能够根据反射光测定相对在光全反射时形成的波长级的光的潜入(衰逝波)的光的吸收。该光的潜入深度对应于通常的透射光谱的光路长,所以理论上能够得到与由波长级的吸收池长度获取的透射光谱相类似的吸收光谱。 在本发明中提出:对于要在远紫外区测定水的吸收光谱需要以数百nm以下的吸收池长度测定这样的制约、和在进行水溶液的极微量的成分分析方面在160nm~180nm的波长区域的测定很重要这样的条件,通过在160nm~
180nm的波长区域测定衰减全反射棱镜的反射吸收光谱,而能够很好地适应。
[0061] 但是,能够适应全反射衰减吸光法的光学探针(全反射衰减光学探针)需要满足下面两个条件。
[0062] (1)光学探针的材质的折射率大于样品物质的折射率(全反射条件);
[0063] (2)光学探针的材质在测定波长区域透明(光透射率充分高)(透射条件)。
[0064] 但是,水的折射率在远紫外区随着波长变短而显著增加,所以没有满足作为全反射衰减光学探针的两个条件的材料。 也就是,如石英或蓝宝石那样,折射率在远紫外区也高于水的材质在160nm附近不具有充分的透射率,另一方面,透射该区域的远紫外线的材质(例如氟化镁、氟化钙等)在远紫外区折射率都低于水的折射率,而不能够满足全反射条件。因此,只能实用将测定波长区域限定为200nm或充其量190nm以上的光学探针。 即,使用了能够测定到水的150nm附近的峰波长的光学探针的全反射衰减吸光法的例子包括在背景技术说明的现有的全反射衰减光学探针,而没有报告。
[0065] 此外,在现有的发明中,也提出由折射率不同的多种材质构成的平板状的双层结构的全反射衰减光学探针的结构例。 第一层的折射率n1低于第二层的折射率n2,但如图4a所示,要在样品界面产生衰减全反射,第一层的折射率n1必须高于样品的折射率ns。如图4b所示,在第一层的折射率n1低于样品的折射率ns这样的条件下,在样品界面不产生衰减全反射。 在该情况下是因为:在从第一层向第二层入射时,在第二层内折射的光不能够形成在第二层和样品的界面产生衰减全反射的临界角,在样品界面伴随折射而透射。 即,光是从第一层透射过第二层而照射到样品或不进入第二层而在第一层和第二层的界面发生全反射中的一种。例如,在日本特开2001-91710号公报中提出了在样品和第一层之间插入了由折射率n2比第一层的光学材料高的光学材料构成的第二层的平板双层结构的光学棱镜,但是,在第一层的光学材料的折射率n1低于样品的折射率ns的条件下,依然在样品界面不产生衰减全反射。
[0066] 发明人发现:在由复合层构成的全反射衰减光学探针中对几个光学材料赋予特定的配置条件,从而能够在比180nm短的波长域测定水等的全反射衰减吸光,而提供一种利用该光学探针来测定水溶液中的极微量的溶解成分浓度并能够定量分析水质的微妙的变化等的水溶液测定装置。 该光学探针或水溶液测定装置一般对于除水以外的在远紫外区吸收较大的物质,也能够同样使用全反射衰减吸光法进行分光测定。
[0067] 由复合层构成的全反射衰减光学探针由第一部分和第二部分组合而成。 第一部分由在远紫外区具有光透射特性的第一光学材料构成。 另外,第二部分具有与第一部分接触的界面和与样品物质接触的平面,由在远紫外区具有比样品的折射率ns高的折射率n2的第二光学材料构成(n2>ns)。第二光学材料具有比第一光学材料的折射率n1高的折射率(n2>n1)。 第二光学材料的透射率一般低于第一光学材料,仅由第二光学材料不能构成光学探针。 光线进入第一部分并从第一部分透射,在第一部分和第二部分之间的界面发生折射而进入第二部分,并在上述的平面全反射。 该界面具有光线能够以临界角以上的入射角入射到上述平面的形状。 此时,光线的一部分作为衰逝波从样品中透射后发生反射。
