电源系统和车辆转让专利

申请号 : CN200780014680.0

文献号 : CN101427438B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 市川真士

申请人 : 丰田自动车株式会社

摘要 :

最大值选择部(50),接收电池电压值(Vb1、Vb2),将其中的最大值输出至下限值限制部(54)。此外,最大值选择部(52),接收电压要求值(Vm1*、Vm2*),将其中的最大值输出至下限值限制部(54)。下限值限制部(54),进行限制使得电压目标值(Vh*)不低于最大值选择部(50)的输出值,输出电压目标值(Vh*)。开关指令(PWC1、PWC2),分别基于电压反馈控制要素和电压前馈要素的组合以及电流反馈控制要素和电压前馈要素的组合所进行的控制运算而生成。

权利要求 :

1.一种电源系统,具有各自能够充放电的多个蓄电部,该电源系统的特征在于,具备:能够在负载装置和所述电源系统之间授受电力的电力线,多个电压变换部,其分别设置于所述多个蓄电部和所述电力线之间,各自在对应的所述蓄电部和所述电力线之间进行电压变换动作,获取所述多个蓄电部各自的蓄电电压值的蓄电电压值获取装置,和电压目标值决定装置,其与所述负载装置的动作状况相应地决定向所述负载装置供给的供给电力的电压目标值;

所述多个电压变换部,各自按照由所述电压目标值决定装置决定的所述电压目标值而执行所述电压变换动作,由此将对应的所述蓄电部的放电电力升压至所述电压目标值;

所述电压目标值决定装置,限制所述电压目标值使其不低于由所述蓄电电压值获取装置获取的所述蓄电电压值中的最大的蓄电电压值。

2.如权利要求1所述的电源系统,其特征在于,

所述电源系统,还具备获取所述负载装置的至少一个电压要求值的电压要求值获取装置;

所述电压目标值决定装置,决定所述电压目标值,还使其为由所述电压要求值获取装置获取的所述至少一个所述电压要求值中的最大的电压要求值以上。

3.如权利要求1所述的电源系统,其特征在于,

所述电源系统,还具备检测所述电力线的电压值的电压值检测装置;

所述多个电压变换部中的至少一个,与包含电压反馈控制要素的运算的结果相应地,执行所述电压变换动作,该电压反馈控制要素用于使由所述电压值检测装置检测出的所述电力线的电压值与所述电压目标值一致。

4.如权利要求1所述的电源系统,其特征在于,

所述多个电压变换部中的至少一个,与包含电压前馈控制要素的运算的结果相应地,执行所述电压变换动作,该电压前馈控制要素反映与对应的所述蓄电部的蓄电电压值和所述电压目标值之比相应的值。

5.如权利要求4所述的电源系统,其特征在于,

所述电源系统,还具备检测输入输出于所述多个蓄电部中的至少一个的电池电流值的电池电流值检测装置;

与包含所述电压前馈控制要素的运算的结果相应地执行所述电压变换动作的至少一个所述电压变换部,与包含电流反馈控制要素的运算的结果相应地执行所述电压变换动作,该电流反馈控制要素用于使由所述电池电流值检测装置检测出的对应的所述蓄电部的电池电流值与各电流目标值一致。

6.如权利要求1所述的电源系统,其特征在于,

所述多个电压变换部,各自含有斩波电路。

7.一种电源系统,具有各自能够充放电的多个蓄电部,该电源系统的特征在于,具备:能够在负载装置和所述电源系统之间授受电力的电力线,多个电压变换部,其分别设置于所述多个蓄电部和所述电力线之间,各自在对应的所述蓄电部和所述电力线之间进行电压变换动作,检测所述多个蓄电部各自的蓄电电压值的蓄电电压值检测部,和控制部;

所述控制部,与所述负载装置的动作状况相应地决定向所述负载装置供给的供给电力的电压目标值;

所述多个电压变换部,各自按照由所述控制部决定的所述电压目标值执行所述电压变换动作,由此将对应的所述蓄电部的放电电力升压至所述电压目标值;

所述控制部,限制所述电压目标值使其不低于由所述蓄电电压值检测部检测出的所述蓄电电压值中的最大的蓄电电压值。

8.一种车辆,具备:具有各自能够充放电的多个蓄电部的电源系统,和接受从所述电源系统供给的电力而产生驱动力的驱动力产生部;其特征在于,所述电源系统,包括:

能够在所述驱动力产生部和所述电源系统之间授受电力的电力线,多个电压变换部,其分别设置于所述多个蓄电部和所述电力线之间,各自在对应的所述蓄电部和所述电力线之间进行电压变换动作,获取所述多个蓄电部各自的蓄电电压值的蓄电电压值获取装置,和电压目标值决定装置,其与所述驱动力产生部的动作状况相应地决定向所述驱动力产生部供给的供给电力的电压目标值;

所述多个电压变换部,各自按照由所述电压目标值决定装置决定的所述电压目标值执行所述电压变换动作,由此将对应的所述蓄电部的放电电力升压至所述电压目标值;

所述电压目标值决定装置,限制所述电压目标值使其不低于由所述蓄电电压值获取装置获取的所述蓄电电压值中的最大的蓄电电压值。

9.如权利要求8所述的车辆,其特征在于,

所述驱动力产生部,包括:

能够变换从所述电源系统供给的电力的至少一个电力变换部,和与对应的所述电力变换部连接、能够产生所述驱动力的至少一个旋转电机。

10.如权利要求8所述的车辆,其特征在于,

所述电源系统,还具备获取所述驱动力产生部的至少一个电压要求值的电压要求值获取装置;

所述电压目标值决定装置,决定所述电压目标值,还使其为由所述电压要求值获取装置所获取的所述至少一个所述电压要求值中的最大的电压要求值以上。

11.如权利要求8所述的车辆,其特征在于,

所述电源系统还具备检测所述电力线的电压值的电压值检测装置;

所述多个电压变换部中的至少一个,与包含电压反馈控制要素的运算的结果相应地,执行所述电压变换动作,该电压反馈控制要素用于使由所述电压值检测装置检测出的所述电力线的电压值与所述电压目标值一致。

12.如权利要求8所述的车辆,其特征在于,

所述多个电压变换部中的至少一个,与包含电压前馈控制要素的运算的结果相应地,执行所述电压变换动作,该电压前馈控制要素反映与对应的所述蓄电部的蓄电电压值和所述电压目标值之比相应的值。

13.如权利要求12所述的车辆,其特征在于,

所述电源系统,还具备检测输入输出于所述多个蓄电部中的至少一个的电池电流值的电池电流值检测装置;

