利用自然能向电动汽车供能的系统和方法转让专利

申请号 : CN200810238865.6

文献号 : CN101412376B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 吴速

申请人 : 吴速

摘要 :

本发明提供一种利用自然能向电动汽车供能的系统和方法。本发明通过太阳能光伏发电阵列将太阳能转换为电能存储或通过风能发电装置阵列将风能转换为电能存储,供加能站为电动汽车蓄电池充电使用,同时本系统还与市电电网相连,当白天天气晴好,太阳能光伏发电阵列的发电电量充足时,或风力较大,风能发电装置阵列的发电电量充足时,可将多余电量并入市电电网供其他负载使用,当夜晚或白天为阴雨天气时,或风力较小时,可将市电电网的交流电转换为直流电存储,供加能站为电动汽车蓄电池充电使用,二者互为补充,因此实现了稳定可靠的利用自然能向电动汽车供能,降低了对石油、煤炭等不可再生能源的依赖,缓解了能源危机,保护了大气环境。

权利要求 :

1.一种利用自然能向电动汽车供能的系统,其特征在于,包括:

太阳能光伏发电子系统,用于将太阳辐射的光能转变成直流电,并将所述直流电存储在蓄电池组,或者,风能发电子系统,用于将风能转变成直流电,并将所述直流电存储在所述蓄电池组;

联网控制子系统,用于检测当前所述太阳能光伏发电子系统或所述风能发电子系统的工作状态和所述蓄电池组存储的电量,并根据检测结果向交直流双向变换子系统发送第一控制指令或第二控制指令;

交直流双向变换子系统,用于根据所述第一控制指令将所述蓄电池组存储的直流电转变成交流电,并将所述交流电并入市电电网,或根据所述第二控制指令将所述市电电网提供的交流电转变成直流电,并将所述直流电输送至所述蓄电池组,或直接对所述蓄电池进行充电;

更换一体化子系统,用于当有待充电电动汽车停靠加能站时,根据所述待充电电动汽车的蓄电池的型号对所述蓄电池进行更换;

蓄电池组,用于存储所述太阳能光伏发电子系统或所述风能发电子系统充入的直流电,以及所述交直流双向变换子系统充入的直流电;其中,所述更换一体化子系统包括:

识别模块,用于对待充电电动汽车的蓄电池的芯片进行识别扫描,获取蓄电池信息,所述蓄电池信息至少包括蓄电池的型号和电量;

信号发送模块,用于将所述识别模块获取的蓄电池信息按照既定协议封装成数据帧,传送至计算机控制模块;

计算机控制模块,用于根据所述信号发送模块发送的数据帧生成机器人手臂控制指令;

指令发送模块,用于将所述计算机控制模块获取的控制指令按照既定协议封装成数据帧,发送至机器人手臂;

机器人手臂,用于将所述指令发送模发送的数据帧转换为控制指令,根据所述控制指令从存放所述蓄电池组的自动存取充电货架上取出已充满且与所述待充电电动汽车的蓄电池型号相同的蓄电池,用所述蓄电池更换所述待充电电动汽车的蓄电池,并将所述待充电电动汽车的蓄电池放在所述自动存取充电货架上进行充电;或直接对所述蓄电池进行充电;

终端显示模块,用于显示当前所述蓄电池组的充电信息和蓄电池更换信息,供工作人员及客户查看。

2.根据权利要求1所述的利用自然能向电动汽车供能的系统,其特征在于,所述太阳能光伏发电子系统,包括:太阳能光伏电池阵列,安装于公路两侧的栅栏、绿化带、农田或建筑物上,用于将太阳辐射的光能转变成直流电;

防反充二极管,用于将所述太阳能光伏电池阵列获取的直流电充入蓄电池组,并防止所述蓄电池组反向向所述太阳能光伏电池阵列充电。

3.根据权利要求1所述的利用自然能向电动汽车供能的系统,其特征在于,所述风能发电子系统,包括:风能发电装置阵列,安装于公路两侧的栅栏、绿化带、农田或建筑物上,用于将风能转变成直流电;

