等离子体处理装置及其使用的电极和电极制造方法转让专利

申请号 : CN200810170271.6

文献号 : CN101477944B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 奥村胜弥桧森慎司永关一也松丸弘树松山升一郎高桥俊树

申请人 : 日本奥特克株式会社东京毅力科创株式会社

摘要 :

本发明提供一种等离子体处理装置及其使用的电极以及电极制造方法,该等离子体处理装置是在被处理基板上实施等离子体处理的等离子体处理装置,包括:收纳所述被处理基板的能够减压的处理容器;设置在所述处理容器内的第一电极;向所述处理容器内供给处理气体的供给系统;和用于生成所述处理气体的等离子体,在所述处理容器内形成高频电场的电场形成系统,其中,所述第一电极具有离散地形成在所述第一电极的主面上并且向着生成所述等离子体的空间一侧突出的多个凸部,在所述第一电极的主面上,在所述凸部之间设置有介电体,在所述第一电极的主面上,所述凸部的密度被设定成从电极中心部向着电极边缘部逐渐增大。

权利要求 :

1.一种等离子体处理装置,是在被处理基板上实施等离子体处理的等离子体处理装置,其特征在于,包括:收纳所述被处理基板的能够减压的处理容器;

设置在所述处理容器内的第一电极;

向所述处理容器内供给处理气体的供给系统;和用于生成所述处理气体的等离子体,在所述处理容器内形成高频电场的电场形成系统,其中,所述第一电极具有离散地形成在所述第一电极的主面上并且向着生成所述等离子体的空间一侧突出的多个凸部,在所述第一电极的主面上,在所述凸部之间设置有介电体,在所述第一电极的主面上,所述凸部的密度被设定成从电极中心部向着电极边缘部逐渐增大。

2.如权利要求1所述的等离子体处理装置,其特征在于:从与所述第一电极的所述主面相反一侧的里面供给用于生成所述等离子体的高频电力。

3.如权利要求1所述的等离子体处理装置,其特征在于:在所述处理容器内还具有与所述第一电极平行相向的第二电极,从与所述第二电极的主面相反一侧的里面供给用于生成所述等离子体的高频电力。

4.如权利要求1中所述的等离子体处理装置,其特征在于:在所述第一电极的主面上,使所述凸部的高度和电极径向的宽度为由下述式(1)δ=(2/ωσμ)1/2        ……(1)所表达的表层深度δ的三倍以上,

其中,ω=2πf,f:频率,σ:导电率,μ:导磁率。

5.如权利要求1所述的等离子体处理装置,其特征在于:所述凸部的密度是所述凸部的面积密度。

6.如权利要求1所述的等离子体处理装置,其特征在于:所述凸部具有一定的尺寸,所述凸部的密度是所述凸部的个数密度。

7.如权利要求1所述的等离子体处理装置,其特征在于:所述凸部形成为圆柱状。

8.如权利要求1所述的等离子体处理装置,其特征在于:所述凸部分别形成为环状,其整体配置成同心圆状。

9.一种等离子体处理装置,是在被处理基板上实施等离子体处理的等离子体处理装置,其特征在于,包括:收纳所述被处理基板的能够减压的处理容器;

设置在所述处理容器内的第一电极;

向所述处理容器内供给处理气体的供给系统;和用于生成所述处理气体的等离子体,在所述处理容器内形成高频电场的电场形成系统,其中,所述第一电极具有离散地形成在所述第一电极的主面上并且朝向生成所述等离子体的空间一侧凹进的多个凹部,在所述凹部内设置有介电体,

在所述第一电极的主面上,所述凹部的密度被设定成从电极中心部向着电极边缘部逐渐减小。

10.如权利要求9所述的等离子体处理装置,其特征在于:从与所述第一电极的所述主面相对一侧的里面供给用于生成所述等离子体的高频电力。

11.如权利要求9所述的等离子体处理装置,其特征在于:在所述处理容器内还具备与所述第一电极平行相向的第二电极,从与所述第二电极的主面相对一侧的里面供给用于生成所述等离子体的高频电力。

12.如权利要求9所述的等离子体处理装置,其特征在于:在所述第一电极的主面上,使所述凹部的深度和电极径向的宽度为由下述式(1)δ=(2/ωσμ)1/2     ……(1)所表达的表层深度δ的三倍以上,

其中,ω=2πf,f:频率,σ:导电率,μ:导磁率。

13.如权利要求9所述的等离子体处理装置,其特征在于:所述凹部的密度是所述凹部的面积密度。

14.如权利要求9所述的等离子体处理装置,其特征在于:所述凹部具有一定的尺寸,所述凹部的密度是所述凹部的个数密度。

15.如权利要求9所述的等离子体处理装置,其特征在于:所述凹部形成为圆柱状。

16.一种电极,是用于在高频放电方式的等离子体处理装置中生成等离子体的、并被配置在处理容器内的电极,其特征在于,包括:具有在相对所述等离子体的主面上离散地形成有多个凸部的电极主体,和在所述主面上设置在所述凸部之间的介电体,其中,在所述主面上,所述凸部的密度被设定成从电极中心部向着电极边缘部逐渐增大。

17.一种电极制造方法,是用来制造权利要求16所述的电极的制造方法,其特征在于,包括:使在电极基板的主面上具有对应于所述凸部的开口部的掩模被覆盖的工序,从所述掩模的上面向所述电极基板的主面上喷镀导电性的金属或者半导体而在所述开口部内形成所述凸部的工序,从所述电极基板的主面上除去所述掩模的工序,和在除去了所述掩模后的所述电极基板的主面上喷镀介电体而形成第一介电体膜的工序。