与包含所述电压前馈控制要素的运算的结果相应地执行所述电压变换动作的至少一个所述电压变换部,与包含电流反馈控制要素的运算的结果相应地执行所述电压变换动作,该电流反馈控制要素用于使由所述电池电流值检测装置检测出的对应的所述蓄电部的电池电流值与各电流目标值一致。

14.如权利要求8所述的车辆,其特征在于,

所述多个电压变换部,各自含有斩波电路。

15.一种车辆,具备:具有各自能够充放电的多个蓄电部的电源系统,和接受从所述电源系统供给的电力而产生驱动力的驱动力产生部;其特征在于,所述电源系统,包括:

能够在所述驱动力产生部和所述电源系统之间授受电力的电力线,多个电压变换部,其分别设置于所述多个蓄电部和所述电力线之间,各自在对应的所述蓄电部和所述电力线之间进行电压变换动作,检测所述多个蓄电部各自的蓄电电压值的蓄电电压值检测部,和控制部;

所述控制部,与所述驱动力产生部的动作状况相应地决定向所述驱动力产生部供给的供给电力的电压目标值;

所述多个电压变换部,各自按照由所述控制部所决定的所述电压目标值执行所述电压变换动作,由此将对应的所述蓄电部的放电电力升压至所述电压目标值;

所述控制部,限制所述电压目标值使其不低于由所述蓄电电压值检测部检测的所述蓄电电压值中的最大的蓄电电压值。

说明书 :

电源系统和车辆

技术领域

[0001] 本发明涉及具备多个蓄电部的电源系统和搭载有该电源系统的车辆,特别涉及抑制蓄电部间的不必要的电力移动的技术。

背景技术

[0002] 近年来,考虑到环境问题,像电动机动车、混合动力机动车、燃料电池车等那样,以电动机为驱动力源的车辆受到关注。在这样的车辆中,为了向电动机供给电力或在再生制动时将动能转化为电能而蓄电,搭载有由二次电池等构成的蓄电部。
[0003] 在这样的以电动机为驱动力源的车辆中,为了提高加速性能和行驶持续距离等行驶性能,希望使蓄电部的充放电容量更大。作为用于使蓄电部的充放电容量变大的方法,提出了搭载多个蓄电部的构成。
[0004] 例如,美国专利第6608396号说明书中公开了向高电压车辆牵引系统提供所希望的直流高电压水平的电动马达电源管理系统。该电动马达电源管理系统,具备:多个电源级(power stage),其分别具有电池和升压/降压(boost-buck)直流·直流转换器且并联地连接、向至少一个逆变器提供直流电力;和控制器,其控制多个电源极,以使多个电源级的电池均等地充放电,使多个电源级维持向至少一个逆变器输出的输出电压。
[0005] 公开了在该电动马达电源管理系统中能动地维持各电池与系统内的其他电池有相同SOC(State Of Charge,充电状态)。然而,即使是具有互相相同的SOC的电池彼此,各自的蓄电电压值(开放端电压值)也不一定一致。因为各电池的电压值,在SOC之外,还由于电池温度和劣化程度等大幅变化。
[0006] 另一方面,在系统起动时等,在美国专利第6608396号说明书的图1中,降压开关(buck switch)38都打开,所以各个电池彼此介由各自的升压/降压直流·直流转换器13(电压转换部)并联地连接于相同的高电压直流总线48(电力线)。因此,存在着这样的问题:在各电池的电压值互相不同的情况下,会在电池间流过与其电压差相应的电流,在电池间产生不必要的电力移动,损失增大。