稳压装置,用于对所述风能发电装置阵列发出的直流电进行稳压处理,并将处理后的直流电存储在所述蓄电池组。

4.根据权利要求2或3所述的利用自然能向电动汽车供能的系统,其特征在于,所述交直流双向变换子系统,包括:DC/AC转换器,用于当收到第一发送单元发送的第一控制指令时,根据所述第一控制指令将所述蓄电池组存储的直流电转变成交流电,并将所述交流电并入所述市电电网;

AC/DC转换器,用于当收到第二发送单元发送的第二控制指令时,根据所述第二控制指令将所述市电电网提供的交流电转变成直流电,并将所述直流电充入所述蓄电池组。

5.根据权利要求4所述的利用自然能向电动汽车供能的系统,其特征在于,所述联网控制子系统,包括:检测单元,用于检测当前所述太阳能光伏电池阵列或所述风能发电装置阵列的工作状态和所述蓄电池组存储的电量,若当前所述太阳能光伏电池阵列或所述风能发电装置阵列处于正常工作状态并且所述蓄电池组存储的电量达到预先设定的阈值时,生成第一控制指令,若当前所述太阳能光伏电池阵列或所述风能发电装置阵列处于非正常工作状态并且所述蓄电池组存储的电量低于所述阈值时,生成第二控制指令;

第一发送单元,用于向所述DC/AC转换器发送所述检测单元生成的第一控制指令,由所述DC/AC转换器根据所述第一控制指令将所述蓄电池组存储的直流电转变成电交流电,并将所述交流电并入所述市电电网;

第二发送单元,用于向所述AC/DC转换器发送所述检测单元生成的第二控制指令,由所述AC/DC转换器根据所述第二控制指令将所述市电电网提供的交流电转变成直流电,并将所述直流电充入所述蓄电池组。

6.一种利用自然能向电动汽车供能的方法,其特征在于,包括以下步骤:利用太阳能电池阵列将太阳辐射的光能转变成直流电,并经过防反充二极管将所述直流电存储在蓄电池组,或者,利用风能发电装置阵列将风能转变成直流电,并经稳压装置行稳压处理,将处理后的直流电存储在所述蓄电池组;

当有待充电电动汽车停靠加能站时,识别模块对待充电电动汽车的蓄电池的芯片进行识别扫描,获取蓄电池信息,所述蓄电池信息至少包括蓄电池的型号和电量;

信号发送模块将所述识别模块获取的蓄电池信息按照既定协议封装成数据帧,传送至计算机控制模块;

计算机控制模块根据所述信号发送模块发送的数据帧生成机器人手臂控制指令;

指令发送模块将所述计算机控制模块获取的控制指令按照既定协议封装成数据帧,发送至机器人手臂;

机器人手臂将所述指令发送模发送的数据帧转换为控制指令,根据所述控制指令从存放所述蓄电池组的自动存取充电货架上取出已充满且与所述待充电电动汽车的蓄电池型号相同的蓄电池,用所述蓄电池更换所述待充电电动汽车的蓄电池,并将所述待充电电动汽车的蓄电池放在所述自动存取充电货架上进行充电,或直接对所述蓄电池进行充电。

7.根据权利要求6所述的利用自然能向电动汽车供能的方法,其特征在于,在所述将待充电电动汽车的蓄电池放在所述自动存取充电货架上进行充电之后,还包括如下步骤:终端显示模块显示当前所述蓄电池组的充电信息和蓄电池更换信息,供工作人员及客户查看。

8.根据权利要求6所述的利用自然能向电动汽车供能的方法,其特征在于,在所述利用太阳能电池阵列将太阳辐射的光能转变成直流电,并经过防反充二极管将所述直流电存储在蓄电池组之后,或者,利用风能发电装置阵列将风能转变成直流电,并经稳压装置行稳压处理,将处理后的直流电存储在所述蓄电池组之后,还包括如下步骤:利用检测单元检测当前所述太阳能光伏电池阵列或所述风能发电装置阵列的工作状态和所述蓄电池组存储的电量;

若当前所述太阳能光伏电池阵列或所述风能发电装置阵列处于正常工作状态并且所述蓄电池组存储的电量达到预先设定的阈值时,生成第一控制指令;

通过第一发送单元将所述第一控制指令发送至DC/AC转换器;

