耐压的流体加载的物体转让专利

申请号 : CN200780016787.9

文献号 : CN101448636B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : K·迈勒K·伯雷斯A·于托维奇R·维斯T·沙伊贝M·伊伯特M·亨里奇A·劳尔

申请人 : 申克碳化技术股份有限公司

摘要 :

本发明涉及一种耐压的流体加载的物体(10),如压力管或者压力容器,它由钢制的基体(12)、在外面包围住所述基体的由陶瓷纤维复合材料制成的第一层(14)以及至少一个布置在第一层上的由纤维增强塑料和/或纤维增强陶瓷制成的第二层(16)所构成。

权利要求 :

1.耐压的流体可加载的或流体加载的物体(10,20),呈压力管或者压力容器的形式,其由钢制的基体(12,22)、在外面直接包围住上述基体的由陶瓷纤维复合材料制成的第一层(14,24)以及至少一个布置在第一层上的由纤维增强塑料和/或纤维增强陶瓷制成的第二层(16,26)所构成,所述基体由马氏体钢、奥氏体钢和高合金的镍基合金所组成的集合中的一种钢制成,所述陶瓷纤维复合材料的纤维是氧化铝-纤维,莫来石-纤维,碳化硅-纤维,氧化锆-纤维和/或碳纤维,其中第一层(14)的厚度D1为1mm≤D1≤20mm,基体(12,22)的壁厚D为1mm≤D≤50mm。

2.按权利要求1所述的物体,其特征在于,陶瓷纤维复合材料由SiC/SiC,C/C,C/SiC,Al2O3/Al2O3,C/硅氧烷,SiC/硅氧烷和/或莫来石/莫来石构成。

3.按权利要求1或2所述的物体,其特征在于,所述至少一个第二层(16,26)总共的厚度D2为0mm<D2≤50mm。

4.按权利要求1或2所述的物体,其特征在于,第一层(14,24)的纤维(28,30)径向环绕地和/或交叉地敷设在基体(12,22)上。

5.按权利要求1或2所述的物体,其特征在于,所述至少一个第二层(16,26)的纤维相对于基体(12,22)径向环绕地和/或交叉地布置在第一层上。

说明书 :

