制造涂层切削刀具的方法及根据该方法制成的切削刀具转让专利

申请号 : CN200810188419.9

文献号 : CN101463461B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 托里尔·米尔特韦特

申请人 : 山特维克知识产权股份有限公司

摘要 :

本发明涉及一种制造涂层切削刀具的方法,包括:提供基体,并且利用涂覆工艺涂覆所述基体,其中所述涂覆工艺包括至少一个序列,所述序列包括以下步骤:-沉积非金属功能层或者层系统,-对所述非金属层或者层系统的表面进行离子蚀刻步骤,-在新的序列开始之前,沉积至少一个金属中间层。根据本发明的方法能够实现具有增加的刀具寿命的切削刀具。本发明还涉及一种根据所述方法制成的涂层切削刀具。

权利要求 :

1.一种制造涂层切削刀具的方法,包括:提供基体,并且利用涂覆工艺涂覆所述基体,其特征在于,所述涂覆工艺包括至少一个序列,所述序列按顺序包括以下步骤:-通过PVD或PECVD技术沉积非金属功能层或者层系统,-对所述非金属层或者层系统的表面进行离子蚀刻步骤,

-通过PVD或PECVD技术沉积至少一个金属中间层。

2.根据权利要求1的方法,其特征在于,利用氩离子执行所述离子蚀刻步骤。

3.根据权利要求1的方法,其特征在于,利用金属离子执行所述离子蚀刻步骤。

4.根据权利要求3的方法,其特征在于,金属离子从以下中的一个或多个中选择:Ti,Zr,Cr,Nb,V和Mo。

5.根据权利要求1的方法,其特征在于,所述金属中间层是纯金属层,其中从Ti、Mo、Al、Cr、V、Y、Nb、Hf、W、Ta、Zr或者它们的任何混合物中选择所述金属。

6.根据权利要求1的方法,其特征在于,所述金属中间层是亚化学计量陶瓷,其中金属元素的量至少是所述亚化学计量陶瓷的60at%。

7.根据权利要求6的方法,其特征在于,所述亚化学计量陶瓷是氮化物MeN,其中Me是金属,该金属是Ti、Mo、Al、Cr、V、Y、Nb、Hf、W、Ta、Zr中的一种或者多种金属,或者是它们的混合物。

8.根据权利要求1的方法,其特征在于,所述被沉积的非金属层或者层系统的组分是氮化物、氧化物、硼化物、碳化物或者它们的组合。

9.根据权利要求8的方法,其特征在于,所述被沉积的非金属层或者层系统的组分是(Al,Ti)N、TiN、Ti(C,N)、(Al,Cr)N、CrN、Al2O3、Ti(B,N)、TiB2、(Zr,Al)N、(Ti,X)N中的一种或者多种,其中X可以是Si、B、C、Ta、V、Y、Cr、Hf、Zr中的一种或者多种。

10.根据权利要求1的方法,其特征在于,所述金属中间层的平均厚度是5到500nm。

11.根据权利要求1或10的方法,其特征在于,所述非金属层或者层系统的厚度是所述金属中间层的厚度的3到200倍。

12.根据权利要求11的方法,其特征在于,总涂层厚度是0.5到15μm。

13.一种根据权利要求1-12的方法制成的切削刀具。

说明书 :

制造涂层切削刀具的方法及根据该方法制成的切削刀具

技术领域

[0001] 本发明涉及一种制造涂层切削刀具的方法,包括在沉积两个非金属功能层之间沉积一个或者多个金属中间层。在沉积每一个金属中间层之前,执行非金属功能层的离子蚀刻步骤。根据本发明的方法制成的切削刀具由于韧度增加会展示出优良的寿命,因此显示出承受负载变化的更好能力。另外,本发明便于沉积较厚的PVD涂层而没有沿着刃线剥落的风险,因此能够沉积具有更好的抗后刀面磨损性的较厚涂层。