所述DC/AC转换器根据所述第一控制指令将所述蓄电池组存储的直流电转变成电交流电,并将所述交流电并入所述市电电网。

9.根据权利要求6所述的利用自然能向电动汽车供能的方法,其特征在于,在所述利用太阳能电池阵列将太阳辐射的光能转变成直流电,并经过防反充二极管将所述直流电存储在蓄电池组之后,还包括如下步骤:利用检测单元检测当前所述太阳能光伏电池阵列或所述风能发电装置阵列的工作状态和所述蓄电池组存储的电量;

若当前所述太阳能光伏电池阵列或所述风能发电装置阵列处于非正常工作状态并且所述蓄电池组存储的电量低于所述阈值时,生成第二控制指令;

通过第二发送单元将所述第二控制指令发送至AC/DC转换器;

所述AC/DC转换器根据所述第二控制指令将所述市电电网提供的交流电转变成直流电,并将所述直流电充入所述蓄电池组。

说明书 :

利用自然能向电动汽车供能的系统和方法

技术领域

[0001] 本发明涉及自然能发电应用技术领域,尤其涉及一种利用自然能向电动汽车供能的系统和方法。

背景技术

[0002] 众所周知,全球能源短缺日益严重。据全球能源报告显示,目前全球石油储量可供使用40年;天然气储量可供使用67年;煤炭则可供使用167年。因此,开发利用新能源是大势所趋。其中,自然能因其具有清洁、无污染和可再生等优点而成为重点研究的方向之一。
[0003] 以太阳能为例,据估计我国太阳能全年辐射总量在917-2333kWH/m2,截止到2006年我国公路总里程为185.63万千米,如果用1/10的公路安装太阳能光伏发电系统,假设在公路两侧栅栏安装2.5米高的太阳能电池阵列,则可安装92815万平方米,每平方米太阳能2
阵列的有效输出功率100W,全年辐射总量取平均值为1500kWH/m,系统效率按80%计算,则每年发电量达1万亿kWH。而目前全国汽车保有量为6000万辆,如果全部实现电动化,每年用电量约为900亿千瓦,则1万亿kWH电量可供其使用11年,可替代柴油187800万吨、汽油163800万吨,可减少二氧化碳、一氧化碳、碳氢化合物排放分别为1124100万吨、7560万吨、1080万吨。
[0004] 目前还没有稳定可靠的利用自然能向电动汽车供能的技术方案,以降低对石油、煤炭等不可再生能源的依赖,缓解能源危机,保护大气环境。