18.如权利要求17所述的制造方法,其特征在于:还具有在将所述第一介电体膜形成为覆盖所述电极基板的整个主面的厚度之后,在所述第一介电体膜的上面喷镀电极材料而形成静电卡盘用的电极膜的工序,和然后,在所述电极膜的上面喷镀介电体而形成第二介电体膜的工序。

19.一种电极,是用于在高频放电方式的等离子体处理装置中生成等离子体的、并被配置在处理容器内的电极,其特征在于,包括:具有在相对所述等离子体的主面上离散地形成多个凹部的电极主体,和设置在所述凹部内的介电体,其中,

在所述主面上,所述凹部的密度被设定成从电极中心部向着电极边缘部逐渐减小。

20.一种电极制造方法,是用来制造权利要求19所述的电极的电极制造方法,其特征在于,包括:使在电极基板的主面上具有对应于所述凹部的开口部的掩模被覆盖的工序,从所述掩模的上面向所述电极基板的主面上喷设固体颗粒或者液体,物理地除去所述电极基板的所述开口部内的电极基板部分而形成所述凹部的工序,从所述电极基板的主面上除去所述掩模的工序,和在除去了所述掩模后的所述电极基板的主面上喷镀介电体而形成第一介电体膜的工序。

21.如权利要求20所述的制造方法,其特征在于:还具有在将所述第一介电体膜形成为覆盖所述电极基板的整个主面的厚度之后,在所述第一介电体膜的上面喷镀电极材料而形成静电卡盘用的电极膜的工序,和然后,在所述电极膜的上面喷镀介电体而形成第二介电体膜的工序。

说明书 :

技术领域

本发明涉及对被处理基板施行等离子体处理的技术,特别是涉及将高频波供给到电极而生成等离子体的高频放电方式的等离子体处理技术。本发明特别涉及制造半导体设备的半导体处理中所利用的等离子体处理技术。这里,所谓半导体处理是指,为了在半导体晶片或LCD(液晶显示器)或FPD(平板显示器)用的玻璃基板等被处理基板上以规定的图形形成半导体层、绝缘层、导电层等,借此在该被处理基板上制造包括半导体设备,连接于半导体设备的配线、电极等在内的结构物而实施的各种处理。

背景技术

在半导体设备或者FPD的制造过程中的蚀刻、沉积、氧化、溅射等处理中,为了在比较低的温度下在处理气体中进行良好的反应而多利用等离子体。一般地,对于等离子体处理装置来说,作为生成等离子体的方式,大体上可分为利用电晕(glow)放电或者高频放电,和利用微波。
在高频放电方式的等离子体处理装置中,在处理容器或者反应室内平行地配置上部电极和下部电极。在下部电极之上载置被处理基板(半导体晶片、玻璃基板等),经由整合器将等离子体生成用的高频电压施加于上部电极或者下部电极。通过由该高频电压所生成的高频电场来使电子加速,因电子与处理气体的冲击电离而发生等离子体。
最近,随着制造过程中的设计规则的微细化而对等离子体处理要求低压下的高密度等离子体。因此,在上述这种高频放电方式的等离子体处理装置中,开始使用比现有频率(一般来说27MHz以下)高很多的高频范围(50MHz以上)的频率。但是,如果提高高频放电的频率,则从高频电源通过供电棒而施加于电极里面的高频电力,因为趋肤效应而传到电极表面并从电极主面(与等离子体相对的面)的边缘部向中心部流动。如果高频电流在一样的电极主面上从边缘部向中心部流动,则电极主面的中心部处的电场强度比边缘部处的电场强度变高。因而,所生成的等离子体的密度也是电极中心部一侧比电极边缘部一侧变高。在等离子体密度高的电极中心部,等离子体的电阻率降低,在相对的电极处也是电流集中于电极中心部,等离子体密度的不均匀性进一步增强。
为了消除该问题,公知有由高电阻构件来构成高频电极的主面中心部(例如日本专利特开2000—323456号公报)。在该方法中,由高电阻构件来构成连接于高频电源一侧的电极的主面(等离子体接触面)的中央部。通过由该高电阻构件作为焦耳热而消耗很多高频电力,使得电极主面的电场强度在电极中心部比电极外周部相对地降低。从而,修正上述那种等离子体密度的不均匀性。
但是,在上述那种高频放电方式的等离子体处理装置中,由高电阻构件来构成高频电极的主面中心部,存在着因焦耳热而引起的高频电力的消耗(能量损失)增多的可能性。