[0068] 图5表示第一实施方式的纵型三层结构的光学探针。 该光学探针包括长方形的高折射率光学材质层40和与其两侧接触的第一保持材42和第二保持材44。 样品材质46与具有大于样品物质46的折射率的高折射率光学材质层40的长度方向的端面48接触。与样品物质即水接触的高折射率光学材质层40的第二光学材料,其折射率在直至160nm附近的远紫外区的波长域需要具有比水的折射率大的折射率。 作为满足该要件的材质而举出例如石英(或水晶)和蓝宝石。 石英和蓝宝石在160nm附近的远紫外区的内部透射率(不考虑反射损失的材质自身的透射率)在1mm的厚度中为50%以上。 因此,高折射率光学材质层40的厚度希望在数百μm以下,但是直至1mm左右都能够实用。 氟化镁(参照图13)、氟化锂、氟化钙等光学材质在真空紫外区域与石英和蓝宝石相比折射率低,但是,即使厚度在10mm以上,光透射率也不会损失。 因此,做成如下这样的多层结构:将在例如150nm以上的紫外域折射率比高折射率光学材质层40的第二光学材料小且具有充分的透射特性的这些光学材料作为探针的保持材42、44,第二材料与其接触,具有能够作为全反射探针而发挥功能程度的厚度(例如对于160~250nm波长域,内部透射率至少为10%以上)。例如,作为保持材42、44而使用氟化镁,作为第二光学材质层而使用蓝宝石,样品物质为水的情况下的各物质的折射率在160nm附近的远紫外区分别为约1.5、约2.2、约1.6。 由此,能够实现可以测定160nm附近的水和水溶液的全反射衰减吸光度的光学探针。 入射到底保持材42的光线50入射到第一保持材42和高折射率光学材质层40之间的界面52而被折射,接着以临界角以上的角度入射到端面48而被全反射。 被反射的光线在高折射率光学材质层40和第二保持材44之间的第二界面54被折射,并从第二保持材44射出。 也就是,如图4b所示,在第一材质的折射率小于样品的折射率的情况下,在平板结构中,存在如下问题:入射到高折射率光学材质层的光从光折射率光学材质层和样品的界面中透射,不发生全反射,但是,通过使用将界面52和端面48垂直配置的上述结构,从而能够解决该平板结构的问题。测定该反射波而测定样品物质46的吸光度。 第一保持材42的外形优选以光线50从外部大致垂直入射的方式设计。 关于高折射率光学材质层40和保持材42、44的光学材料,在后面说明。 此外,高折射率光学材质层40的端面48和界面52、54形成的角度优选是直角,但不一定必须是直角,只要是从保持材折射或直线传播入射到第二高折射率光学材质层的光在第二高折射率光学材料和样品的界面能够满足全反射条件的角度即可。具体地说,在90度至临界角的范围即可。 使用该光学探针而能够提供一种可以测定水溶液中的微量成分浓度等的水溶液测定装置。
[0069] 因此,上述光学探针包括:在测定对象的远紫外区(例如比150nm长的远紫外波长的区域)具有光透射特性的第一光学材料的第一部分(保持材)42、44;在界面52、54与第一部分42接触的第二光学材料的第二部分40。 在这里,第二光学材料在远紫外区具有比样品物质和第一光学材料高的折射率,且第二部分40具有在测定波长具有至少
10%以上的内部透射率的厚度,另外,在与样品物质46接触一侧具有对临界角以上的入射角的光进行全反射的面48。
[0070] 图6表示第一实施方式的光学探针的变形例。 在该光学探针中,与图5所示的光学探针不同,省去第二保持材。 在高折射率光学材质层40的端面48被反射的光线50在界面54向空中出射。
[0071] 图7表示第一实施方式的光学探针的其他变形例。 第一保持材42’和第二保持材44’的外形56、58是半圆状。 因此,即使入射方向改变,光线50也能够相对保持材42’几乎垂直地入射。
[0072] 图8表示第二实施方式的光学探针。高折射率光学材质层10具有与样品物质12接触的端面14。高折射率光学材质层10的与样品物质12不接触一侧经由界面18而与保持材16接触。 界面18和保持材16的外形都为半圆状。 因此,即使入射方向改变,光线20也能够相对保持材16和界面18几乎垂直地入射,能够使光以临界角以上的入射角入射到与样品物质12接触的界面14。 也就是,在该结构中,保持材16和高折射率光学材质层10之间的边界面与高折射率光学材质层10和样品物质12之间的边界面14形成的角度即使不垂直,入射到上述界面14的光也能够发生全反射。