发明内容

[0007] 本发明,是为了解决这样的问题而做出的,其目的是提供抑制蓄电部间的不必要的电力移动而避免损失产生的电源系统和车辆。
[0008] 本发明的一方面的电源系统,具有各自能够充放电的多个蓄电部,具备:能够在负载装置和电源系统之间授受电力的电力线;多个电压变换(转换)部,其分别设置于多个蓄电部和电力线之间,各自在对应的蓄电部和电力线之间进行电压变换动作;获取多个蓄电部各自的蓄电电压值的蓄电电压值获取装置;和电压目标值决定装置,其与所述负载装置的动作状况相应地决定向负载装置供给的供给电力的电压目标值。多个电压变换部,各自按照由电压目标值决定装置决定的电压目标值而执行电压变换动作,电压目标值决定装置,限制电压目标值使其不低于由蓄电电压值获取装置获取的蓄电电压值中的最大的蓄电电压值。
[0009] 根据本方面的电源系统,电压目标值被限制为不低于多个蓄电部各自的蓄电电压值中的最大的蓄电电压值,多个电压变换部,各自按照该电压目标值执行电压变换动作。该电压目标值,为在电压变换部的控制开始前能够通过蓄电部充电得到的电力线的电压值以上,所以各电压变换部在控制刚开始后立即开始电压变换动作。由此,各电压变换部动作使得从对应的蓄电部向电力线侧供给电力,所以能够避免介由电力线从其他蓄电部流入电力。因而,即使在蓄电部间产生电压差的情况下,也能够抑制蓄电部间的不必要的电力移动。
[0010] 优选,电源系统还具备获取负载装置的至少一个电压要求值的电压要求值获取装置;电压目标值决定装置,决定电压目标值,还使其为由电压要求值获取装置所获取的至少一个电压要求值中的最大的电压要求值以上。
[0011] 优选,电源系统还具备检测电力线的电压值的电压值检测装置,多个电压变换部中的至少一个,与包含电压反馈控制要素的运算的结果相应地,执行电压变换动作,该电压反馈控制要素用于使由电压值检测装置检测出的电力线的电压值与电压目标值一致。
[0012] 优选,多个电压变换部中的至少一个,与包含电压前馈控制要素的运算的结果相应地,执行电压变换动作,该电压前馈控制要素反映与对应的蓄电部的蓄电电压值和电压目标值之比相应的值。
[0013] 优选,电源系统,还具备检测输入输出于多个蓄电部中的至少一个的电池电流值的电池电流值检测装置;与包含电压前馈控制要素的运算的结果相应地执行电压变换动作的至少一个电压变换部,与包含电流反馈控制要素的运算的结果相应地执行电压变换动作,该电流反馈控制要素用于使由电池电流值检测装置检测出的对应的蓄电部的电池电流值与各电流目标值一致。
[0014] 优选,多个电压变换部各自被构成为含有斩波(chopper)电路。
[0015] 本发明的另一方面的电源系统,具有各自被构成为能够充放电的多个蓄电部,具备:能够在负载装置和电源系统之间授受电力的电力线,分别设置于多个蓄电部和电力线之间、各自在对应的蓄电部和电力线之间进行电压变换动作的多个电压变换部,检测多个蓄电部的各自的蓄电电压值的蓄电电压值检测部,和控制部。控制部,与负载装置的动作状况相应地决定向负载装置供给的供给电力的电压目标值,多个电压变换部,各自按照由电压目标值决定装置决定的电压目标值执行电压变换动作,控制部,限制电压目标值使其不低于由蓄电电压值检测部检测出的蓄电电压值中的最大的蓄电电压值。
[0016] 本发明的再一方面所涉及的车辆,具备:具有各自被构成为能够充放电的多个蓄电部的电源系统、和接受从电源系统供给的电力而产生驱动力的驱动力产生部。而且,电源系统,包括:被构成为能够在驱动力产生部和电源系统之间授受电力的电力线,分别设置于多个蓄电部和电力线之间、各自在对应的蓄电部和电力线之间进行电压变换动作的多个电压变换部,获取多个蓄电部各自的蓄电电压值的蓄电电压值获取装置,和与驱动力产生部的动作状况相应地决定向驱动力产生部供给的供给电力的电压目标值的电压目标值决定装置。此外,多个电压变换部,各自按照由电压目标值决定装置决定的电压目标值执行电压变换动作,电压目标值决定装置,限制电压目标值使其不低于由蓄电电压值获取装置获取的蓄电电压值中的最大的蓄电电压值。
[0017] 根据本方面的车辆,电压目标值被限制为不低于多个蓄电部各自的蓄电电压值中的最大的蓄电电压值,多个电压变换部,各自按照该电压目标值执行电压变换动作。该电压目标值,为在电压变换部的控制开始前能够通过蓄电部充电得到的电力线的电压值以上,所以各电压变换部在控制刚开始后立即开始电压变换动作。由此,各电压变换部动作使得从对应的蓄电部向电力线侧供给电力,所以能够避免介由电力线从其他的蓄电部流入电力。因而,即使在蓄电部间产生电压差的情况下,也能够抑制蓄电部间的不必要的电力移动。
[0018] 优选,驱动力产生部,包括:被构成为能够变换从电源系统供给的电力的至少一个的电力变换部,和与对应的电力变换部连接、能够产生驱动力的至少一个旋转电机。
[0019] 优选,电源系统还具备获取驱动力产生部的至少一个电压要求值的电压要求值获取装置;电压目标值决定装置,决定电压目标值还使其为由电压要求值获取装置获取的至少一个电压要求值中的最大的电压要求值以上。
[0020] 优选,电源系统还具备检测电力线的电压值的电压值检测装置,多个电压变换部中的至少一个,与包含电压反馈控制要素的运算的结果相应地,执行电压变换动作,该电压反馈控制要素用于使由电压值检测装置检测出的电力线的电压值与电压目标值一致。
[0021] 优选,多个电压变换部中的至少一个,与包含电压前馈控制要素的运算的结果相应地,执行电压变换动作,该电压前馈控制要素反映与对应的蓄电部的蓄电电压值和电压目标值之比相应的值。
[0022] 优选,电源系统,还具备检测输入输出于多个蓄电部中的至少一个的电池电流值的电池电流值检测装置;与包含电压前馈控制要素的运算的结果相应地执行电压变换动作的至少一个电压变换部,与包含电流反馈控制要素的运算的结果相应地执行电压变换动作,该电流反馈控制要素用于使由电池电流值检测装置检测出的对应的蓄电部的电池电流值与各电流目标值一致。
[0023] 优选,多个电压变换部,各自被构成为含有斩波电路。
[0024] 本发明的再一个方面所涉及的车辆,具备:具有各自被构成为能够充放电的多个蓄电部的电源系统、和接受从电源系统供给的电力而产生驱动力的驱动力产生部。电源系统,包括:被构成为能够在驱动力产生部和电源系统之间授受电力的电力线,分别设置于多个蓄电部和电力线之间、各自在对应的蓄电部和电力线之间进行电压变换动作的多个电压变换部,检测多个蓄电部的各自的蓄电电压值的蓄电电压值检测部,和控制部。控制部,与驱动力产生部的动作状况相应地决定向驱动力产生部供给的供给电力的电压目标值,多个电压变换部,各自按照由电压目标值决定装置决定的电压目标值执行电压变换动作,控制部,限制电压目标值使其不低于由蓄电电压值获取装置获取的蓄电电压值中的最大的蓄电电压值。
[0025] 根据本发明,能够实现抑制蓄电部间的不必要的电力移动而避免损失产生的电源系统和车辆。

附图说明

[0026] 图1是表示具备本发明的实施方式1的电源系统的车辆的主要部分的概略构成图。
[0027] 图2是表示本发明的实施方式1的转换器的概略构成图。
[0028] 图3是用于说明转换器的电压转换动作相关的系统继电器和晶体管的状态的图。
[0029] 图4A、图4B是用于说明升压动作控制的开始时产生的蓄电部间的电力移动的图。
[0030] 图5是表示本发明的实施方式1的用于控制转换器的控制部件的图。
[0031] 图6是表示本发明的实施方式1的变形例的用于控制转换器的控制部件的图。
[0032] 图7是表示具备本发明的实施方式2的电源系统的车辆的主要部分的概略构成图。
[0033] 图8是表示本发明的实施方式2的用于控制转换器的控制部件的图。
[0034] 图9是表示本发明的实施方式2的变形例的用于控制转换器的控制部件的图。