发明内容

本发明是鉴于这种现有技术的问题而成的,其目的在于提供一种可以有效地实现等离子体密度的均匀化的高频放电方式的等离子体处理装置和等离子体处理装置用的电极板。
本发明的另一个目的在于提供一种可以高效率地制作在根据本发明的等离子体处理装置用的电极板上整体设置静电卡盘的结构的电极板制造方法。
为了实现上述目的,本发明的第一等离子体处理装置,是在能够减压的处理容器内设置第一电极,在上述处理容器内形成高频电场并且流入处理气体而生成上述处理气体的等离子体,在上述等离子体的下面对被处理基板实施期望的等离子体处理的等离子体处理装置,其中,在上述第一电极的主面上,离散地设置有向着生成上述等离子体的空间突出的多个凸部。在该装置构成中,如果能够将等离子体生成用的高频施加于第一电极,则将高频施加于其他电极,例如施加于在平行平板型中与第一电极相对的第二电极也是可能的。在将高频施加于第一电极的场合,可以从与第一电极的主面相对一侧的里面供给高频。
在如这样从里侧将高频供给到第一电极的场合,高频电流因趋肤效应,使得高频电流在第一电极的主面上从电极边缘部向电极中心部流动时,流过凸部的表面层。由于凸部向等离子体空间一侧突出,所以,以比凸部以外的部分也就是主面底面部要低的阻抗与等离子体电气结合。因此,由流过电极的主面的表面层的高频电流而运动的高频电力主要从凸部的顶面向等离子体放出。这样一来,离散地设置在第一电极的主面上的多个凸部分别作为用来将高频电力供给到等离子体的小电极而发挥功能。通过适当选择该凸部的属性(形状、尺寸、间隔、密度等),而能够将第一电极对等离子体的高频电力供给特性控制成期望的特性。
例如,为了保证上述这种凸部处的高频电力供给功能,优选是在第一电极的主面上,对凸部的高度和电极径向的宽度取为由下述式(1)所表达的表层深度δ的三倍以上:
δ=(2/ωσμ)1/2……(1)
式中,ω=2πf(f:频率),σ:导电率,μ:导磁率。
此外,为了提高电极径向处的电场强度或者等离子体密度的均匀性,优选是,在第一电极的主面上,使凸部的面积密度从电极中心部向电极边缘部逐渐增大的构成。例如,在将凸部形成为一定尺寸的场合,可以使凸部的个数密度从电极中心部向电极边缘部逐渐增大的分布特性。
此外,作为优选的一种方式,可以将凸部形成为圆柱状。或者,将凸部分别形成为环状,并且总体配置成同心圆状的构成也是可能的。
此外,为了提高上述这种凸部产生的高频电力放出功能,优选是,在第一电极的主面上,至少在凸部以外的部分的上面设置介电体。
本发明的第二等离子体处理装置,是在能够减压的处理容器内设置第一电极,在上述处理容器内形成高频电场并且流入处理气体而生成上述处理气体的等离子体,在上述等离子体的下面对被处理基板实施期望的等离子体处理的等离子体处理装置,其中,在上述第一电极的主面上,与生成上述等离子体的空间相对离散地设置有多个凹进的凹部。在该装置构成中也是,如果能够将等离子体生成用的高频施加于第一电极,则将高频施加于其他电极例如在平行平板型中与第一电极相对的第二电极也是可能的。在将高频施加于第一电极的场合,可以从与第一电极的主面相对一侧的里面供给高频。
由于第一电极的主面上的凹部与等离子体空间一侧相对地凹入,所以,以比凹部以外的部分(电极主面的顶面部)高的阻抗来与等离子体电气结合。因此,因流过第一电极的主面的表面层的高频电流而运动的高频电力主要从凹部以外的部分(电极主面的顶面部)向等离子体放出。这样一来,在第一电极的主面上离散地配置的多个凹部分别作为抑制对等离子体的高频电力的供给的电极掩模而发挥功能。通过适当选择该凹部的属性(形状、尺寸、间隔、密度等),而能够将第一电极对等离子体生成的作用控制成期望的特性。
例如,为了保证上述这种凹部产生的高频电力供给掩模功能,优选是在第一电极的主面上,使凹部的高度和电极径向的宽度取为上述表层深度δ的三倍以上。
此外,为了提高电极径向处的电场强度或者等离子体密度的均匀性,优选是在第一电极的主面上,使凹部的面积密度从电极中心部向电极边缘部逐渐加大的构成。例如,在将凹部形成为一定尺寸的场合,可以取为凹部的个数密度从电极中心部向电极边缘部逐渐减小的分布特性。
此外,作为优选的一种方式,可以使凹部形成为圆柱状。或者,为了提高上述这种凹部产生的高频电力供给掩模功能,优选在第一电极的主面上至少在凹部内设置介电体的构成。
本发明的第三等离子体处理装置,是在能够减压的处理容器内设置第一电极,在上述处理容器内形成高频电场并且流入处理气体而生成上述处理气体的等离子体,在上述等离子体之下对被处理基板实施期望的等离子体处理的等离子体处理装置,其中,在上述第一电极的主面上设置介电体,使上述第一电极的中心部一侧的上述介电体的厚度大于电极边缘部一侧的上述介电体的厚度。在该装置构成中也是,如果能够将等离子体生成用的高频施加于第一电极,则将高频施加于其他电极例如在平行平板型中与第一电极相对的第二电极也是可能的。在将高频施加于第一电极的场合,可以从与第一电极的主面相对一侧的里面供给高频。
在上述装置构成中,因为对等离子体空间一侧相对的电极中心部的阻抗大而电极边缘部一侧的阻抗低,所以电极边缘部一侧的高频电场增强,而另一方面,电极中心部一侧的高频电场减弱,从而,电场强度或者等离子体密度的均匀性得到改善。