背景技术

[0002] 通常,如果将涂层沉积到切削刀具的表面上,则所述切削刀具的寿命显著地增加。今天的大多数切削刀具涂覆有PVD或者CVD涂层,如Ti(C,N)、TiN、(Ti,Al)N、(Ti,Si)N、(Al,Cr)N或者Al2O3。与CVD涂层相比,PVD涂层具有几种吸引人的性质,例如在沉积状态中的残余压缩应力、无冷却裂纹和更加精细的颗粒涂层。
[0003] 然而,PVD涂层通常必须非常薄,这是因为自然地、通常围绕刃线、或者在加工期间,较厚的PVD涂层会引起剥落、碎裂、所谓的刃线剥落和崩刃。因为在很多应用中较厚的涂层由于增加的耐磨性而产生较长的刀具寿命,通常为那些应用选择CVD涂层。
[0004] 不幸的是,PVD涂层、特别是电弧沉积的PVD涂层经受存在所谓的宏粒(macro)或者微滴,所述宏粒或者微滴作为小球体而存在于涂层的表面上或者埋藏于涂层内部。在沉积涂层期间,这些微滴能够遮蔽流入的带电金属离子,因此紧邻微滴在涂层中产生空穴。由于随后在微滴和涂层之间的粘附力减小,在沉积过程期间、或者即刻地在沉积工艺之后、或者甚至在加工期间,微滴会脱离。这会导致带有空穴、气孔、或者甚至在极端情形中向下直至基体的孔的低劣涂层质量。
[0005] 较厚的涂层还具有基体被暴露至的最大温度降低的优点。较低基体温度降低了切削刃塑性变形的风险。较厚的涂层允许较高切削力而不会引发基体塑性变形。
[0006] 在切削刀具贸易中,对于较厚的PVD涂层的需求正在增长,所述涂层具有较厚涂层的耐磨性以及PVD涂层的韧度的优点。
[0007] 在各种沉积工艺开始时,离子蚀刻是共同的初始步骤。通常在沉积之前对基体进行离子蚀刻以去除表面污染物以及自然氧化物和氮化物。然而,在使用离子蚀刻作为中间步骤方面少有尝试。
[0008] 利用PVD技术沉积金属层也是在PVD过程中已被确定的技术。为人熟知的是,在沉积其余涂层之前将金属层直接地沉积到基体表面上能够在一些情形中加强涂层的粘附力。
[0009] EP0756019描述了一种制造用于在冲孔操作中使用的材料变形刀具的PVD涂层的方法。由(Ti,Al)N、(Ti,Al,Y)N或者(Ti,Al,Cr)N或者其任何多层构成的PVD层被沉积。然后,例如利用喷丸或者金属离子蚀刻对表面进行机械处理以去除任何微滴并且以实现光滑表面。然后,在顶部上沉积由MoS2构成的第二低摩擦PVD涂层。
[0010] US3755866描述了一种包括在彼此的顶部上沉积的两个非金属中间层的刀片。一个层包括由精细颗粒成分构成,该精细颗粒成分为由TiC、TaC、ZrC、HfC、VC和NbC构成的组。另一个层由至少一个精细颗粒成分构成,该精细颗粒成分为由WC、MoC和CrC构成的组。这两个层可以被或者可以不被由Co、Ni或者Fe构成的金属层分离。该金属层在0.1和2.0μm之间。
[0011] EP1136585描述了一种自润滑涂层,该自润滑涂层由在其他硬质涂层中的金属或者其他柔软材料的小微滴构成。因此,产生具有较低摩擦水平的涂层。以如下序列沉积该涂层,该序列包括:沉积氮化物/碳化物,随后在Ar气氛中进行离子蚀刻。在离子蚀刻步骤期间,利用Ar离子轰击薄的金属片,并且发射小的金属微滴。这种涂层因此由具有在氮化物或者碳化物的其他硬质涂层中的小金属微滴的层构成。
[0012] JP2002-103122A描述了覆盖小直径刀具的硬质阳极氧化涂层,其中该涂层的构成为:内部Ti层、随后为TiCN层、中间金属TiAl层、该层最终被外部TiAlCN层覆盖。
[0013] EP1553210A1披露了一种利用PVD技术沉积α-Al2O3层的方法。在一个实施例中,利用气体离子或者金属离子对有可能设有主涂层的基体进行离子轰击,随后氧化被轰击的表面,并且最终沉积α-Al2O3层。当金属离子被用于轰击时,金属离子被植入表面中。
[0014] 本发明的一个目的在于提供一种制造涂层切削刀具的方法,该切削刀具带有PVD涂层,刀刃韧度提高。
[0015] 本发明的另一个目的在于提供一种制造涂层切削刀具的方法,该切削刀具带有较厚的PVD涂层而不增加剥落、碎裂、所谓的刃线剥落和崩刃的风险,因此获得具有延长的刀具寿命的刀具。
[0016] 本发明的另一个目的在于提供一种制造涂层切削刀具的方法,该切削刀具带有较好的抗后刀面磨损性。
[0017] 本发明的另一个目的在于提供一种根据本发明的方法制成的涂层切削刀具,该切削刀具存在上面所披露的益处。
[0018] 已经令人惊讶地发现,当非金属功能层在沉积金属中间层之前进行离子蚀刻步骤时,在非金属功能层内部和表面上所谓的微滴的量降低,并且与金属中间层的沉积相结合,能够实现以上目的。