具体实施方式

[0035] 参照附图对本发明的实施方式进行详细说明。另外,对图中的相同或相当部分,附加相同符号,不重复其说明。
[0036] (实施方式1)
[0037] 参照图1,对具备本发明的实施方式1的电源系统1的车辆100进行说明。在本实施方式1中,对作为负载装置的一例使用产生车辆100的驱动力的驱动力产生部3的情况进行例示。而且,车辆100,通过将驱动力产生部3接受从电源系统1供给的电力所产生的驱动力传送至车轮(没有图示)而行驶。
[0038] 在本实施方式1中,对作为多个蓄电部的一例而具有两个蓄电部的电源系统1进行说明。电源系统1,被构成为能够介由主正母线MPL和主负母线MNL在与驱动力产生部3之间授受直流电力。
[0039] 驱动力产生部3,具备第1逆变器INV1、第2逆变器INV2、第1电动发电机MG1、和第2电动发电机MG2,与来自于HV-ECU(HybridVehicle Electronic Control Unit,混合动力车辆电子控制单元)4的开关指令PWM1、PWM2相应地产生驱动力。
[0040] 逆变器INV1、INV2,并联地连接于主正母线MPL和主负母线MNL,分别在与电源系统1之间进行电力的授受。即,逆变器INV1、INV2,分别将介由主正母线MPL和主负母线MNL接受的直流电力转换为交流电力,供给至电动发电机MG1、MG2。此外,逆变器INV1、INV2,也可以构成为在车辆100的再生制动时等,将电动发电机MG1、MG2接受车辆100的动能而发电所得的交流电力,在转换为直流电力后作为再生电力供给至电源系统1。作为一例,逆变器INV1、INV2,由包含三相的开关元件的桥式电路(bridge circuit)构成,分别与从HV-ECU4接收的开关指令PWM1、PWM2相应地进行开关(电路开闭)动作,由此产生三相交流电力。
[0041] 电动发电机MG1、MG2,分别被构成为能够接受从逆变器INV1、INV2供给的交流电力而产生旋转驱动力,并能够接受来自于外部的旋转驱动力而发电产生交流电力。作为一例,电动发电机MG1、MG2,是具备埋设了永磁铁的转子的三相交流旋转电机。而且,电动发电机MG1、MG2,分别与动力传送机构6连接,将产生的驱动力介由驱动轴8传送至车轮(没有图示)。
[0042] 另外,在驱动力产生部3适用于混合动力车辆的情况下,电动发电机MG1、MG2,介由动力传送机构6或驱动轴8,还与发动机(没有图示)连接。而且,通过HV-ECU4执行控制,使得发动机产生的驱动力和电动发电机MG1、MG2产生的驱动力成为最适合的比率。在这样的适用于混合动力车辆的情况下,还可以使电动发电机MG1专门作为电动机发挥作用,使电动发电机MG2专门作为发电机发挥作用。
[0043] HV-ECU4,通过执行预先存储的程序,基于从没有图示的各传感器发送的信号、行驶状况、加速踏板开度的变化率和存储的映射等,计算电动发电机MG1、MG2的转矩目标值和转速目标值。而且,HV-ECU4,生成开关指令PWM1、PWM2而发送至驱动力产生部3,使得电动发电机MG1、MG2的产生转矩和转速分别成为该计算出的转矩目标值和转速目标值。
[0044] 此外,HV-ECU4,基于该计算出的转矩目标值和转速目标值或由没有图示的各种传感器检测出的转矩实绩(实际)值和转速实绩值,取得分别在电动发电机MG1、MG2产生的* *逆起电压值Vm1、Vm2,将基于该逆起电压值Vm1、Vm2决定的电压要求值Vm1 、Vm2 输出至*
电源系统1。即,HV-ECU4,将高于逆起电压值Vm1、Vm2的电压值决定为电压要求值Vm1 、*
Vm2 ,使得能够从电源系统1向电动发电机MG1、MG2供给电力。此外,HV-ECU4,基于上述的转矩目标值和转速目标值的乘积、或转矩实绩值和转速实绩值的乘积,取得电力实绩(功率实绩,实际功率)P1、P2而输出至电源系统1。另外,HV-ECU4,例如,通过像将电力消耗定为正值而将电力产生定为负值这样使电力实绩P1、P2的符号变化,向电源系统1通知驱动力产生部3中的电力供需状态。
[0045] 此外,HV-ECU4,在由于驾驶者等的操作而接收了作为车辆100的起动指令的点火开启信号IGON时,将该点火开启信号IGON输出至控制部2。
[0046] 另一方面,电源系统1,具备:平滑电容器C、供给电流值检测部16、供给电压值检测部18、第1转换器CONV1、第2转换器CONV2、第1蓄电部BAT1、第2蓄电部BAT2、电池电流值检测部10-1、10-2、电池电压值检测部12-1、12-2、电池温度检测部14-1、14-2、系统继电器SR1、SR2、控制部2。
[0047] 平滑电容器C,连接于主正母线MPL和主负母线MNL之间,减少来自于转换器CONV1、CONV2的供给电力所含有的变动成分。
[0048] 供给电流值检测部16,串联地介入主正母线MPL,检测向驱动力产生部3供给的供给电力的供给电流值Ih,将该检测结果输出至控制部2。
[0049] 供给电压值检测部18,连接于主正母线MPL和主负母线MNL之间,检测向驱动力产生部3供给的供给电力的供给电压值Vh,将该检测结果输出至控制部2。
[0050] 转换器CONV1、CONV2,相对于主正母线MPL和主负母线MNL并联地连接,分别在对应的蓄电部BAT1、BAT2与主正母线MPL和主负母线MNL之间进行电压转换动作。具体地讲,转换器CONV1、CONV2,分别将蓄电部BAT1、BAT2的放电电力(放电功率)升压至电压目标值,生成供给电力。作为一例,转换器CONV1、CONV2被构成为含有斩波电路。
[0051] 蓄电部BAT1、BAT2,分别介由系统继电器SR1、SR2和转换器CONV1、CONV2并联地连接于主正母线MPL和主负母线MNL。作为一例,蓄电部BAT1、BAT2,由镍氢电池、锂离子电池等被构成为能够充放电的二次电池,或双电层电容器等比较大容量的静电电容元件等而形成。
[0052] 电池电流值检测部10-1、10-2,分别介入连接蓄电部BAT1、BAT2和转换器CONV1、CONV2的电力线,检测蓄电部BAT1、BAT2输入输出的电池电流值Ib1、Ib2,将该检测结果输出至控制部2。
[0053] 电池电压值检测部12-1、12-2,分别连接于连接蓄电部BAT1、BAT2和转换器CONV1、CONV2的电力线之间,检测蓄电部BAT1、BAT2的电池电压值Vb1、Vb2,将该检测结果输出至控制部2。