在上述装置构成中,介电体的优选轮廓是从第一电极的电极中心部一侧向电极边缘部一侧,介电体的厚度逐渐(更好是拱形地)减小的构成。此外,优选是在包括电极中心部的第一直径的内侧处,介电体的厚度几乎恒定的构成。在该场合,在第一直径的外侧处,介电体的厚度也可以向电极边缘部一侧倾斜地减小,或者也可以是在大于第一直径的第二直径的内侧处几乎恒定,在第二直径的外侧处向电极边缘部一侧倾斜地减小。虽然介电体的面积尺寸可以根据被处理基板的尺寸而任意地设定,但是典型地也可以设定成几乎同一尺寸。也就是说,介电体的厚度成为最小的边缘部的位置可以设定在与被处理基板的边缘部相对的位置附近。此外,因为在给出良好的面内均匀性的介电体的介电率与电极中心部处的介电体的厚度之间存在着一定的相关关系,所以只要对应于使用的介电体的介电率设定电极中心部处的介电体的厚度即可。
此外,作为优选的一种方式,可以在第一电极的主面上设置覆盖介电体的一部分、例如边缘部附近的导电性的屏蔽构件。如果使用该构成,则在被屏蔽构件所覆盖的区域中,削弱介电体的电场强度降低效果是可能的,通过改变屏蔽构件的开口部的形状和/或尺寸而能够调整电场强度分布。该屏蔽构件优选是能够装卸、即可更换地安装。
此外,作为优选的一种方式,在第一电极的主面上,使从在介电体的外周边缘径向外侧离开期望距离的位置外侧的电极部分向等离子体生成空间伸出期望的突出量的构成。在该电极结构中,通过在介电体的径向外侧设置伸出部,而在被处理基板的边缘部附近的区域处,在增高电场强度的方向上控制或者调整电场强度分布特性。该伸出部进行的电场强度分布控制可以通过伸出部的伸出量或者伸出台阶部的位置而加减或者可变。
此外,作为另外的优选的一种方式,在第一电极的主面上,使介电体向等离子体生成空间伸出期望的突出量的构成也是可能的。在该电极结构中,在与介电体相对的等离子体生成空间的各位置上,介电体的伸出量在增高电场强度的方向上控制或者调整电场强度分布特性。
进而,如果采用另外的优选的一种方式,在第一电极的主面上,在介电体的内部设置有空洞,在该空洞中填入流动性的介电性物质(最好是有机溶剂)。在该构成中,通过适当选定或者设定进入空洞中的介电性物质的量或者占有空间形状,任意地调整介电体总体的介电率是可能的。该空洞在固体的介电体中形成也是可能的,还可以由固体来构成第一电极的主面的至少表面,由电极母体材料(导电体)来构成内部的壁面或者凹部。
在上述第一、第二或者第三等离子体处理装置中,即使在不将高频施加于设置上述之类凸部、凹部或者介电体的第一电极的场合,例如即使在将第一电极接地于接地电位的场合,也可以对等离子体生成空间产生与上述同样的作用。
在本发明的等离子体处理装置中,可以将用来靠库仑力吸附保持被处理基板的静电卡盘设在高频电源一侧的第一电极的主面的上面,或者也可以设置在相对电极、即第二电极的主面上。在将静电卡盘设置在第一电极的主面上的场合,经由处理容器而将第二电极连接于接地电位,可以使等离子体内的高频电流通过处理容器而流到地面。
本发明的等离子体处理装置使用的第一电极板是在高频放电方式的等离子体处理装置中,为了生成等离子体而在处理容器内所设置的电极板,在与等离子体相对的主面上离散地设置有多个凸部。该构成的电极板可以得到与上述第一等离子体处理装置中的第一或者第二电极同样的作用。
用来制造该第一电极板的本发明的电极板制造方法包括使具有对应于上述凸部的开口的掩模覆盖于电极主体的主面的工序,从上述掩模的上面向上述电极主体的主面上喷镀导电性的金属或者半导体而在上述开口内形成上述凸部的工序,以及从上述电极主体的主面上除去上述掩模的工序。
本发明的等离子体处理装置使用的第二电极板是在高频放电方式的等离子体处理装置中,为了生成等离子体而在处理容器内设置的电极板,在与等离子体相对的主面上离散地设置有多个凹部。该构成的电极板可以得到与上述第二等离子体处理装置中的第一或者第二电极同样的作用。
用来制造该第二电极板的本发明的电极板制造方法包括:使具有对应于上述凹部的开口的掩模覆盖于电极基板的主面的工序,从上述掩模的上面向上述电极基板的主面上喷射固体颗粒或者液体而物理地除去上述电极基板在上述开口内的部分而形成上述凹部的工序,以及从上述电极基板的主面上除去上述掩模的工序。
在本发明的电极板制造方法中,优选是,具有在除去了掩模后的电极基板的主面上喷镀介电体而形成第一介电体膜的工序。从而,可以在第一电极板处在凸部以外的部分上,在第二电极板处,在凹部以内设置用来提高阻抗比的介电体。
此外,为了在第一电极板或者第二电极板上整体地设置静电卡盘,优选是,覆盖电极基板的整个主面而形成第一介电体膜,在第一介电体膜的上面喷镀电极材料而形成静电卡盘用的电极膜,在电极膜的上面喷镀介电体而形成第二介电体膜。如果用这种方法,则可以在第一或者第二电极板的主面上同时一体地形成用来提高阻抗比的介电体和静电卡盘用的下部绝缘膜。
本发明的等离子体处理装置使用的第三电极板是在高频放电方式的等离子体处理装置中,为了生成等离子体而在处理容器内所设置的电极板,在与等离子体相对的主面上设置介电体,使上述第一电极的中心部处的上述介电体的厚度大于电极边缘部处的上述介电体的厚度的构成。该构成的电极板可以得到与上述第三等离子体处理装置中的第一或者第二电极同样的作用。