附图说明

[0019] 图1示出显示涂层内部的薄金属中间层的抛光横截面的SEM图片。金属中间层每隔0.7-1.5μm的距离设置,涂层总厚度为10μm。

发明内容

[0020] 本发明涉及一种制造涂层切削刀具的方法,包括:提供基体并且利用涂覆工艺涂覆所述基体,所述涂覆工艺包括至少一个序列,所述序列包括以下步骤:
[0021] -沉积非金属功能层或者层系统,
[0022] -对所述非金属层或者层系统的表面进行离子蚀刻步骤,
[0023] -在新的序列开始之前,沉积至少一个金属中间层。
[0024] 如上所述的三个步骤,在下文中被称为一个序列,其可以被重复任何次数直至所期望的总涂层厚度得以达到。
[0025] 序列数目优选地在1和20之间、更加优选地在1和10之间、更加优选地在2和10之间、并且最优选地在3和10之间。
[0026] 在本发明的一个实施例中,在涂覆工艺中最后的沉积步骤是沉积非金属层或者层系统。
[0027] 在本发明的一个实施例中,沉积序列还包括,在离子蚀刻步骤之后,在沉积金属中间层之前,沉积薄的非金属层。
[0028] 优选地在相同的涂覆工艺中沉积所有的层。
[0029] 通过利用例如氩离子或者金属离子的离子轰击实现离子蚀刻步骤。
[0030] 在本发明的一个实施例中,使用氩离子。通过在填充有氩的沉积腔室中点燃等离子体产生氩离子。氩离子朝向基体加速,基体被保持在值优选地为50-300V、更加优选地为100-300V的负电势下。在蚀刻步骤期间的压力优选地为1-15μbar、更加优选地为1-5μbar,温度与在沉积期间相同,优选地为300-800℃、更加优选地为450-750℃。
[0031] 在本发明的另一实施例中,使用金属离子。沉积腔室填充有氩,并且在金属靶处点燃电弧,因此形成金属离子的稠密蒸汽。这些金属离子被朝向保持在高负电势下的基体加速。金属离子优选地为Ti、Zr、Cr、Nb、V、Mo中的一种或者多种,最优选地为Cr。在金属离子蚀刻步骤期间的基体偏压为负值,该值优选地为300-2000V、更加优选地为500-1300V。在蚀刻步骤期间的压力优选地为1-15μbar、更加优选地为1-5μbar,温度与在沉积期间相同,优选地为300-800℃、更加优选地为450-750℃。
[0032] 在离子蚀刻步骤之后,通过将气氛改变为惰性气体,例如He、Ar、Kr、Xe或者这些气体的组合,使用与用于非金属层的相同的涂覆工艺沉积金属中间层。
[0033] 金属中间层在这里指的是包括至少60at%、优选地至少70at%、更加优选地至少80at%、并且最优选地至少90at%的金属元素的层,所述金属元素从Ti、Mo、Al、Cr、V、Y、Nb、Hf、W、Ta和Zr中的一种或多种中选择。
[0034] 所被沉积的金属中间层还能够包括较小量的其他元素,但是所述量处于相应于技术意义上的杂质的水平上,因此不会显著地影响层的延展性。
[0035] 在本发明的一个实施例中,金属中间层是纯金属层,其中从Ti、Mo、Al、Cr、V、Y、Nb、Hf、W、Ta,Zr,优选地Ti、Mo、Al、V、Ta、Zr、Cr,最优选地Ti、Al、Zr、Cr,或者它们的混合物中选择所述金属,其中这些元素中的一种构成纯金属层的至少50at%。