[0054] 电池温度检测部14-1、14-2,分别接近于构成蓄电部BAT1、BAT2的电池单元(cell)等而配置,检测作为蓄电部BAT1、BAT2的内部温度的电池温度Tb1、Tb2,将该检测结果输出至控制部2。另外,电池温度检测部14-1、14-2,也可以分别构成为基于对应于构成蓄电部BAT1、BAT2的多个电池单元而配置的多个检测元件的检测结果,通过平均化处理等输出代表值。
[0055] 系统继电器SR1、SR2,分别介入转换器CONV1、CONV2和蓄电部BAT1、BAT2之间,与从控制部2接收的继电器指令SRC1、SRC2相应地,电连接或切断转换器CONV1、CONV2和蓄电部BAT1、BAT2。
[0056] 控制部2,当从HV-ECU4接收了点火开启信号IGON时,激活(活性化)继电器指令SRC1、SRC2,使系统继电器SR1、SR2接通。接着,控制部2,基于从HV-ECU4接收的电压* *要求值Vm1 、Vm2 和电力实绩P1、P2、从供给电流值检测部16接收的供给电流值Ih、供给电压值检测部18接收的供给电压值Vh、从电池电流值检测部10-1、10-2接收的电池电流值Ib1、Ib2、从电池电压值检测部12-1、12-2接收的电池电压值Vb1、Vb2、以及从电池温度检测部14-1、14-2接收的电池温度Tb1、Tb2,按照后述的控制构造分别生成开关指令PWC1、PWC2,发送至转换器CONV1、CONV2。
[0057] 具体地讲,控制部2,使电压目标值Vh*不低于电池电压值Vb1、Vb2中的最大的电*池电压值,即将该最大的电池电压值限制为电压目标值Vh 的最低值,并将从HV-ECU4接收* * *
的电压要求值Vm1 、Vm2 中的较高一方的值作为供给电力的电压目标值Vh 而决定。而*
且,控制部2生成开关指令PWC1、PWC2使得转换器CONV1、CONV2按照电压目标值Vh 进行电压转换动作。
[0058] 特别地,在本发明的实施方式1中,转换器CONV1,与包含电压反馈控制要素和电压前馈控制要素的控制运算的结果相应地,执行电压转换动作。所述电压反馈控制要素用*于使供给电压值Vh与电压目标值Vh 一致,所述电压前馈控制要素加上与蓄电部BAT1的*
电池电压值Vb1和电压目标值Vh 之比(电压转换比)相应的值。另一方面,转换器CONV2,与包含电流反馈控制要素以及电压前馈控制要素的控制运算的结果相应地执行电压转换*
动作。所述电流反馈控制要素用于使电池电流值Ib2与电流目标值Ib2 一致,所述电压前*
馈控制要素加上与蓄电部BAT2的电池电压值Vb2和电压目标值Vh 之比相应的值(电压*
转换比)。另外,电流目标值Ib2 ,基于蓄电部BAT2的充电状态(SOC:State Of Charge,以下也简称为“SOC”)和驱动力产生部3的电力要求值而决定。
[0059] 这样,通过考虑电池电压值Vb1、Vb2而决定电压目标值Vh*,能够抑制蓄电部BAT1、BAT2间的不必要的电力移动。此外,通过电压前馈控制要素,分别与电池电压值Vb1、*Vb2和电压目标值Vh 之比相应的值(电压转换比)作为初始值而被输出,所以在控制刚开始后,转换器CONV1、CONV2就开始电压转换动作。由此,还能够抑制控制刚开始后的蓄电部BAT1、BAT2间的循环电流。
[0060] 控制部2,基于电池电流值Ib1、Ib2、电池电压值Vb1、Vb2和电池温度Tb1、Tb2,计算蓄电部BAT1、BAT2各自的充电状态SOC1、SOC2。关于计算蓄电部BAT1、BAT2的SOC,可以使用各种公知的技术,不过作为一例,控制部2,通过合计根据开路时的电池电压值Vb1、Vb2(开路电压值)计算的暂定SOC和根据电池电流值Ib1、Ib2的积分值(積算值)计算出的补正SOC,依次检测SOC。此外,控制部2,基于检测出的蓄电部BAT1、BAT2的SOC1、SOC2,导出放电容许电力(放电容许功率)Wout1、Wout2。放电容许电力Wout1、Wout2,是作为其化学反应的界限值规定的、各时间点的充电电力和放电电力的短时间的限制值。作为一例,控制部2,事先存储有将由实验取得的SOC和电池温度作为参数而规定的容许电力的映射,基于检测出的SOC1、SOC2和电池温度Tb1、Tb2,导出各时间点的放电容许电力Wout1、*Wout2。控制部2,决定蓄电部BAT2的电流目标值Ib2 使得不超过这样导出的放电容许电力Wout2。
[0061] 关于图1和本发明的对应关系,驱动力产生部3相当于“负载装置”,主正母线MPL和主负母线MNL相当于“电力线”、转换器CONV1、CONV2相当于“多个电压变换部”。
[0062] 参照图2,转换器CONV1包括斩波电路40-1和平滑电容器C1。
[0063] 斩波电路40-1能够双向地供给电力。具体地讲,斩波电路40-1,与来自于控制部2(图1)的开关指令PWC1相应地,能够将来自于蓄电部BAT1的放电电力进行升压而供给至驱动力产生部3(图1),并能够将从驱动力产生部3接受的再生电力进行降压而供给至蓄电部BAT1。而且,斩波电路40-1包括:正母线LN1A、负母线LN1C、布线LN1B、作为开关元件的晶体管Q1A、Q1B、二极管D1A、D1B、电感器L1。
[0064] 正母线LN1A,其一端连接于晶体管Q1A的集电极,另一端连接于主正母线MPL。此外,负母线LN1C,其一端连接于蓄电部BAT1的负极侧,另一端连接于主负母线MNL。
[0065] 晶体管Q1A和Q1B,串联地连接于正母线LN1A和负母线LN1C之间。而且,晶体管Q1A的集电极连接于正母线LN1A,晶体管Q1B的发射极连接于负母线LN1C。此外,各晶体管Q1A、Q1B的集电极-发射极之间,分别连接有从发射极侧向集电极侧流过电流的二极管D1A、D1B。另外,电感器L1连接于晶体管Q1A和晶体管Q1B的连接点。
[0066] 布线LN1B,一端连接于蓄电部BAT1的正极侧,另一端连接于电感器L1。
[0067] 平滑电容器C1,连接于布线LN1B和负母线LN1C之间,减少布线LN1B和负母线LN1C之间的直流电压所含有的交流成分。
[0068] 以下,对转换器CONV1的电压转换动作进行说明。在升压动作时,控制部2(图1),将晶体管Q1A维持在导通状态,且使晶体管Q1B以预定的占空比导通/截止。在晶体管Q1B的导通期间,从蓄电部BAT1依次介由布线LN1B、电感器L1、晶体管Q1A和正母线LN1A,放电电流流向主正母线MPL。同时,从蓄电部BAT1依次介由布线LN1B、电感器L1、晶体管Q1B和负母线LN1C,抽运(pump)电流流过。电感器L1,通过该抽运电流积蓄电磁能。接着,当晶体管Q1B从导通状态转变为截止状态时,电感器L1将积蓄的电磁能叠加于放电电流。其结果是,从转换器CONV1供给至主正母线MPL和主负母线MNL的直流电力的平均电压,被升压了相当于按照占空比积蓄于电感器L1的电磁能的电压。