附图说明

图1是表示根据本发明的一个实施方式的等离子体蚀刻装置的构成的纵截面图。
图2是表示根据本发明的第一实施方式的基座结构的平面图。
图3是表示根据本发明的第一实施方式的基座结构的局部放大纵截面图。
图4是表示根据本发明的第一实施方式的基座结构中的凸部的个数密度分布特性之一例的图。
图5是表示图1中所示的等离子体蚀刻装置中的高频放电的结构的模式图。
图6是表示图1中所示的等离子体蚀刻装置中的流过高频电极的主面高频电流的方向性的平面图。
图7是表示第一实施方式的基座结构中的高频电流的流动与高频电力(电场)的放射的简要纵截面图。
图8是表示流过导体的电磁波(高频电流)的纵深方向上的衰减特性的特性图。
图9是表示在第一实施方式中以电极中心部和边缘部的凸部个数密度的比率为参数时的电极半径方向上的电场强度分布特性的图。
图10是表示根据第一实施方式的在基座上整体地设置静电卡盘的构成的局部纵截面图。
图11是表示图10的带静电卡盘基座结构中的凸部与底面部的阻抗比特性的图。
图12A~图12F是按工序顺序表示图10的带静电卡盘基座结构的制造方法的图。
图13是表示根据第一实施方式的基座结构的一个变形例的图。
图14是表示根据第一实施方式的将电极凸部结构运用于上部电极的构成例的纵截面图。
图15是表示根据本发明的第二实施方式的电极结构的平面图。
图16是表示图15的电极结构的局部放大纵截面图。
图17是表示图15的电极结构中的凹部的个数密度分布特性之一例的图。
图18A~图18F是按工序顺序表示根据第二实施方式的在电极结构上整体地设置静电卡盘的结构的制造方法的图。
图19是表示根据第三实施方式的下部电极结构的平面图。
图20是表示根据第三实施方式的上部电极的平面图。
图21是表示第三实施方式中的平行平板电极结构之一例的图。
图22是表示图21的平行平板电极结构中以上部电极中心部的膜厚为参数的电极间的径向的电场强度分布特性的图。
图23A~图23D是表示第三实施方式中的关于上部电极的介电体膜的膜厚轮廓的更具体的实施例的图。
图24A和图24B是表示分别由图23A~图23D的实施例和理想的轮廓所得到的电极间的径向的电场强度分布特性的图。
图25A~图25D是表示第三实施方式中的关于上部电极的介电体膜的膜厚轮廓的更具体的另一个实施例的图。
图26A和图26B是表示由图25A~图25D的实施例所得到的电极间的径向的电场强度分布特性的图。
图27A~图27C是表示第三实施方式中的关于上部电极的介电体膜的膜厚和膜质轮廓的更具体的另一种实施例的图。
图28A和图28B是表示由图27A~图27C的实施例所得到的电极间的径向的电场强度分布特性的图。
图29是表示根据图28A和图28B的数据点所作成的在实用上给出足够的面内均匀性的介电体膜的介电率与电极中心部的膜厚的相关关系的图。
图30A和图30B是针对有机膜蚀刻的蚀刻速度分布特性,对比表示将第三实施方式运用于上部电极的实施例A和比较例B的图。
图31A和图31B是对比表示将第三实施方式运用于下部电极的结构的实施例和比较例的图。
图32A和图32B是针对有机膜蚀刻的蚀刻速度分布特性,对比表示图31A的实施例和图31B的比较例的图。
图33A和图33B是根据本发明的另一个实施方式的上部电极结构的实施例的局部截面图。
图34是表示由图33A和图33B的实施例所得到的电极间的径向的电场强度分布特性的图。
图35A~图35C是分别表示根据本发明的又一个实施方式的上部电极结构的实施例、比较例、和参考例的局部截面图。
图36是表示分别由图35A~图35C的实施例、比较例、和参考例所得到的电极间的径向的电场强度分布特性的图。
图37A~图37C是分别表示上部电极结构的另外两个实施例和比较例的局部截面图。
图38是表示分别由图37A~图37C的实施例和比较例所得到的氧化膜蚀刻的蚀刻速度(规格化值)分布特性的图。
图39A~图39C是分别表示根据本发明的又一个实施方式的上部电极结构的实施例、比较例、和参考例的局部截面图。
图40是表示分别由图39A~图39C的实施例、比较例、和参考例所得到的电极间的径向的电场强度分布特性的图。
图41是表示根据图35A~图38的实施方式的变形例的上部电极结构的局部截面图。
图42A~图42D是表示根据本发明的又一个实施方式的上部电极结构的局部截面图。
图43是表示图42A~图42D的实施方式中的具体的实施例的局部截面图。
图44是表示由图43的实施例所得到的电极间的径向的电场强度分布特性的图。
图45A~图45D是表示根据图42A~图42D的实施方式的变形例的上部电极结构的局部截面图。