[0036] 在本发明的另一实施例中,金属中间层是亚化学计量陶瓷,优选地是氮化物、氧化物、碳化物、或者硼化物,更加优选地是氮化物MeN,其中Me是金属,所述金属能够是如上所述在纯金属中间层的情形中所包括的金属中的一种或多种金属。金属元素的量为亚化学计量陶瓷的至少60at%、优选地至少70at%、更加优选地至少80at%、并且最优选地至少90at%。
[0037] 金属中间层的平均厚度优选地从5nm到500nm、更加优选地从10nm到200nm、并且最优选地从20nm到70nm。
[0038] 在这里给出的所有厚度均指在位于从目标的直接视线中的适度平坦表面上进行的测量。关于在沉积期间被安装于杆上的刀片,它指的是已经在后刀面侧的中间测量的厚度。关于诸如在例如钻和端铣刀上的那些不规则的表面,在这里给出的厚度指的是在任何适度平坦表面或者具有较大曲率并且距任何边缘或者角部一定距离的表面上测量的厚度。例如,在钻上,在周边上执行测量,并且在端铣刀上,在后刀面侧上执行测量。
[0039] 非金属功能层或者层系统能够具有任何适用于切削刀具的组分,例如氮化物、氧化物、硼化物、碳化物或者它们的组合。优选地,该涂层包括(Al,Ti)N、TiN、(Al,Cr)N、CrN、Al2O3、Ti(B,N)、TiB2、(Zr,Al)N、(Ti,X)N构成的,更加优选地是(Al,Ti)N、Ti(B,N)、(Ti,X)N中的一种或者多种的构成的,并且最优选地为(Al,Ti)N构成的一个或者多个层,在此处X可以是Si、B、C、Ta、V、Y、Cr、Hf、Zr中的一种或者多种。
[0040] 根据本发明的非金属功能层或者层系统能够具有在涂层切削刀具领域中常见的任何涂层结构。
[0041] 在之间发生离子蚀刻和金属中间层沉积的序列的所述层或者层系统在结构和组分上能够是彼此相同的或者不同的。层系统在这里指的是在彼此的顶部上所沉积的至少两个层,而之间不进行任何离子蚀刻步骤或者金属中间层沉积。这种层系统的一个实例是包括至少5个单独层的多层结构。然而,这种多层结构可以包括多达几千个单独层。
[0042] 非金属功能层或者层系统的厚度可以是0.2-5μm、优选地0.3-2μm、最优选地0.5-1.5μm。
[0043] 非金属层或者层系统显著地比金属中间层厚,非金属层的厚度优选地是金属中间层的厚度的3-200倍、更加优选地为5-150倍、最优选地为10-100倍。
[0044] 涂层的总厚度能够在一个宽范围中,这是因为在金属中间层之后进行的蚀刻使得能够沉积比传统的PVD涂层更厚的涂层。包括金属和非金属层这两者的整个涂层的厚度能够是0.6-15μm、优选地1-12μm、并且最优选地2-10μm。
[0045] 在本发明的一个实施例中,以0.2-2μm之间的厚度沉积非金属PVD层或者层系统,随后对其进行蚀刻,之后沉积厚度优选在20到70nm之间的Ti的薄金属中间层。重复这个序列,直至目标涂层厚度得以达到。
[0046] 在本发明的另一实施例中,金属层是Ti和Al的合金。
[0047] 在本发明的又一个实施例中,金属层是Al和Cr的合金。
[0048] 在本发明的一个实施例中,除了如上所述的沉积序列,涂覆工艺还能够包括进一步将金属中间层直接地沉积到非金属层或者层系统上的序列,而不进行离子蚀刻步骤,从而降低沉积时间。