[0069] 参照图3,控制部2,当从HV-ECU4接收了点火开启信号IGON时,使系统继电器SR1接通,进入控制准备状态。在该控制准备状态中,从蓄电部BAT1介由布线LN1B、电感器L1、二极管D1A和主正母线MPL,放电电流流过,平滑电容器C被充电。
[0070] 然后,当控制开始时,控制部2,激活晶体管Q1A为导通状态,另一方面,进行晶体*管Q1B的导通/截止控制使得供给电压值Vh(实绩值)与电压目标值Vh 一致。即,控制*
部2,如果供给电压值Vh≦电压目标值Vh ,则使Q1B以与该偏差相应的占空比导通/截*
止,另一方面,如果供给电压值Vh>电压目标值Vh ,则判断为不需要进一步的升压动作而使Q1B维持为截止状态(占空比=0)。这样,在转换器CONV1的升压动作中,晶体管Q1A始终维持为导通状态。
[0071] 关于转换器CONV2,其构成和动作与上述转换器CONV1相同,所以不再重复详细的说明。
[0072] 参照图4A、图4B,说明升压动作控制的开始时产生的蓄电部BAT1、BAT2间的电力移动。图4A表示从控制准备中到控制准备状态的转换器CONV1、CONV2的一个形态,图4B表示控制刚开始后的转换器CONV1、CONV2的一个形态。
[0073] 参照图4A,控制部2,当接收了点火开启信号IGON时,接通系统继电器SR1、SR2,所以通过来自于蓄电部BAT1、BAT2的放电电流,平滑电容器C被充电。作为一例,在电池电压值Vb1<电池电压值Vb2成立的情况下,平滑电容器C通过来自于蓄电部BAT1和BAT2的放电电流被充电,直到在其充电电压成为电池电压值Vb1为止。然后,当充电电压超过电池电压值Vb1时,平滑电容器C通过来自于蓄电部BAT2的充电电压Ic被充电,其最终的充电电压(供给电压值Vh),与蓄电部BAT2的电池电压值Vb2大致一致。
[0074] 参照图4B,在升压动作控制刚开始后,如果决定的电压目标值Vh*成为供给电压*值Vh>电压目标值Vh ,则转换器CONV1、CONV2都不进行升压动作。其结果是,介由主正母线MPL和被维持在导通状态的晶体管Q1A,产生从蓄电部BAT2向蓄电部BAT1的循环电流Is。由于这样的循环电流Is,而产生蓄电部间的不必要的电力移动。此外,循环电流Is的大小,随电池电压值Vb1和电池电压值Vb2的电压差而定,然而,由于设计为蓄电部BAT1、BAT2间的电阻小,所以在电压差比较大(例如,50V左右)的情况下,会产生非常大的循环电流Is,可能会损坏蓄电部BAT1、BAT2。
[0075] 因此,在本发明的实施方式1中,限制电压目标值Vh*使其不低于电池电压值Vb1、Vb2中的最大的电池电压值。
[0076] 参照图5,对本发明的实施方式1的用于控制转换器CONV1、CONV2的控制部件200进行说明。控制部件200包括:最大值选择部50、52、下限值限制部54、电流目标值决定部(REF)80、减法部56、62、66、72、比例积分部(PI)58、68、除法部60、70、调制部(MOD)64、74。
[0077] 最大值选择部50,接收电池电压值Vb1和Vb2,将其中的最大值输出至下限值限制* *部54。此外,最大值选择部52,接收电压要求值Vm1 和Vm2 ,将其中的最大值输出至下限值限制部54。
[0078] 下限值限制部54,接收来自于最大值选择部52的输出值作为输入,接收来自于最大值选择部50的输出值作为下限值。然后,下限值限制部54,进行限制使得作为输入接收*的值不低于下限值,输出限制后的值作为电压目标值Vh 。即,在最大值选择部52的输出值小于最大值选择部50的输出值的情况下,最大值选择部50的输出值作为电压目标值Vh*
被输出,在最大值选择部50的输出值小于最大值选择部52的输出值的情况下,最大值选*
择部52的输出值作为电压目标值Vh 被输出。
[0079] 减法部56,根据电压目标值Vh*和供给电压值Vh的差计算电压偏差,输出至比例积分部(PI)58。比例积分部58,被构成为至少含有比例要素(P:proportional element)和积分要素(I:integral element),将与被输入的电压偏差相应的操作信号输出至减法部62。减法部56和比例积分部58构成电压反馈控制要素。
[0080] 减法部62,使从比例积分部58输出的操作信号的符号反号,加上通过除法部60计*算出的蓄电部BAT1的电池电压值Vb1/电压目标值Vh ,输出工作状态指令Ton1。另外,电*
池电压值Vb1/电压目标值Vh ,是转换器CONV1的理论升压比的倒数。除法部60和减法部62构成电压前馈控制要素。即使在控制刚开始后来自于比例积分部58的输出值为零,该前馈控制要素的值也会作为工作状态指令Ton1被输出。在此,工作状态指令Ton1是规定转换器CONV1的晶体管Q1B(图2)的导通工作状态的控制指令。
[0081] 调制部64,比较没有图示的振荡部产生的载波和工作状态指令Ton1,生产开关指令PWC1,发送至转换器CONV1。
[0082] 另一方面,电流目标值决定部80,根据从HV-ECU4接收的电力实绩P1、P2,决定蓄电部BAT2分担的放电电力并使其不超过放电容许电力Wout2,进而通过除以电池电压值*Vb2决定电流目标值Ib2 。另外,使蓄电部BAT2分担的放电电力,只要在不超过放电容许电力Wout2的范围内,可以任意地决定。
[0083] 减法部66,根据电流目标值Ib2*和电池电流值Ib的差计算电流偏差,输出至比例积分部(PI)68。比例积分部68,与上述比例积分部58同样地,被构成为至少含有比例要素和积分要素,将与被输入的电流偏差相应的操作信号输出至减法部72。在此,减法部66和比例积分部68构成电流反馈控制要素。
[0084] 减法部72,使从比例积分部68输出的操作信号的符号反号,加上通过除法部70计*算出的蓄电部BAT2的电池电压值Vb2/电压目标值Vh ,输出工作状态指令Ton2。另外,电*
池电压值Vb2/电压目标值Vh ,是转换器CONV2的理论升压比的倒数。除法部70和减法部72构成电压前馈控制要素。即使在控制刚开始后来自于比例积分部68的输出值为零,该前馈控制要素的值也会作为工作状态指令Ton2被输出。在此,工作状态指令Ton2是规定转换器CONV2的晶体管Q2A(图3)的导通状态的控制指令。