具体实施方式

在以下参照附图就本发明的实施方式进行说明。其中,在以下的说明中,就具有大致同一的功能和构成的构成要素而言,标注同一标号,并只在必要的情况下进行重复说明。
图1是表示根据本发明的一个实施方式的等离子体蚀刻装置的构成的纵截面图。该等离子体处理装置作为RIE型等离子体蚀刻装置而构成。等离子体处理装置具有例如由铝或者不锈钢等金属制成的圆筒形腔室(处理容器)10。腔室10被安全接地。
在腔室10内,配置有作为被处理基板例如载置半导体晶片W的圆板状的下部电极或者基座12。该基座12例如由铝制成,经由绝缘性的筒状保持部14而被支撑在从腔室10的底面垂直向上延伸的筒状支撑部16上。在筒状保持部14的上面,配置着以环状围住基座12的上面的例如由石英制成的聚焦环18。
在腔室10的侧壁与筒状支撑部16之间形成有排气路20。在该排气路20的入口或者中途安装着环状的隔板22,并且在底部配置有排气口24。排气装置28经由排气管26连接于该排气口24。排气装置28具有真空泵,能够将腔室10内的处理空间减压到规定的真空度。在腔室10的侧壁上安装有开闭半导体晶片的搬入搬出口的门阀30。
在基座12上,经由整合器34以及供电棒36而电气连接着等离子体生成用的高频电源32。该高频电源32将规定的高频例如60MHz的高频电力施加于下部电极也就是基座12。其中,在腔室10的顶棚部,作为接地电位的上部电极而配置有后述的喷头38。因此,来自高频电源32的高频电压以电容方式而施加于基座12和喷头38之间。
在基座12的上面,配置有用于以静电吸附力来保持半导体晶片W的静电卡盘40。该静电卡盘40将由导电膜所组成的电极40a夹入一对绝缘膜40b、40c之间。直流电源42经由开关43而电气连接于电极40a。通过来自直流电源42的直流电压而能够由库仑力将半导体晶片W吸附保持在基座上。
在基座12的内部,配置有例如在圆周方向延长的冷却剂室44。在该冷却剂室44中,由致冷单元46经由配管48、50来循环供给规定温度的冷却剂,例如冷却水。通过冷却剂的温度来控制静电卡盘40上的半导体晶片W的处理温度。而且,来自传热气体供给部52的传热气体例如He气体,经由气体供给线54而被供给到静电卡盘40的上面和半导体晶片W的底面之间。
对于顶棚部的喷头38来说,其包括具有多个气体通气孔56a的下面的电极板56,和可装卸地支撑该电极板56的电极支撑体58。在电极支撑体58的内部设置有缓冲室60,从处理气体供给部62的气体供给配管64连接于该缓冲室60的气体引入口60a。
在腔室10的周围,配置有以环状或者同心状延长的磁铁66。在腔室10内,在喷头38和基座12之间的空间中,由高频电源32而形成竖直方向的RF电场。通过高频的放电而能够在基座12的表面附近生成高密度的等离子体。
为了控制该等离子体蚀刻装置内的各部例如排气装置28、高频电源32、静电卡盘用的开关43、致冷单元46、传热气体供给部52和处理气体供给部62等的动作,而设置控制部68。控制部68还与主计算机(图未示出)等连接。
在该等离子体蚀刻装置中,在进行蚀刻的场合,进行以下这种操作。也就是说,首先使门阀30成开状态而将作为加工对象的半导体晶片W搬入腔室10,并载置于静电卡盘40上。然后,由处理气体供给部62以规定的流量和流量比将蚀刻气体(一般来说是混合气体)导入腔室10内,通过排气装置28来使腔室10内的压力成为设定值。而且,从高频电源32以规定的功率向基座12供给高频电力。此外,通过直流电源42而将直流电压施加于静电卡盘40的电极40a,从而将半导体晶片W固定在静电卡盘40上。从喷头38所喷出的蚀刻气体在两电极12、38之间因高频的放电而被等离子体化,通过由该等离子体所生成的自由基或者离子而将半导体晶片W的主面蚀刻。
在该等离子体蚀刻装置中,对基座(下部电极)12施加明显高于现有(一般来说27MHz以下)的频率范围(50MHz以上)的高频。因此,以最佳的离解状态而使等离子体高密度化,即使在更低压的条件下也能够形成高密度等离子体。
图2、图3和图4是分别表示根据本发明的第一实施方式的基座结构(基座)12的平面图,表示该结构的放大纵截面图,表示该结构中的凸部的个数密度分布特性之一例的图。在基座12的主面(在本实施方式中基座12的上面,也就是等离子体生成空间一侧的面)上,离散地配置有多个由导电体或者半导体组成的一定尺寸的圆柱形凸部70。这些凸部70分别构成用来向等离子体给出高频电力或者高频电场的小电极。优选是如图4中所示那样以从电极中心部向电极边缘部逐渐加大个数密度分布或者面积密度分布而配置于基座12的主面上。
图5是表示图1中所示的等离子体蚀刻装置中的,高频放电的结构的模式图。如图5中所示,如果来自高频电源32的高频电力供给到基座12,则因基座(下部电极)12与上部电极38之间的高频放电,而在半导体晶片W附近生成蚀刻气体的等离子体PZ。所生成的等离子体PZ向四周,特别是向上方和半径方向的外侧扩散。等离子体PZ中的电子电流或者离子电流通过上部电极38或者腔室侧壁等而向地面流动。
图6是表示图1中所示的等离子体蚀刻装置中的,流过高频电极的主面的高频电流的方向性的平面图。在基座12处,从高频电源32经由供电棒36而施加于基座里面或者背面高频电力,因趋肤效应而传播到电极表面层。如图6中所示,高频电流i在基座12的主面上从边缘部向中心部以逆放射状而流动。