耐压的流体加载的物体

[0001] 本发明涉及一种耐压的流体可加载的或者流体加载的物体,呈压力管或者压力容器的形式。
[0002] 在汽轮机的工作过程中,效率取决于过程温度。因此人们力求将过程温度设定得尽可能地高。按照现有技术对于汽轮机工作过程必需的耐压物体,如压力管或压力容器由马氏体钢或者高合金镍基合金制成。用这些材料可以实现过程温度达650℃或700℃。当然对于马氏体钢出于安全原因通常使温度不超过620℃。
[0003] 所使用的由前面所述钢制成的物体耐压至300bar。更高的温度和压力则不可能实现,由于必要的耐抗材料蠕变性的能力,由于安全性和由于经济性而不可能实现。
[0004] 由DE-A-199 52 611已知有一种设计用于日用品工业的高压容器,它包括有金属套筒形状的内接触层,在这套筒上缠绕了多个环氧树脂连接的玻璃-纤维,芳族聚酰胺-纤维和碳-纤维的层,其中各个层具有从里向外变化的弹性模量。在物体被卷绕之后对容器进行硬化和塑化。
[0005] DE-A-39 07 087的对象是一种高压容器如容器管子,它由内涂层、由金属-陶瓷粉末混合物组成的层、由钨化合物组成的层、紧接着的由纤维复合材料制成的层和由高强度管子钢制成的外层所构成。
[0006] 本发明的任务是改进一种耐压的流体可加载的或流体加载的物体,如压力管或者压力容器,从而相比于由钢制成的物体可以实现过程温度的提高。物体也应该可以加压,该压力大于以前通常使用的压力。
[0007] 为了解决此任务本发明总体上建议了一种耐压的流体可加载的或流体加载的物体,呈压力管或者压力容器的形式,它由钢制的基体、在外面直接包围住所述基体的由陶瓷纤维复合材料制成的第一层以及一层或者多层布置在第一层上的由纤维增强陶瓷和/或纤维增强塑料制成的层所构成。
[0008] 按照本发明的流体可加载的或流体加载的物体,如压力管或者压力容器,可以相比于只是由钢制成的物体实现过程温度的提高。也可以使加压大于以前通常的压力。这按照本发明,通过功能分离,即钢管的密封和紧急情况性能以及纤维复合材料的耐高温蠕变性的分离来实现。
[0009] 按照本发明提供了一种多层物体,它尤其是在汽轮机工作过程中可以与以前使用的材料相比提高过程温度至少大约200℃,因此可以提高火力发电厂的热效率大约7%。一种相应的复合管在轴向和径向方向上具有良好的抗压和抗拉性能,并且耐温可达到900°到1000℃之间的范围。由纤维复合材料制成的第一层在一定程度上有隔热作用,也就是说从钢管至外层产生温度梯度,因此外层不发生氧化,也可以实现经济地制造。
[0010] 虽然已知了:陶瓷纤维复合材料(Ceramic Matrix Composites(CMC))在高温时使用。因此将CMC材料使用于燃气轮机中在热气的范围里,这就是说涡轮机燃烧室,静态控制燃气流的导向叶片和本来的涡轮机叶片,它们用于驱动燃气轮机的压缩机。当然相应的部件只是由CMC材料制成并且没有按照本发明的层状构造。但这种层状构造确保了:在直至1000℃的高温和300bar和更高的压力时可以没有问题地使用,其中同时保证了物体的抗蠕变性至少达30年。
[0011] 耐热纤维复合材料的特征在于一种埋入在陶瓷纤维,尤其是长纤维之间的陶瓷基质,它通过陶瓷纤维而增强。因此人们提到纤维增强陶瓷、复合陶瓷或者也简单地称之为纤维陶瓷。基质和纤维原理上可以由所有已知的陶瓷材料制成,其中按此关系也将碳作为陶瓷材料来讨论。
[0012] 尤其是规定了:陶瓷复合材料的纤维是铝氧化的,莫来石-。碳化硅-纤维,氧化锆-纤维、和/或碳-纤维、莫来石由氧化铝和氧化硅组成的混合晶体组成。
[0013] 优选地将SiC/SiC,C/C,C/SiC,Al2O3/Al2O3和/或莫来石/莫来石使用作为陶瓷纤维复合材料。在分隔线前面的材料表示出纤维种类,分隔线后面的材料表示了基质类型。作为用于陶瓷纤维复合结构的基质系也可以采用硅氧烷、硅基母体和各种不同的氧化物,例如氧化锆。
[0014] 第一层的厚度D1优选为1mm≤D1≤20mm和/或第二层或多层的总共厚度D2为0mm<D2≤50mm。
[0015] 为了通过所述至少一个第二层实现所希望的加固防护,纤维增强碳纤维可以是径向环绕地和/或交叉地布置在第一层上。第一层的纤维同样也可以径向环绕地和/或交叉地敷设在基体上。
[0016] 基体优选地由马氏体钢或者高合金的镍基合金材料组成。壁厚D3为2mm≤D3≤50mm,可以被认为是优选值,而并不因此限制住按照本发明的理论。
[0017] 第一层的纤维体积FV应达到30%≤FV≤70%。第一层的孔隙率优选地达到5%≤P≤50%。
[0018] 陶瓷纤维复合材料可以通过CV1(Chemical Vapour Infiltration(化学气相渗入))方法、热解、LP1(Liquid Polymer infiltration(液相聚合物渗入))方法或者通过化学反应如LS1(液相硅渗入)法来制造。
[0019] 一种硅基母体被优选地用作为基质材料,用于然后借助于热解转化为SiC。硅基母体的优点在于:这种材料可以容易地硬化和热解,从而保证顺利地制造。
[0020] 本发明的最普遍特征也在于一种耐压的流体可加载的或流体加载的物体,呈压力管或者压力容器的形式,它由马氏体钢、奥氏体钢或高合金的镍基合金所组成的集合中的一种钢制成的基体以及至少一个包围住所述基体的层构成,该层由纤维构成或者含有纤维,所述纤维在温度T为T≥500℃时没有或者具有最小的蠕变伸长。