[0073] 如图8所示,第二实施方式的双层结构光学探针包括保持材16和与其1面18密接的高折射率光学材质10。具有比样品物质大的折射率的高折射率光学材质10,具有与样品物质12接触的面14,在该面14能够产生全反射。面14和入射光线20形成的角度根据样品物质12和高折射率光学材质10的折射率之差预先被计算。 保持材16由氟化镁、氟化锂、氟化钙等光学材料构成。保持材16的形状在该例中为半圆剖面,但不限于此。例如,可以根据需要平坦地削除入射光线不能够全反射的成为入射角的界面部分等。 入射到保持材16的光线20透射保持材16,在界面18笔直地或者折射进入到高折射率材料层10。从高折射率光学材质层10透射的光线20以临界角以上的入射角入射到面14并被全反射。被反射的光再以临界角以上的角度入射到下一个界面并被全反射,在界面18笔直地或者折射进入到保持材16,从保持材16透射后向外部出射。测定该反射光并测定样品物质12的吸光度。
[0074] 对图8示出的光学探针进一步进行说明。 与样品物质即水接触的由第二光学材料构成的第二部分10与第一实施方式同样,其折射率在直至160nm附近的远紫外区的波长域中,需要具有比水的折射率大的折射率。 作为满足该要件的材质而举出例如石英(或者水晶)蓝宝石。 另外,与第一实施方式同样,将例如在150nm以上的紫外域折射率比第二光学材料小且具有充分的透射特性的这些光学材料作为探针的保持材料16。 在通过第二光学材料的光路长充分小到5mm以下的情况下,其内部透射率在160nm附近也残留10%左右,即使考虑在光入射出射端面的反射损失,也能够勉强作为全反射衰减探针而发挥功能。 因此,做成如下这样的双层结构:第二光学材料具有能够作为全反射探针而发挥功能程度的厚度(例如对于160~250nm的波长域,光学光路长为5mm以下)那样的双层结构。例如,保持材16使用氟化镁,第二光学材质层使用蓝宝石,样品物质为水情况下的各物质的折射率在160nm附近的远紫外区分别为约1.5、约2.2、约1.6。由此,能够实现可以测定160nm附近的水和水溶液的全反射衰减吸光度的光学探针。 使用该光学探针而能够提供一种可以测定水溶液中的微量成分浓度的装置。
[0075] 因此,上述双层结构的光学探针包括:在测定对象的远紫外区(例如比150nm长的远紫外波长的区域)具有光透射特性的第一光学材料的半圆形状的第一部分(保持材)16;在界面18与第一部分接触的第二光学材料的半圆形状的第二部分10。在这里,第二光学材料具有在远紫外区比样品物质和第一光学材料高的折射率,且第二部分具有在测定波长中具有至少10%以上的内部透射率的厚度,另外,在与样品物质12接触一侧具有全反射临界角以上的入射角的光的面14。 光线20以大于临界角的角度θ入射到第一部分16和第二部分10,在界面14全反射,再经由第二部分10和第一部分16射出。
[0076] 图9a表示第二实施方式的变形例的光学探针的结构和折射率分布。 该光学探针与第一实施方式的光学探针同样,包括在远紫外波长区域具有光透射性的第一光学材料(氟化镁、氟化锂、氟化钙)的第一部分10’;与第一部分10’接触配置的第二光学材料(合成石英、蓝宝石等)的第二部分14’。 第二光学材料在远紫外区具有比水高的折射率。 与图8的光学探针不同的是,第一部分10’和第二部分14’的界面12’、12”为能够垂直入射反射光的形状,另外,在第二部分14’的与样品物质18的界面20全反射临界角以上的入射角的光。 另外,第二部分14’的厚度设定为具有充分的透射特性。上述的垂直入射是为了减少向第二部分14’入射时的反射损失。 进而,在折射率间隙大的界面22、22’上施加无反射涂层。 在第二部分14’使用蓝宝石的情况下,优选为如图9b那样的结构,在界面12、12’也施加无反射涂层。 