[0085] 如上所述,用于控制转换器CONV1的开关指令PWC1,通过含有电压反馈控制要素和电压前馈控制要素的控制运算而生成,用于控制转换器CONV2的开关指令PWC2,通过含有电流反馈控制要素和电压前馈控制要素的控制运算而生成。
[0086] 另外,如图5所示的控制部件200,还能够通过构成控制部2使其包含相当于各部件的电路而实现。不过多数情况下,通过控制部2按照事先设定的程序执行处理程序(routine)而实现。
[0087] 根据本发明的实施方式1,电压目标值被限制为不低于第1和第2蓄电部的电池电压值中的最大值,按照该目标值,第1和第2转换器分别执行电压转换动作。该电压目标值,为在转换器的控制开始前能够通过蓄电部充电得到的电力线的电压值以上,所以各转换器在控制刚开始后立即开始电压转换动作。由此,各转换器动作使得从连接的蓄电部向电力线侧供给电力,所以能够避免介由电力线从其他蓄电部流入电力。因而,即使在蓄电部间产生电压差的情况下,也能够抑制蓄电部间的不必要的电力移动。
[0088] 此外,根据本发明的实施方式1,用于控制第1和第2转换器的开关指令,分别通过包含电压前馈控制要素的控制运算而生成,所以在控制刚开始后与该电压前馈控制要素相关的值被输出。因此,即使在由于构成反馈控制要素的比例积分部的积分要素导致时间延迟的情况下,各转换器也在控制刚开始后就进行电压转换动作,所以特别能够抑制过渡性流过的蓄电部间的循环电流。
[0089] 此外,根据本发明的实施方式1,第2转换器通过包含电流反馈控制要素的控制运算而被控制,所以能够控制第2转换器和第2蓄电部之间的电力授受,即第2蓄电部的分担电力。与此相伴,也必然能够控制第1蓄电部的分担电力。由此,还能够进行第1和第2蓄电部的电力管理。
[0090] (变形例)
[0091] 在本发明的实施方式1中,对分别通过包含电压反馈控制要素和电流反馈控制要素的控制运算而控制转换器CONV1和CONV2的构成进行了说明。另一方面,在本发明的实施方式1的变形例中,对都通过包含电压反馈控制要素的控制运算而控制转换器CONV1、CONV2的构成进行说明。
[0092] 作为对象的电源系统,与图1所示的电源系统1相同,所以不再重复详细的说明。
[0093] 参照图6,对本发明的实施方式1的变形例的用于控制转换器CONV1、CONV2的控制部件202进行说明。控制部件202包括:最大值选择部50、52、下限值限制部54、减法部56-1、56-2、62-1、62-2、比例积分部(PI)58-1、58-2、除法部60-1、60-2、调制部64-1、64-2。
[0094] 最大值选择部50、52和下限值限制部54,与上述本发明的实施方式相同,所以不再重复详细的说明。
[0095] 此外,减法部56-1、56-2、比例积分部58-1、58-2、除法部60-1、60-2、减法部62-1、62-2和调制部64-1、64-2,分别与上述本发明的实施方式中的减法部56、比例积分部58、除法部60、减法部62和调制部64相同。
[0096] 即,控制部件202,分别基于包含电压反馈控制要素以及电压前馈控制要素的控制运算,输出工作状态指令Ton1、Ton2。所述电压反馈控制要素用于使供给电压值Vh与电压* *目标值Vh 一致,所述电压前馈控制要素加上与电池电压值Vb1、Vb2和电压目标值Vh 之比(电压转换比)对应的值。
[0097] 关于其他,与上述本发明实施方式1相同,所以不再重复详细的说明。
[0098] 根据本发明的实施方式1的变形例,在本发明的实施方式1的效果的基础上,通过同样的控制运算生成对各转换器的开关指令,所以能够简化控制构造,且能够比较容易地进行控制增益等的调整。
[0099] (实施方式2)
[0100] 本发明,除了上述由两个蓄电部构成的电源系统,还能够适用于由三个以上的蓄电部构成的电源系统。
[0101] 参照图7,对具备本发明的实施方式2的电源系统1#的车辆100#进行说明。车辆100#,是在图1所示的车辆100中配置电源系统1#来代替电源系统1的车辆,所以不再重复对驱动力产生部3和HV-ECU4的详细说明。在本发明的实施方式2中,对具备N个蓄电部的电源系统1#进行说明。
[0102] 电源系统1#,在图1所示的电源系统1中,配置:转换器CONV1、CONV2、...、CONVN、蓄电部BAT1、BAT2、...、BATN、系统继电器SR1、SR2、...、SRN、电池电流值检测部10-1、10-2、...、10-N、电池电压值检测部12-1、12-2、...、12-N、电池温度检测部14-1、
14-2、...、14-N来代替转换器CONV1、CONV2、蓄电部BAT1、BAT2、系统继电器SR1、SR2、电池电流值检测部10-1、10-2、电池电压值检测部12-1、12-2、电池温度检测部14-1、14-2,还配置控制部2#来代替控制部2。
[0103] 转换器CONV1~CONVN,并联地连接于主正母线MPL和主负母线MNL,分别在对应的蓄电部BAT1~BATN与主正母线MPL和主负母线MNL之间进行电压转换动作。
[0104] 蓄电部BAT1~BATN,分别介由系统继电器SR1~SRN和转换器CONV1~CONVN并联地连接于主正母线MPL和主负母线MNL。电池电流值检测部10-1~10-N、电池电压值检测部12-1~12-N、电池温度检测部14-1~14-N,分别对应蓄电部BAT1~BATN而配置。
[0105] 控制部2#,当从HV-ECU4接收了点火开启信号IGON时,激活继电器指令SRC1~*SRCN,使系统继电器SR1~SRN接通。接着,控制部2#,使电压目标值Vh 不低于电池电压*
值Vb1~VbN中的最大的电池电压值,即,将最大的电池电压值限制为电压目标值Vh 的最* *
低值,并将从HV-ECU4接收的电压要求值Vm1 ~VmN 中的最大值作为供给电力的电压目*
标值Vh 而决定。然后,控制部2#生成开关指令PWC1~PWCN使得转换器CONV1~CONVN*
按照电压目标值Vh 进行电压转换动作。
[0106] 特别地,在本发明的实施方式2中,转换器CONV1,与包含电压反馈控制要素以及电压前馈控制要素的控制运算的结果相应地,执行电压转换动作。所述电压反馈控制要素*用于使供给电压值Vh与电压目标值Vh 一致,所述电压前馈控制要素加上与蓄电部BAT1*