发明内容

[0005] 本发明提供一种利用自然能向电动汽车供能的系统和方法,以实现稳定可靠的利用自然能向电动汽车供能,降低对石油、煤炭等不可再生能源的依赖,缓解能源危机,保护大气环境。
[0006] 为达到上述目的,本发明实施例一方面提供了一种利用自然能向电动汽车供能的系统,包括:
[0007] 太阳能光伏发电子系统,用于将太阳辐射的光能转变成直流电,并将所述直流电存储在蓄电池组,
[0008] 或者,风能发电子系统,用于将风能转变成直流电,并将所述直流电存储在所述蓄电池组;
[0009] 联网控制子系统,用于检测当前所述太阳能光伏发电子系统或所述风能发电子系统的工作状态和所述蓄电池组存储的电量,并根据检测结果向交直流双向变换子系统发送第一控制指令或第二控制指令;
[0010] 交直流双向变换子系统,用于根据所述第一控制指令将所述蓄电池组存储的直流电转变成交流电,并将所述交流电并入市电电网,或根据所述第二控制指令将所述市电电网提供的交流电转变成直流电,并将所述直流电输送至所述蓄电池组,或直接对所述蓄电池进行充电;
[0011] 更换一体化子系统,用于当有待充电电动汽车停靠加能站时,根据所述待充电电动汽车的蓄电池的型号对所述蓄电池进行更换;
[0012] 蓄电池组,用于存储所述太阳能光伏发电子系统或所述风能发电子系统充入的直流电,以及所述交直流双向变换子系统充入的直流电。
[0013] 本发明实施例的利用自然能向电动汽车供能系统,所述太阳能光伏发电子系统,包括:
[0014] 太阳能光伏电池阵列,安装于公路两侧的栅栏、绿化带、农田或建筑物上,用于将太阳辐射的光能转变成直流电;
[0015] 防反充二极管,用于将所述太阳能光伏电池阵列获取的直流电充入蓄电池组,并防止所述蓄电池组反向向所述太阳能光伏电池阵列充电。
[0016] 本发明实施例的利用自然能向电动汽车供能系统,所述风能发电子系统,包括:
[0017] 风能发电装置阵列,安装于公路两侧的栅栏、绿化带、农田或建筑物上,用于将风能转变成直流电;
[0018] 稳压装置,用于对所述风能发电装置阵列发出的直流电进行稳压处理,并将处理后的直流电存储在所述蓄电池组。
[0019] 本发明实施例的利用自然能向电动汽车供能系统,所述交直流双向变换子系统,包括:
[0020] DC/AC转换器,用于当收到第一发送单元发送的第一控制指令时,根据所述第一控制指令将所述蓄电池组存储的直流电转变成交流电,并将所述交流电并入所述市电电网;
[0021] AC/DC转换器,用于当收到第二发送单元发送的第二控制指令时,根据所述第二控制指令将所述市电电网提供的交流电转变成直流电,并将所述直流电充入所述蓄电池组。
[0022] 本发明实施例的利用自然能向电动汽车供能系统,所述联网控制子系统,包括:
[0023] 检测单元,用于检测当前所述太阳能光伏电池阵列或所述风能发电装置阵列的工作状态和所述蓄电池组存储的电量,若当前所述太阳能光伏电池阵列或所述风能发电装置阵列处于正常工作状态并且所述蓄电池组存储的电量达到预先设定的阈值时,生成第一控制指令,若当前所述太阳能光伏电池阵列或所述风能发电装置阵列处于非正常工作状态并且所述蓄电池组存储的电量低于所述阈值时,生成第二控制指令;
[0024] 第一发送单元,用于向所述DC/AC转换器发送所述检测单元生成的第一控制指令,由所述DC/AC转换器根据所述第一控制指令将所述蓄电池组存储的直流电转变成电交流电,并将所述交流电并入所述市电电网;
[0025] 第二发送单元,用于向所述AC/DC转换器发送所述检测单元生成的第二控制指令,由所述AC/DC转换器根据所述第二控制指令将所述市电电网提供的交流电转变成直流电,并将所述直流电充入所述蓄电池组。
[0026] 本发明实施例的利用自然能向电动汽车供能系统,所述更换一体化子系统,包括:
[0027] 识别模块,用于对待充电电动汽车的蓄电池的芯片进行识别扫描,获取蓄电池信息,所述蓄电池信息至少包括蓄电池的型号和电量;
[0028] 信号发送模块,用于将所述识别模块获取的蓄电池信息按照既定协议封装成数据帧,传送至计算机控制模块;
[0029] 计算机控制模块,用于根据所述信号发送模块发送的数据帧生成机器人手臂控制指令;
[0030] 指令发送模块,用于将所述计算机控制模块获取的控制指令按照既定协议封装成数据帧,发送至机器人手臂;