图7是表示第一实施方式的基座结构(基座12)中的高频电流的流动与高频电力(电场)的放射的简要截面图。如图7中所示,在本实施方式中,高频电流i在基座12的主面上流过凸部70的表面层。由于凸部70向上部电极38一侧、即等离子体PZ侧突出,所以,以低于主面的底面部12a的阻抗与等离子体PZ电气结合。因此,由于流过基座12的主面的表面层的高频电流i而运动的高频电力主要从凸部70的顶端向等离子体PZ放出。
其中,如图3中所示,优选是在凸部70的周围(底面部12a之上)设置有介电体72的构成。因此,在基座12的主面上可以加大凸部70与底面部12a的阻抗比Z12a/Z70。也就是说,可以提高通过凸部70来给予等离子体PZ的高频电力的比率或者电力供给率。
这样一来,在本实施方式中,在基座12的主面上离散地设置的多个凸部70分别作为用来将高频电力供给到等离子体PZ的小电极而发挥功能。通过选择该凸部70的属性(形状、尺寸、间隔、密度等),可以把作为小电极的集合体的基座12的高频电力供给特性设定成期望的特性。
例如,如上(图4)所述,可以将凸部70的个数密度取为从电极中心部向电极边缘部逐渐加大的分布特性。因此,如图9中所示,可以改善由基座12给予等离子体PZ的高频电力或者高频电场的均匀性(特别是电极半径方向的均匀性)。
图9是表示在第一实施方式中以电极中心部与边缘部的凸部个数密度的比率为参数时的电极半径方向上的电流强度分布特性的图。在图9的例子中,设基座12的半径为150mm,来表示基座12的半径方向的电场强度分布。这里,将电极中心部的凸部70的个数密度Nc与电极边缘部的凸部70的个数密度Ne的比率Ne/Nc变更成1(倍)、2(倍)、4(倍)、6(倍)、8(倍)。比率Ne/Nc越大,则电场强度的均匀性越改善,进而等离子体密度的均匀性越得到改善。
在凸部70的其他属性中,特别重要的是尺寸。如果凸部70的高度过小,更准确地说如果小于表层深度(skin depth),则在基座12的主面上,高频电流i的一部分或者大部分径直通过凸部70的下面。因此,因为这个原因,从凸部70向等离子体PZ所供给的高频电场减弱。这里,表层深度δ,是流过导体的表面层的高频电流的振幅在深度δ处以1/e衰减这样的因素,由下述的式(1)给出:
δ=(2/ωσμ)1/2………(1)
式中,ω=2πf(f:频率),σ:导电率,μ:导磁率。
图8是表示流过导体的电磁波(高频电流)的深度方向上的衰减特性的特性图。如图8中所示,由于趋肤效应,流过导体的表面层的电磁波(高频电流)的振幅在导体的深度方向上衰减,在表层深度δ的三倍的深度处衰减到大约5%。因而,通过将凸部70的高度设定成表层深度δ的三倍以上的高度,使高频电流i的大部分(大约95%以上)流入凸部70,可以高效率地从凸部70向等离子体PZ放出高频电力。例如,将基座12和凸部70的材质取为铝,设高频电源32的频率为100MHz的场合,表层深度δ为8μm。因而,优选将凸部70的高度设定成24μm以上。
凸部70的宽度尺寸,特别是电极半径方向的宽度尺寸也是重要的。为了要使高频电流i充分地流入到凸部70的顶面,只要电极半径方向的宽度尺寸大就可以。该宽度尺寸可以设定成表层深度δ的三倍以上,优选是在频率100MHz下设定成30μm~500μm的范围内。
凸部70之间的距离间隔也可以选择成使凸部70与底面部12a的阻抗比Z12a/Z70优化的值。该间隔例如在100MHz下优选是设定成100μm~1mm的范围内。
图10是表示根据第一实施方式的在基座上整体地设置静电卡盘的构成的局部纵截面图。如图10中所示,在基座12的主面上,更准确地说是在凸部70和介电体72的上面形成静电卡盘40的下部绝缘膜40b。在下部绝缘膜40b的上面形成电极膜40a,进而,在电极膜40a的上面形成上部绝缘膜40c。
图11是表示图10的带静电卡盘基座结构中的凸部与底面部的阻抗比特性的图。图11的横轴的参数是基座12的主面上的凸部70(准确说是突部顶面)的总面积S70与底面部12a的总面积S12a的比率S12a/S70。图11的纵轴示出了从凸部70的顶面到电极膜40a的距离(D1)与从基座底面12a到电极膜40a的距离(D2)的比率D2/D1。图11的函数值示出了基座12的主面上的凸部的阻抗Z70与底面部12a的阻抗Z12a的比率Z12a/Z70。
在图10中所示的层积结构中,静电卡盘40的下部绝缘膜40b的膜厚D1是重要的。只要其他条件允许,优选是使该膜厚D1相对地小些。如图11中所示,D2/D1越大,则可以加大Z12a/Z70。根据图11,该比率D2/D1最好是选成2(倍)以上的值。
此外,对于通过减小比率S12a/S70的方法来说,即通过提高凸部70的占有面积率,也可以加大阻抗比Z12a/Z70(图11的函数值)。如上所述,阻抗比Z12a/Z70越大,则从凸部70对等离子体PZ的高频电力供给率可以越高。根据图11,比率S12a/S70优选是选择成4(倍)以下。
图12A~图12F是按工序顺序表示图10的带静电卡盘基座结构的制造方法的图。
首先,如图12A中所示,在例如由铝制成的基座主体(电极基板)12的主面上,覆盖具有对应于凸部70的开口部74a的例如由树脂制成的掩模74。在该掩模74中,开口部74a的平面形状和平面尺寸规定凸部70的平面形状和平面尺寸。开口部74a的深度规定凸部70的高度尺寸(D2—D1:例如150μm)。