的电池电压值Vb1和电压目标值Vh 之比(电压转换比)相应的值。另一方面,转换器CONV2~CONVN,分别与包含电流反馈控制要素以及电压前馈控制要素的控制运算的结果相应地,执行电压转换动作。所述电流反馈控制要素用于使电池电流值Ib2~IbN与电流* *
目标值Ib2 ~IbN 一致,所述电压前馈控制要素加上与蓄电部BAT2~BATN的电池电压* *
值Vb2~VbN和电压目标值Vh 之比相应的值(电压转换比)。另外,电流目标值Ib2 ~*
IbN ,基于蓄电部BAT2~BATN的SOC和驱动力产生部3的电力要求值而决定。
[0107] 这样,通过考虑电池电压值Vb1~VbN而决定电压目标值Vh*,能够抑制蓄电部BAT1~BATN间的不必要的电力移动。此外,通过电压前馈控制要素,与电池电压值Vb1~*VbN和电压目标值Vh 之比相应的值(电压转换比)分别作为初始值而被输出,所以转换器CONV1~CONVN能够在控制刚开始后立即开始电压转换动作。由此,能够抑制控制刚开始时蓄电部BAT1~BATN的循环电流。
[0108] 此外,控制部2,基于电池电流值Ib1~IbN、电池电压值Vb1~VbN和电池温度Tb1~TbN,计算蓄电部BAT1~BATN各自的充电状态SOC1~SOCN。
[0109] 关于其他,与上述本发明的实施方式1相同,所以不再重复详细的说明。
[0110] 关于图7和本发明的对应关系,驱动力产生部3相当于“负载装置”,主正母线MPL和主负母线MNL相当于“电力线”,转换器CONV1~CONVN相当于“多个电压变换部”。
[0111] 参照图8,对本发明的实施方式2的用于控制转换器CONV1~CONVN的控制部件200#进行说明。控制部件200#,在图5所示的控制部件200中,配置减法部66-2、...、66-N、
72-2、...、72-N、比例积分部68-2、...、68-N、除法部70-2、...、70-N、调制部74-2、...、
74-N来代替减法部66、72、比例积分部68、除法部70、调制部74,还配置了电流目标值决定部(REF)80#来代替电流目标值决定部(REF)80。
[0112] 电流目标值决定部80#,根据从HV-ECU4接收的电力实绩P1、P2,分别决定蓄电部BAT2~BATN分担的放电电力并使其不超过放电容许电力Wout2~WoutN,此外,电流目标*值决定部80#还通过将各放电电力除以电池电压值Vb2~VbN而决定电流目标值Ib2 ~*
IbN 。
[0113] 减法部66-2~66-N,分别根据电流目标值Ib2*~IbN*和电池电流值Ib2~IbN的差计算电流偏差,输出至比例积分部68-2~68-N。比例积分部68-2~68-N,分别被构成为至少含有比例要素和积分要素,将与被输入的电流偏差相应的操作信号输出至减法部72-2~72-N。在此,减法部66-2~66-N和比例积分部68-2~68-N分别构成电流反馈控制要素。
[0114] 减法部72-2~72-N,分别使从比例积分部68-2~68-N输出的操作信号的符号*反号,加上通过除法部70-2~70-N计算出的电池电压值Vb2/电压目标值Vh ~电池电压*
值VbN/电压目标值Vh ,输出工作状态指令Ton2~TonN。另外,电池电压值Vb2/电压目* *
标值Vh ~电池电压值VbN/电压目标值Vh ,是转换器CONV2~CONVN的理论升压比的倒数。除法部70-2~70-N和减法部72-2~72-N分别构成电压前馈控制要素。
[0115] 关于其他,与上述本发明的实施方式1相同,所以不再重复详细的说明。
[0116] 根据本发明的实施方式2,即使在由三台以上的转换器和蓄电部构成的情况下,也能够发挥与本发明的实施形态1的效果相同的作用。由此,能够与负载装置的电力要求值相应地,比较自由地设计转换器和蓄电部的数量。因而,可以实现能够对各种大小和种类的负载装置供给电力的电源系统和具备电源系统的车辆。
[0117] (变形例)
[0118] 与本发明的实施方式1的变形例同样地,对都通过包含电压反馈控制要素的控制运算控制转换器CONV1~CONVN的构成进行说明。
[0119] 关于作为对象的电源系统,与图7所示的电源系统1#相同,所以不再重复详细的说明。
[0120] 参照图9,对本发明的实施方式2的变形例的用于控制转换器CONV1~CONVN的控制部件202#进行说明。控制部件200#,扩大了图6所示的控制部件202,在控制部件202中,配置:减法部56-1~56-N、62-1~62-N、比例积分部58-1~58-N、除法部60-1~60-N、调制部64-1~64-N来代替减法部56-1、56-2、62-1、62-2、比例积分部58-1、58-2、除法部60-1、60-2、调制部64-1、64-2。关于其他,与控制部件202相同,所以不再重复详细的说明。
[0121] 而且,控制部件202#,分别基于包含电压反馈控制要素以及电压前馈控制要素的控制运算,输出工作状态指令Ton1~TonN。所述电压反馈控制要素用于使供给电压值Vh*与电压目标值Vh 一致,所述电压前馈控制要素加上与电池电压值Vb1~VbN和电压目标*
值Vh 之比(电压转换比)对应的值。
[0122] 关于其他,与上述本发明实施方式1的变形例相同,所以不再重复详细的说明。
[0123] 根据本发明的实施方式2的变形例,在本发明的实施方式2的效果的基础上,通过同样的控制运算生成对各转换器的开关指令,所以即使在被构成为含有许多转换器的情况下,也能够简化控制构造,且能够比较容易地进行控制增益等的调整。
[0124] 另外,在本发明的实施方式1和2以及它们的变形例中,对基于电压反馈控制要素和电压前馈要素的组合、或者电流反馈控制要素和电压前馈要素的组合所进行的控制运算而控制各转换器的构成进行了例示,不过只要被构成为能够按照电压目标值执行电压转换动作,可以使用任意控制运算。例如,可以使用仅含有电压反馈控制要素的控制运算、仅含有电压前馈控制要素的控制运算。
[0125] 此外,在本发明的实施方式1和2以及它们的变形例中,作为负载装置的一例,对使用包含两个电动发电机的驱动力产生部的构成进行了说明,不过电动发电机的数量没有限制。此外,作为负载装置,不限于产生车辆的驱动力的驱动力产生部,仅进行电力消耗的装置和既能消耗电力又能发电的装置中的任一种都能够适用。
[0126] 应该认识到,此次公开的实施方式,在所有方面都为例示的、而非限制性的。本发明的范围,不是由上述说明而是由权利要求表示,与权利要求等同的意思和范围内的所有变更都包括在内。