[0031] 机器人手臂,用于将所述指令发送模发送的数据帧转换为控制指令,根据所述控制指令从存放所述蓄电池组的自动存取充电货架上取出已充满且与所述待充电电动汽车的蓄电池型号相同的蓄电池,用所述蓄电池更换所述待充电电动汽车的蓄电池,并将所述待充电电动汽车的蓄电池放在所述自动存取充电货架上进行充电;或直接对所述蓄电池进行充电;
[0032] 终端显示模块,用于显示当前所述蓄电池组的充电信息和蓄电池更换信息,供工作人员及客户查看。
[0033] 另一方面,本发明实施例还提供了一种利用自然能向电动汽车供能的方法,包括以下步骤:
[0034] 利用太阳能电池阵列将太阳辐射的光能转变成直流电,并经过防反充二极管将所述直流电存储在蓄电池组,
[0035] 或者,利用风能发电装置阵列将风能转变成直流电,并经稳压装置行稳压处理,将处理后的直流电存储在所述蓄电池组;
[0036] 当有待充电电动汽车停靠加能站时,识别模块对待充电电动汽车的蓄电池的芯片进行识别扫描,获取蓄电池信息,所述蓄电池信息至少包括蓄电池的型号和电量;
[0037] 信号发送模块将所述识别模块获取的蓄电池信息按照既定协议封装成数据帧,传送至计算机控制模块;
[0038] 计算机控制模块根据所述信号发送模块发送的数据帧生成机器人手臂控制指令;
[0039] 指令发送模块将所述计算机控制模块获取的控制指令按照既定协议封装成数据帧,发送至机器人手臂;
[0040] 机器人手臂将所述指令发送模发送的数据帧转换为控制指令,根据所述控制指令从存放所述蓄电池组的自动存取充电货架上取出已充满且与所述待充电电动汽车的蓄电池型号相同的蓄电池,用所述蓄电池更换所述待充电电动汽车的蓄电池,并将所述待充电电动汽车的蓄电池放在所述自动存取充电货架上进行充电,或直接对所述蓄电池进行充电。
[0041] 本发明实施例的利用自然能向电动汽车供能的方法,在所述将待充电电动汽车的蓄电池放在所述自动存取充电货架上进行充电之后,还包括如下步骤:
[0042] 终端显示模块显示当前所述蓄电池组的充电信息和蓄电池更换信息,供工作人员及客户查看。
[0043] 本发明实施例的利用自然能向电动汽车供能的方法,在所述利用太阳能电池阵列将太阳辐射的光能转变成直流电,并经过防反充二极管将所述直流电存储在蓄电池组之后,
[0044] 或者,利用风能发电装置阵列将风能转变成直流电,并经稳压装置行稳压处理,将处理后的直流电存储在所述蓄电池组之后,还包括如下步骤:
[0045] 利用检测单元检测当前所述太阳能光伏电池阵列或所述风能发电装置阵列的工作状态和所述蓄电池组存储的电量;
[0046] 若当前所述太阳能光伏电池阵列或所述风能发电装置阵列处于正常工作状态并且所述蓄电池组存储的电量达到预先设定的阈值时,生成第一控制指令;
[0047] 通过第一发送单元将所述第一控制指令发送至DC/AC转换器;
[0048] 所述DC/AC转换器根据所述第一控制指令将所述蓄电池组存储的直流电转变成电交流电,并将所述交流电并入所述市电电网。
[0049] 本发明实施例的利用自然能向电动汽车供能的方法,在所述利用太阳能电池阵列将太阳辐射的光能转变成直流电,并经过防反充二极管将所述直流电存储在蓄电池组之后,还包括如下步骤:
[0050] 利用检测单元检测当前所述太阳能光伏电池阵列或所述风能发电装置阵列的工作状态和所述蓄电池组存储的电量;
[0051] 若当前所述太阳能光伏电池阵列或所述风能发电装置阵列处于非正常工作状态并且所述蓄电池组存储的电量低于所述阈值时,生成第二控制指令;
[0052] 通过第二发送单元将所述第二控制指令发送至AC/DC转换器;
[0053] 所述AC/DC转换器根据所述第二控制指令将所述市电电网提供的交流电转变成直流电,并将所述直流电充入所述蓄电池组。
[0054] 因此,本发明实施例通过太阳能光伏发电阵列将太阳能转换为电能存储或通过风能发电装置阵列将风能转换为电能存储,供加能站为电动汽车蓄电池充电使用,同时本系统还与市电电网相连,当白天天气晴好,太阳能光伏发电阵列的发电电量充足时,或风力较大,风能发电装置阵列的发电电量充足时,可将多余电量并入市电电网供其他负载使用,当夜晚或白天为阴雨天气时,或风力较小时,可将市电电网的交流电转换为直流电存储,供加能站为电动汽车蓄电池充电使用,二者互为补充,因此实现了稳定可靠的利用自然能向电动汽车供能,降低了对石油、煤炭等不可再生能源的依赖,缓解了能源危机,保护了大气环境。