该情况下,第一部分10’被第二部分14’的面13’保持,端面13’、13”、15’、15”配置在氮清除环境(或真空)中,在各端面施加无反射涂层。 另外,第一部分10’的面22、22’也具有进行垂直入射的形状。 全反射在第二部分14’与样品物质18接触的面发生。 衰逝波在第二部分14’和样品物质18的界面方向行进。 测定该反射波而测定样品物质的吸收。 因此,反射波受到向样品物质(例如水或水溶液)18的透射的影响。 另外,如在后面说明的第三实施方式那样,在MgF2上通过由离子掺杂等进行的表面改性而形成高折射率光学材质部分的情况下,也尽可能在光线行进的方向存在折射率梯度。 折射率分布的图中,示出第一光学材料使用氟化镁、第二光学材料使用石英和蓝宝石时的沿着光线16的折射率变化。 另外,还示出在氟化镁光学材料上利用离子掺杂设置表面改性部时的折射率变化。
[0077] 图10表示第二实施方式的双层结构光学探针的其他变形例。该光学探针具有在第一部分16’的一个面接合了剖民面为等腰三角形的第二部分10’的结构。 第一部分16’和第二部分10’通过光学接触或热熔接而接合。因此,第二部分10’以等腰三角形的底边成为与第一部分16’的界面的方式与第一部分接触,等腰三角形的两个等边成为与样品物质接触的面。 通过第一部分16’的光线20从接面18’进入到第二部分10’,在与样品的两个接面14’分别被全反射,再进入到第一部分16’后射出。
[0078] 如图11所示,在第三实施方式的光学探针中,由在远紫外区具有光透射特性的光学材料(氟化镁等)构成的光学探针14’中,至少在一部分折射率连续地变化。 在这里,对与样品物质18接触的表面20的附近改性,例如图18的右上方所示,使折射率连续地增加。表面附近的折射率比在其它部分的折射率高,最终在平面20中变得比样品物质18的折射率高。 在该图例中,光呈圆弧或椭圆轨道到达表面。 为了表面改性而使用例如离子掺杂。 例如在氟化镁、氟化锂、氟化钙、氟化钡等真空紫外透射光学材质的表面,通过热扩散或注入而在一定浓度范围内分布铝、镁、氩、钠等金属离子。 由此,被埋入的杂质浓度连续地变化,导致折射率连续地变化。 这种表面改性处理作为离子掺杂、离子注入处理等而众所周知,能够有意地增加例如180nm~150nm的折射率。通过将该波长域的折射率改性成在与样品物质18接触的平面20中比样品物质18的折射率高的折射率,从而能够形成全反射衰减吸光法用的光学探针。 由于杂质分布的是表面附近的极少的厚度部分,所以虽然透射率发生损失,但是作为全反射衰减吸光法用的光学探针能够充分发挥功能。
[0079] 接着,针对上述实施方式的变形例即涂层型光学探针进行说明。 在第一和第二实施方式的光学探针中高折射率光学材质层14的光学材料为蓝宝石的情况、以及在第三实施方式的光学探针中通过离子掺杂进行表面改性的情况下,光学材料的一部分被作为样品的水离子化,有可能作为杂质而溶解在样品中。 特别是在样品为半导体清洗水的情况下,该杂质的溶解就成为问题。为了防止该问题,如图12所示,在与样品物质接触的面48之上以不溶解到样品物质中的材料(例如合成石英或水晶)形成第三层,并将其作为涂层41。 由于光学材料的折射率大于石英(水晶)的折射率,所以入射光在光学材料和石英(水晶)的涂层41之间的界面48被全反射。 此时,若涂层41为比测定波长充分薄的厚度(数十nm左右),则由于浸出光(衰逝波)到达样品,所以能够测定样品的吸光度。
[0080] 此外,在图13中示出各种材料即蓝宝石、合成石英或水晶(SiO2)、氟化镁以及水的折射率的波长依存性。 在这里,实线是为用于计算而作出的适当的近似函数。
[0081] 下面,说明关于几个具体的光学探针的计算结果和实验结果。