[0049] 当涂覆切削刀具时,通常使用的任何PVD技术能够被用于本发明的方法中。优选地使用阴极电弧蒸发或者磁控溅射,但是还能够使用正在出现的技术例如HIPIMS(高功率脉冲磁控溅射)。即便根据本发明的涂层被称作“PVD涂层”,还能够利用例如PECVD技术(等离子体增强化学气相沉积)沉积该涂层,与传统的CVD涂层相比,PECVD技术将产生具有更加接近PVD涂层的性质的性质的涂层。
[0050] 适用于本发明的基体优选地为切削刀具刀片或者圆形刀具,比如钻、端铣刀等。基体优选地由硬质合金、金属陶瓷、陶瓷、立方氮化硼、或者高速钢中的任何一种制成,更加优选地由硬质合金制成。基体能够被预涂覆有内层,该内层被直接地沉积到基体上以保证与基体的良好粘附力,该内层包括纯金属和/或氮化物,优选地为Ti和/或TiN,所述层为0.005-0.5μm,优选地0.02-0.2μm并且在与其余层相同的涂覆工艺中沉积。
[0051] 本发明还涉及一种涂层切削刀具,所述切削刀具包括设有已经根据上述方法制成的涂层的基体,所述涂层包括一个或者多个序列,所述序列包括金属中间层和非金属层或者层系统。所述金属中间层设置在两个非金属功能层或者层系统之间。
[0052] 金属中间层在这里指的是包括至少60at%、优选地至少70at%、更加优选地至少80at%、并且最优选地至少90at%的金属元素的层,从Ti、Mo、Al、Cr、V、Y、Nb、Hf、W、Ta和Zr中的一种或多种中选择所述金属元素。
[0053] 在本发明的一个实施例中,金属中间层是纯金属层,其中从Ti、Mo、Al、Cr、V、Y、Nb、Hf、W、Ta、Zr或者它们的任何混合物,优选地从Ti、Mo、Al、V、Ta、Zr,最优选地从Ti、Al、Zr或者元素混合物中选择所述金属,其中这些元素中的一种构成纯金属层的至少50at%。
[0054] 在本发明的另一实施例中,金属中间层是亚化学计量陶瓷,优选地是氮化物、氧化物、碳化物、或者硼化物,更加优选地是氮化物MeN,其中Me是能够是如上所述在纯金属中间层的情形中所包括的金属中的一种或多种金属或者它们的混合物。金属元素的量为亚化学计量陶瓷的至少60at%、优选地至少70at%、更加优选地至少80at%、并且最优选地至少90at%。
[0055] 金属中间层的平均厚度能够从5nm到500nm、优选地从10nm到200nm、并且最优选地从20nm到70nm。
[0056] 与非金属层交替的金属中间层的数目在1和20之间、优选地在1到10层之间、更加优选地在2到10层之间、并且最优选地在3-10层之间。
[0057] 非金属层或者层系统能够具有适用于切削刀具的任何组分,比如氮化物、氧化物、硼化物、碳化物、碳氮化物、碳氧氮化物或者它们的组合。优选地,该涂层包括(Al,Ti)N、TiN、Ti(C,N)、(Al,Cr)N、CrN、Al2O3、Ti(B,N)、TiB2、(Zr,Al)N、(Ti,X)N,更加优选地(Al,Ti)N、Ti(B,N)、(Ti,X)N中的一种或者多种的构成的、并且最优选地(Al,Ti)N构成的一个或者多个层,其中X能够是Si、B、C、Ta、V、Y、Cr、Hf、Zr中的一种或者多种。