附图说明

[0055] 图1为本发明实施例的利用太阳能向电动汽车供能的系统结构示意图;
[0056] 图2为本发明实施例的利用风能向电动汽车供能的系统结构示意图;
[0057] 图3为本发明实施例的利用太阳能向电动汽车供能的方法流程图;
[0058] 图4为本发明实施例的利用风能向电动汽车供能的方法流程图。

具体实施方式

[0059] 下面结合附图对本发明的具体实施方式进行详细描述:
[0060] 如图1所示,为本发明实施例的利用太阳能向电动汽车供能的系统结构示意图。本发明实施例的利用太阳能向电动汽车供能的系统包括:太阳能光伏发电子系统1,通过馈电线与太阳能光伏发电子系统1连接的联网控制子系统2,通过馈电线与联网控制子系统2连接的交直流双向变换子系统3,通过馈电线与太阳能光伏发电子系统1连接的更换一体化子系统4,蓄电池组5通过馈电线分别与太阳能光伏发电子系统1、联网控制子系统2和交直流双向变换子系统3连接,并且本发明实施例的利用自然能向电动汽车供能的系统还通过交直流双向变换子系统3与市电网络连接。
[0061] 其中,太阳能光伏发电子系统1,用于将太阳辐射的光能转变成直流电,并直流电存储在蓄电池组5。联网控制子系统2,用于检测当前太阳能光伏发电子系统1的工作状态和蓄电池组5存储的电量,并根据检测结果向交直流双向变换子系统3发送第一控制指令或第二控制指令。交直流双向变换子系统3,用于根据第一控制指令将太阳能光伏发电子系统1存储的直流电转变成交流电,并将交流电并入市电电网,或根据第二控制指令将市电电网提供的交流电转变成直流电,并将直流电输送至蓄电池组5。更换一体化子系统4,用于当有待充电电动汽车停靠加能站时,根据待充电电动汽车的蓄电池的型号对该蓄电池进行更换,或直接对所述蓄电池进行充电。
[0062] 其中,太阳能光伏发电子系统1,进一步包括太阳能光伏电池阵列11,安装于公路两侧的栅栏、绿化带、农田或建筑物上,用于将太阳辐射的光能转变成直流电。防反充二极管12,与太阳能光伏电池阵列11通过馈电线连接,用于将太阳能光伏电池阵列11获取的直流电充入蓄电池组5,并防止蓄电池组5反向向太阳能光伏电池阵列11充电。
[0063] 其中,联网控制子系统2,进一步包括检测单元21,分别与防反充二极管12和蓄电池组5通过馈电线连接,用于检测当前太阳能光伏电池阵列11的工作状态和蓄电池组5存储的电量;若当前太阳能光伏电池阵列11处于正常工作状态并且蓄电池组5存储的电量达到预先设定的阈值时,生成第一控制指令;若当前太阳能光伏电池阵列11处于非正常工作状态并且蓄电池组5存储的电量低于该阈值时,生成第二控制指令。第一发送单元22,分别与检测单元21和DC/AC转换器31通过馈电线连接,用于向DC/AC转换器31发送检测单元21生成的第一控制指令,由DC/AC转换器31根据第一控制指令将蓄电池组5存储的直流电转变成交流电,并将交流电并入市电电网。第二发送单元23,分别与检测单元21和AC/DC转换器32通过馈电线连接,用于向AC/DC转换器32发送检测单元21生成的第二控制指令,由AC/DC转换器32根据第二控制指令将市电电网提供的交流电转变成直流电,并将直流电充入蓄电池组5。
[0064] 其中,交直流双向变换子系统3,包括DC/AC转换器31,分别与蓄电池组5、第一发送单元22和市电网络通过馈电线连接,用于当收到第一发送单元22发送的第一控制指令时,根据第一控制指令将蓄电池组5存储的直流电转变成交流电,并将交流电并入所述市电电网。AC/DC转换器32,分别与蓄电池组5、第二发送单元23和市电网络通过馈电线连接,用于当收到第二发送单元23发送的第二控制指令时,根据第二控制指令将市电电网提供的交流电转变成直流电,并将直流电充入蓄电池组5。