[0082] 图14是由第一实施方式即纵型3层结构光学探针测定的、纯水的吸光度的入射角依存性的计算数据。 在这里,高折射率光学材质层的光学材料使用石英(水晶)。 吸光度的峰随着入射角θ从68°起增加而减少。 此外,若高折射率光学材质层同样是石英(水晶),则在第二实施方式中也为同样的结果。 另外,图15是由第一实施方式即纵型3层结构光学探针测定的、纯水的吸光度的入射角依存性的实验数据。 在这里,在高折射率光学材质层的光学材料使用合成石英。吸光度的峰随着入射角θ从68°起增加而减少,与上述计算数据匹配。 吸收的极大位置相比计算数据向长波长侧偏移,但是,考虑这是因为产生了如下现象:在本实验使用的合成石英的折射率在165nm附近非常接近纯水的折射率时其差几乎没有,或者,由于反转而导致反射光的一部分不能够全反射,而向纯水中透射。其结果是,在165nm附近产生外观上的吸收极大。尽管如此,也能够得到以往不能够测定的在180nm以下的波长区域的纯水的吸收光谱。
[0083] 图16表示在第一或第二实施方式即光学探针中高折射率光学材料使用了石英(水晶)时的潜入深度的波长依存性(计算结果)。 潜入深度随着入射角θ从68°起增加而减少。因光学材料的分散而具有衰逝波的潜入深度取得最大的波长。 该影响下,从全反射光学探针得到的吸收光谱的极大位置相比水实际的极大峰位置(推测为150nm附近)也向短波长侧偏移。 但是,这种吸收光谱的变形在微量成分的定量测定中不会成为问题。在入射角θ为80°的情况下,在160nm附近的波长,潜入深度为50至100nm。这相当于在通常的光学吸收池中的光路长。
[0084] 图17是在第一实施方式即纵型3层结构光学探针中高折射率光学材质层的光学材料使用了石英(水晶)时的溶质浓度不同的水溶液的吸光度的光谱测定数据(实验数据)。入射角θ为70°。在195nm附近具有来自溶质即Nal的吸收峰,但是当溶质浓度增加时,其吸收峰上升,并且,在180nm以下的波长区域,水的吸收光带向长波长侧偏移。 并且,通过对该偏移量进行定量分析,从而相比使用来自溶质的吸收光带的变化,能够进行高灵敏度的分析。此外,若高折射率光学材质层为同样的石英(水晶),则在第二实施方式中也为同样的结果。
[0085] 在第三实施方式的光学探针中,在进行了光学材料即氟化镁的表面改性的情况下,当假定折射率如图18的右上侧所示那样分布时,光线呈圆弧或椭圆的轨道到达表面。图18是使用该结构的光学探针来测定溶质浓度不同的水溶液的吸光度的数据(计算结果)。
[0086] 图19是表示使用上述任一个光学探针(全反射衰减光学探针)的远紫外分光应用微量成分浓度计(测定波长160~210nm)的结构。 该浓度计能够作为水溶液分光测定装置而使用。 与样品通路100的样品物质18接触而设置光学探针102。 既可以将样品物质导入至吸收池中,使光学探针面向吸收池内的样品物质,另外,也可以不使用吸收池而将例如导入样品的配管的壁面作为探针。从紫外光源(例如重氢灯)104发出的光通过单色分光仪即衍射光栅反射镜106,并被反射镜108反射,入射到光学探针102。向光学探针102的入射角适当地进行设定。 来自光学探针102的反射光被反射镜110反射后,入射到紫外光传感器112中。 此外,在上述的光学系统内,为了从光学系统内排除氧气,而导入氮气,但也采用由氩气进行的空气置换或将空气自身排气到真空的方法。即,光路中的氧气被在远紫外区不产生吸收的气体置换或排气为真空状态。 由紫外光传感器112检测出的光谱由信号处理部114处理,以测定数据为基础计算吸光度。在这里,能够通过对在多个波长下的吸光度的公知的多变量分析来制作校准线。 要在160nm测定水的光谱,需要使吸收池长度为100nm左右,但是通过使用全反射衰减光学探针,从而能够实现微小的吸收池长度,因而能够以高灵敏度测定水的吸收峰。 另外,测定实时进行。 另外,测定用紫外光作用的是样品物质的探针界面的极小一部分,所以实质上能够避免紫外光照射引起的样品变化。
[0087] 此外,为了便于本领域技术人员理解,上述光学探针除水之外,也能够通过全反射衰减吸光法测定在远紫外区具有大的吸收的其他液体、气体、固体的样品。 例如,能够测定异丙醇等液体或氧气等气体。在图20例示出高折射率光学材质层的光学材料使用蓝宝石测定的甲醇、乙醇、异丙醇在远紫外区的光谱。