[0058] 之间设置金属中间层的层或者层系统在结构和组分上能够是彼此相同或者不同的。层系统在这里指的是在彼此的顶部上所沉积的至少两个层,而之间不存在任何金属中间层。这种层系统的一个实例是包括至少5个单独层的多层结构。然而,这种多层结构能够包括多达几千个单独层。
[0059] 设置于金属中间层之间的非金属功能层的厚度能够是0.2-5μm、优选地0.3-2μm、最优选地0.5-1.5μm。
[0060] 非金属层显著地比金属中间层厚,非金属层的厚度优选地是金属中间层的厚度的3-200倍、更加优选地为5-150倍,最优选地为10-100倍。
[0061] 包括金属和非金属层这两者的整个涂层的厚度能够从0.6到15μm、优选地从1到12μm、并且最优选地从2到10μm。
[0062] 在本发明的一个实施例中,非金属功能层或者层系统具有在0.2和2μm之间的厚度,并且薄金属中间层是厚度优选地在20和70nm之间的Ti。
[0063] 在本发明的另一实施例中,金属中间层是Ti和Al的合金。
[0064] 在本发明的又一个实施例中,金属中间层是Al和Cr的合金。
[0065] 适用于本发明的基体优选地为切削刀具刀片或者圆形刀具,例如钻、端铣刀等。基体优选地由硬质合金、金属陶瓷、陶瓷、立方氮化硼、或者高速钢中的任何一种制成,更加优选地由硬质合金制成。
[0066] 具体实施方式实例1
[0067] 使 用 具 有 三 种 不 同 几 何 形 状 CNMG120408-MM、R290-12T0308M-KM 和R390-11T0308M-PM的硬质合金刀片。通过沉积在后刀面侧的中间测量的6μm厚的均质Ti0.33Al0.67N层而根据现有技术涂覆刀片A。在N2气氛中通过阴极电弧蒸发沉积涂层,并且刀片被安装在3维旋转基体台上,并且从两对Ti0.33Al0.67-靶沉积所述的层。
[0068] 根据本发明涂覆刀片B。除了在已经沉积具有0.7-0.8μm厚度的层之后停止沉积、并且利用Ar填充反应器腔室之外,应用与用于刀片A的条件相同的沉积条件。负偏压被施加到刀片并且等离子体被点燃,并且对刀片进行离子蚀刻,即,利用Ar离子轰击。在离子轰击之后,沉积重新开始。保持反应器被Ar填充,一对Ti靶被点燃并且薄的大致30nm的金属Ti层被沉积。然后利用N2气体填充反应器并且沉积新的Ti0.33Al0.67N层。这种过程被重复8次,直至达到10μm的总涂层厚度。Ti0.33Al0.67N层的厚度在1.0-1.5μm之间变化。作为最后步骤,执行表面处理,其中在沉积循环被终止并且腔室被打开之前刀片再次经受离子轰击。
[0069] 实例2
[0070] 利用涂层涂覆具有几何形状CNMG120408-MM的硬质合金刀片,其中通过在N2气氛中使用阴极电弧蒸发沉积4μm的非周期多层(Ti,Al)N涂层而根据现有技术涂覆刀片C。刀片被安装于3维旋转基体台上,布置3维旋转基体台以获得非周期结构。从同时地运行的两对Ti0.33Al0.67-靶和一对Ti0.84Al0.16-靶沉积该多层涂层。
[0071] 根据本发明涂覆刀片D。沉积条件与用于刀片C的条件相同,但是在已经达到1.5μm的厚度之后沉积被停止,并且利用氩填充反应器腔室。对刀片进行氩离子蚀刻,并且沉积大致30nm的Ti0.84Al0.16的薄金属层。利用N2气体填充反应器,沉积Ti0.33Al0.67N/Ti0.84Al0.16N的新的多层。重复该过程,直至8μm的最终涂层厚度得以达到。在被安装于杆上时沉积的CNMG刀片的后刀面侧的中间测量所有的涂层厚度。