[0065] 其中,更换一体化子系统4,包括识别模块41,用于对待充电电动汽车的蓄电池的芯片进行识别扫描,获取蓄电池信息。其中,蓄电池信息至少包括蓄电池的型号和电量。信号发送模块42,用于将识别模块41获取的蓄电池信息按照既定协议封装成数据帧,传送至计算机控制模块43。计算机控制模块43,用于根据信号发送模块42发送的数据帧生成机器人手臂控制指令。指令发送模块44,用于将计算机控制模块43获取的控制指令按照既定协议封装成数据帧,发送至机器人手臂45。机器人手臂45,用于将指令发送模44发送的数据帧转换为控制指令,根据控制指令从存放蓄电池组5的自动存取充电货架上取出已充满且与待充电电动汽车的蓄电池型号相同的蓄电池,用该蓄电池更换待充电电动汽车的蓄电池,并将待充电电动汽车的蓄电池放在自动存取充电货架上进行充电,或直接对所述蓄电池进行充电。终端显示模块46,用于显示当前蓄电池组5的充电信息和蓄电池更换信息,供工作人员及客户查看。
[0066] 如图2所示,为本发明实施例的利用风能向电动汽车供能的系统结构示意图,本实施例是在上述利用太阳能向电动汽车供能的系统中将太阳能光伏发电子系统1替换为风能发电子系统1’,将太阳能光伏电池阵列11替换为风能发电装置阵列11’,将防反充二极管12替换为稳压装置12’,其中,风能发电装置阵列11’,用于将风能转变成直流电;稳压装置12’,用于对风能发电装置阵列11’发出的直流电进行稳压处理,并将处理后的直流电存储在蓄电池组5。就可构成一种利用风能向电动汽车供能的系统,可以实现同样的发明目的,在此不再赘述。
[0067] 本领域技术人员可以理解上述实施例中的装置中的单元可以按照实施例描述分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的单元可以合并为一个单元,也可以进一步拆分成多个子单元。
[0068] 如图3所示,为本发明实施例的利用太阳能向电动汽车供能的方法流程图,具体包括以下步骤:
[0069] 步骤S301,利用安装于公路两侧的栅栏、绿化带、农田或建筑物上的太阳能电池阵列11将太阳辐射的光能转变成直流电,并经过防反充二极管12将直流电存储在蓄电池组5。
[0070] 步骤S302,利用检测单元21检测当前太阳能光伏电池阵列11的工作状态和蓄电池组5存储的电量。其中,检测单元21通过检测正向流过防反充二极管12的电流的大小来确定当前太阳能光伏电池阵列11的工作状态。并根据检测结果执行步骤S303~S305,然后执行步骤S306,或者执行步骤S303’~S305’,然后执行步骤S306。
[0071] 步骤S303,当前太阳能光伏电池阵列11处于正常工作状态并且蓄电池组5存储的电量达到阈值时,生成第一控制指令。
[0072] 步骤S304,通过第一发送单元22将第一控制指令发送至DC/AC转换器31。
[0073] 步骤S305,DC/AC转换器31根据第一控制指令将蓄电池组5存储的直流电转变成交流电,并将交流电并入市电电网。
[0074] 步骤S303’,当前太阳能光伏电池阵列11处于非正常工作状态并且蓄电池组5存储的电量低于阈值时,生成第二控制指令。
[0075] 步骤S304’,通过第二发送单元23将第二控制指令发送至AC/DC转换器32。
[0076] 步骤S305’,AC/DC转换器32根据第二控制指令将市电电网提供的交流电转变成直流电,并将直流电充入蓄电池组5。
[0077] 步骤S306,当有待充电电动汽车停靠加能站时,识别模块41对待充电电动汽车的蓄电池的芯片进行识别扫描,获取蓄电池信息。其中,蓄电池信息至少包括蓄电池的型号和电量。
[0078] 步骤S307,信号发送模块42将识别模块41获取的蓄电池信息按照既定协议封装成数据帧,传送至计算机控制模块43。
[0079] 步骤S308,计算机控制模块43根据信号发送模块42发送的数据帧生成机器人手臂控制指令。
[0080] 步骤S309,指令发送模块44将计算机控制模块43获取的控制指令按照既定协议封装成数据帧,发送至机器人手臂45。
[0081] 步骤S310,机器人手臂45将指令发送模44发送的数据帧转换为控制指令,根据控制指令从存放蓄电池组5的自动存取充电货架上取出已充满且与待充电电动汽车的蓄电池型号相同的蓄电池,用该蓄电池更换待充电电动汽车的蓄电池,并将待充电电动汽车的蓄电池放在自动存取充电货架上进行充电,或直接对蓄电池进行充电。