[0021] 使用了耐蠕变的纤维,也就是说在蠕变范围里—在温度>550℃的范围里—没有或者具有最小的随时间而增加的残余变形,也就是蠕变伸长,因此阻止了位于里面的钢管的蠕变。纤维在化学上的特点是高的耐久强度,从而尤其是在大气空气的条件下在高的运行温度下保证了强度。
[0022] 作为纤维可以考虑增强纤维,它们属于以下等级:氧化的、碳化的、氮化的纤维或者C-纤维和SiBCN-纤维。塑料纤维如PAN-纤维或者聚丙烯腈纤维也可以称之为加强纤维。
[0023] 本发明的其它细节、优点和特点不仅可以见权利要求,其中所述的特征(本身和/或组合),而且也可以见以下对于由附图可见的优点实施例所作的说明。附图所示为:
[0024] 图1:一种压力管的原理图;
[0025] 图2:一种容器的原理图。
[0026] 图1中表示了压力管10的剖视图,压力管尤其是使用在用于汽轮机过程的火力发电厂范围里。为了使流体在压力小于300bar或者更高的情况下,在温度为800℃,尤其是850℃或更高时流过压力管10,管子10设计成复合管。管子10由钢制成的基体12组成,在所述基体上涂覆有至少二个层14,16。布置在基体12上的层14称之为第一层,它由一种陶瓷纤维复合材料构成,并且至少一个盖住第一层14的第二层16,该层16由纤维增强的塑料和/或纤维增强的陶瓷构成。塑料成分用于提高变形协调性。
[0027] 第一层14中的陶瓷纤维复合材料可以由已知的陶瓷材料构成,其中优选可以列举出SiC/SiC,Al2O3/Al2O3或者莫来石/莫来石。由陶瓷纤维复合材料制成的第一层14确保了:在基体12和由纤维增强塑料制成的所述至少一个第二层之间在圆周里实现隔热—其中所述纤维增强塑料可以是碳纤维增强塑料,或是玻璃纤维增强塑料—由此使得所述至少一个第二层16不被氧化。因此确保了:所述至少一个第二层16提供了所希望的加固防护,从而使复合管10可以用所希望高的压力加载。第二层也用来在压力管或压力容器上产生预应力,其中预应力随着使用温度提高而升高。
[0028] 对于预应力必须指出,这种预应力在起动时随着压力和温度的升高而在纤维包壳里产生,并且随时间部分地由于敷设在里面的钢管的蠕变特性而取决于时间地减小。
[0029] 第一层14可以使复合管10能够被加载到必要的高温,至少为800℃-850℃,必要时直至1000℃,用来提高效率。
[0030] 第一层14的纤维可以根据要求进行敷设。因此纤维可以交叉地和/或径向环绕地包围住基体12。对于所述至少一个第二层16的纤维也是这样。
[0031] 在图2中纯原理上表示出压力容器18,其同样也由钢制的基体20和布置在基体20上的第一和第二层24、26构成,其中第一层24由一种陶瓷纤维复合材料构成,所述至少一个第二层26由纤维增强塑料和/或纤维增强陶瓷制成。在此可以使用如前面叙述过的制造方法和材料。由图2纯粹举例说明,可以见到第一层24的纤维28、30,这些纤维径向环绕地(长纤维28)或者交叉地(长纤维30)敷设在基体22上。其它由现有技术中已知的纤维分布同样也是可能的。
[0032] 在图1所示的实施例中基体12例如内径为500mm和壁厚为40mm。由陶瓷纤维复合材料制成的第一层14的厚度D1≈10mm,而由纤维增强塑料组成的第二层16的厚度为D2≈10mm。
[0033] 在按图2的压力容器20中,基体22的直径为300mm,长度为500mm,壁厚为30mm。第一层24的厚度D1可达D1≈15mm,第二层26的厚度D2可达D2≈10mm,这里纯粹是举例来列出这些数。
[0034] 按照本发明,纤维包壳的厚度D与压力容器20的壁厚d的比例为0.4d≤D≤0.6,尤其是d/2=D。
[0035] 相应的复合管10或复合容器20可以用温度大约为850°的流体加载,从而可以在高温下使用,尤其是在汽轮机过程中,因而与通常结构的压力管或压力物体相比可以大大提高热效率。同时对应的复合体表现出耐损伤的良好的抗断裂性和耐蠕变性。可能既在轴向方向又在径向方向上有拉载荷和压载荷,而物体并不损坏。也可以实现经济地制造。
[0036] 如果所述实施例是借助于基体连同敷设在基体上的第一和第二层进行说明的,那样如果在基体上只涂覆了一层由加强纤维构成的层也在本发明的范围内,这种纤维在温度超过550℃的范围里不会有或者只有最小的随时间而增大的残余变形,也就是蠕变伸长,因而阻止了位于里面的基体的蠕变。相应的纤维也具有高的耐久强度,其中尤其是在大气压空气下在高的运行温度下保证了强度。相应的纤维可以分成:氧化的、碳化的、氮化的纤维或者C-纤维或者SiBCN-纤维。塑料纤维如PAN-纤维或者聚丙烯腈纤维也属于考虑之列。
[0037] 尤其可以列出以下的纤维:C-纤维、Nextel-纤维(陶瓷纤维),3M-纤维,Hi-Nicalon-纤维(氮化硅纤维),氧化物纤维,SiO2-纤维,Al2O3-纤维,SiC-纤维,SiBCN-纤维,PAN-纤维和Si3N4纤维。
[0038] 对应物体的应用实例例如是锅炉管,它可以由奥氏体或者马氏体钢(9%铬钢)构成。其外径例如大约为42mm,壁厚为大约6mm。这可以用以前所说明的厚度范围在3mm至4mm里的增强纤维的层来周围缠绕,以便实现所希望的性能。