[0072] 对实例3-5的说明:
[0073] 下面的表述/术语通常被用于金属切削,并且在下面的表格中予以解释:
[0074] Vc(m/分钟):切削速度,单位:米每分钟
[0075] fz(mm/齿):进给速率,单位:毫米每齿
[0076] z:(数目)刀具中的齿数
[0077] ae(mm):径向切削深度,单位:毫米
[0078] ap(mm):轴向切削深度,单位:毫米
[0079] D(mm):刀具直径,单位:毫米
[0080] 实例3
[0081] 在下面的切削条件期间,在车削操作中测试全部具有几何形状CNMG120408-MM的实例1的刀片A(现有技术)和B(本发明)以及实例2的刀片C(现有技术)和刀片D(本发明):
[0082] 工件材料: 硬钢Ovako825B
[0083] Vc= 160m/分钟
[0084] fz= 0.3mm/转
[0085] a= 2mm
[0086] 冷却剂: 乳剂
[0087] 刀具寿命标准为超过0.3mm的后刀面磨损或者刀片断裂。在磨损类型中用于增加刀具寿命的决定性差异是较轻的月牙洼磨损。
[0088] 刀片A(现有技术)在该应用中持续8分钟,而刀片B(本发明)持续12分钟。
[0089] 刀片C(现有技术)持续13分钟,而刀片D(本发明)持续21分钟。
[0090] 实例4
[0091] 在下面的切削条件期间,在铣削操作中测试具有几何形状R390-11T0308M-PM的实例1的刀片A(现有技术)和B(本发明):
[0092] 工件材料: 硬化Dievar HRc=47
[0093] Vc= 120m/分钟
[0094] fz= 0.12mm/齿
[0095] ae= 2mm
[0096] ap= 4mm
[0097] z= 1
[0098] D= 32mm
[0099] 冷却剂: 乳剂
[0100] 刀具寿命标准是大于0.2mm的后刀面磨损或者大于0.3mm的熔结。
[0101] 刀片A(现有技术)在该应用中仅仅持续13分钟,而刀片B(本发明)持续48分钟。在磨损类型中用于增加刀具寿命的决定性差异是在刃线中较轻的崩刃以及较轻的后刀面磨损。
[0102] 实例5
[0103] 在下面的切削条件期间,在铣削操作中测试具有几何形状R290-12T0308M-KM的实例1的刀片A(现有技术)和B(本发明):
[0104] 工件材料:球墨铸铁,SS0727
[0105] Vc= 400m/分钟
[0106] fz= 0.15mm/齿
[0107] ae= 110mm
[0108] ap= 3mm
[0109] z= 1
[0110] D= 125mm
[0111] 刀具寿命标准为大于0.3mm的后刀面磨损或者大于0.4mm的熔结。
[0112] 在干燥条件下,刀片A(现有技术)在该应用中持续12分钟,而刀片B(本发明)持续20分钟。
[0113] 在湿润条件下,刀片A(现有技术)持续19分钟,而刀片B(本发明)持续35分钟。在磨损类型中用于增加刀具寿命的决定性差异是较轻的刃线崩裂以及较轻的后刀面磨损。