[0082] 步骤S311,终端显示模块46显示当前蓄电池组5的充电信息和蓄电池更换信息,供工作人员及客户查看。
[0083] 如图4所示,为本发明实施例的利用风能向电动汽车供能的方法流程图,具体包括以下步骤:
[0084] 步骤S401,利用安装于公路两侧的栅栏、绿化带、农田或建筑物上的风能发电装置阵列11’将风光能转变成直流电,并经过稳压装置12’将直流电存储在蓄电池组5。
[0085] 步骤S402,利用检测单元21检测当前风能发电装置阵列11’1的工作状态和蓄电池组5存储的电量。其中,检测单元21通过检测稳压装置输出的电流大小来确定当前风能发电装置阵列11’的工作状态。并根据检测结果执行步骤S403~S405,然后执行步骤S406,或者执行步骤S403’~S405’,然后执行步骤S406。
[0086] 步骤S403,当前风能发电装置阵列11’处于正常工作状态并且蓄电池组5存储的电量达到阈值时,生成第一控制指令。
[0087] 步骤S404,通过第一发送单元22将第一控制指令发送至DC/AC转换器31。
[0088] 步骤S405,DC/AC转换器31根据第一控制指令将蓄电池组5存储的直流电转变成交流电,并将交流电并入市电电网。
[0089] 步骤S403’,当前风能发电装置阵列11’处于非正常工作状态并且蓄电池组5存储的电量低于阈值时,生成第二控制指令。
[0090] 步骤S404’,通过第二发送单元23将第二控制指令发送至AC/DC转换器32。
[0091] 步骤S405’,AC/DC转换器32根据第二控制指令将市电电网提供的交流电转变成直流电,并将直流电充入蓄电池组5。
[0092] 步骤S406,当有待充电电动汽车停靠加能站时,识别模块41对待充电电动汽车的蓄电池的芯片进行识别扫描,获取蓄电池信息。其中,蓄电池信息至少包括蓄电池的型号和电量。
[0093] 步骤S407,信号发送模块42将识别模块41获取的蓄电池信息按照既定协议封装成数据帧,传送至计算机控制模块43。
[0094] 步骤S408,计算机控制模块43根据信号发送模块42发送的数据帧生成机器人手臂控制指令。
[0095] 步骤S409,指令发送模块44将计算机控制模块43获取的控制指令按照既定协议封装成数据帧,发送至机器人手臂45。
[0096] 步骤S410,机器人手臂45将指令发送模44发送的数据帧转换为控制指令,根据控制指令从存放蓄电池组5的自动存取充电货架上取出已充满且与待充电电动汽车的蓄电池型号相同的蓄电池,用该蓄电池更换待充电电动汽车的蓄电池,并将待充电电动汽车的蓄电池放在自动存取充电货架上进行充电,或直接对蓄电池进行充电。
[0097] 步骤S411,终端显示模块46显示当前蓄电池组5的充电信息和蓄电池更换信息,供工作人员及客户查看。
[0098] 本发明实施例通过太阳能光伏发电阵列将太阳能转换为电能存储或通过风能发电装置阵列将风能转换为电能存储,供加能站为电动汽车蓄电池充电使用,同时本系统还与市电电网相连,当白天天气晴好,太阳能光伏发电阵列的发电电量充足时,或风力较大,风能发电装置阵列的发电电量充足时,可将多余电量并入市电电网供其他负载使用,当夜晚或白天为阴雨天气时,或风力较小时,可将市电电网的交流电转换为直流电存储,供加能站为电动汽车蓄电池充电使用,二者互为补充,因此实现了稳定可靠的利用自然能向电动汽车供能,降低了对石油、煤炭等不可再生能源的依赖,缓解了能源危机,保护了大气环境。
[0099] 本领域技术人员可以理解附图只是一个优选实施例的示意图,附图中的单元或流程并不一定是实施本发明所必需的。
[0100] 权利要求的内容记载的方案也是本发明实施例的保护范围。
[0101] 以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。