接着,如图12B中所示,从掩模74的上面向基座主体12的整个主面上喷镀凸部70的材料,例如喷镀铝(Al)。从而,在掩模74的开口部74a内将铝填充至掩模上面的高度。
接着,从基座主体12的主面上,例如使用药液溶解去除掩模74。从而,如图12C中所示,在基座主体12的主面上以规定的分布图形离散地留下规定尺寸的多个凸部70。
接着,如图12D中所示,在基座主体12的整个主面上喷镀介电体材料,例如喷镀氧化铝(Al2O3)。从而,以从凸部70的顶面达到规定高度(D1:例如50μm)的膜厚而形成介电体膜(72、40b)。
接着,如图12E中所示,跨越基座主体12的整个主面,在介电体膜40b的上面喷镀静电卡盘40的电极膜40a的材料,例如喷镀钨(W)。从而,形成规定厚度(D3:例如50μm)的电极膜40a。
接着,如图12F中所示,跨越基座主体12的整个主面,在电极膜40a的上面喷镀介电体材料,例如喷镀氧化铝。从而,将静电卡盘40的上部绝缘膜40c形成至规定的厚度(D4:例如200μm)。
在本实施方式中,在基座主体12的主面上,可以在一次喷涂工序中同时形成用来填充凸部70的周围(覆盖底面部12a)的介电体72和构成静电卡盘40的一部分的下部绝缘膜40b。
虽然上述实施方式的基座12是在主面上设置圆柱形的凸部70,但是在凸部70中,可以赋予凸部70任意的形状。图13是表示根据第一实施方式的基座结构的一个变形例的图。在图13中所示的变形例中,多个环状凸部70以同心圆状来配置。也就是说,在图13的基座结构中也是,当高频电流从电极边缘部向中心部流动时,从比底面部12a阻抗低的凸部70高效率地向等离子体PZ一侧放出高频电力。凸部70的面积密度形成为从电极中心部向电极边缘部逐渐增大的分布特性。从而,可以改善电极半径方向的电场强度的均匀性,进而可以实现等离子体密度的均匀化。
图14是表示将根据第一实施方式的电极凸部结构运用于上部电极的构成例的纵截面图。也就是说,如上述实施方式这样,在主面上离散地设置作为小电极而发挥功能的多个凸部70的构成,如图14中所示那样,也能够运用于对峙电极,也就是上部电极。
在图14的构成例中,在喷头38的电极板56的主面(下面,也就是等离子体生成空间一侧的面)上配置有凸部70,在凸部70的周围(底面部56b的上面)配置介电体72。气体通气孔56a可以在垂直方向上贯穿凸部70而配置。如果采用该构成,则上部电极38以来自等离子体PZ的高频电流为主而通过凸部70来收取。因而,在上部电极38处,通过适当地选择凸部70的属性,而能够进一步提高等离子体密度的均匀性。例如可以将凸部70的面积密度形成为从电极中心部向电极边缘部逐渐增大的分布特性。
图15、图16和图17分别是表示根据本发明的第二实施方式的电极结构(基座12)的平面图,表示该结构的局部纵截面图,表示该结构中的凹部的个数密度分布特性之一例的图。在基座12的主面上,离散地配置有多个一定尺寸的圆柱形凹部80。由于这些凹部80与相对电极一侧也就是等离子体PZ一侧相对,所以,以比主面的顶面部12a高的阻抗的方式与等离子体PZ电气结合。因此,因流过基座12的主面的表面层的高频电流i而运动的高频电力主要从顶面部12a向等离子体PZ放出。
其中,如图16中所示,最好是在凹部80中配置有介电体82。因此,在基座12的主面上能够加大凹部80与顶面部12a的阻抗比Z80/Z12a。也就是说,可以提高由顶面部12a给予等离子体PZ的高频电力的比率。
这样一来,在本实施方式中,在基座12的主面上离散地设置的多个凹部80,分别作为抑制相对等离子体PZ的高频电力的供给的电极掩模部发挥功能。通过适当地选择该凹部80的属性(形状、尺寸、间隔、密度等),而能够将基座12中的高频电力供给特性控制成期望的特性。
例如,如图17中所示,可以使凹部80的个数密度形成从电极中心部向电极边缘部逐渐减小的分布特性。因此,改善由基座12给予等离子体PZ的高频电力或者高频电场的均匀性(特别是半径方向的均匀性),进而可以改善等离子体密度的均匀性。凹部80的其他属性基本上也可以与第一实施方式中的凸部70同样地来处理,例如,可以将凹部80的深度尺寸和宽度尺寸设定成表层深度δ的三倍以上的值。
图18A~图18F是工序顺序表示根据第二实施方式的在电极结构上整体地设置静电卡盘的结构的制造方法的图。
首先,如图18A中所示,在例如由铝制成的基座主体(电极基板)12的主面上,覆盖具有对应于凹部80的开口部84a的例如由树脂制成的掩模84。在该掩模84中,开口部84a的平面形状和平面尺寸规定凹部80的平面形状和平面尺寸。
接着,如图18B中所示,从掩模84的上面通过喷丸法向基座主体12的整个主面喷射固体颗粒(例如干冰小球)或者流体(高压射水)。从而,物理地去除开口部84a内的材料(铝),在那里形成期望深度的凹部80。
接着,从基座主体12的主面上去除掩模84。因此,如图18C中所示,在基座主体12的主面上以规定的分布图形离散地留下规定尺寸的多个凹部80。
接着,如图18D中所示,在基座主体12的整个主面上喷涂介电体材料,例如喷涂氧化铝(Al2O3)。从而,以从基座顶面部12a达到规定高度的膜厚而形成介电体膜(82、40b)。
接着,如图18E中所示,跨越基座主体12的整个主面而在介电体膜40b的上面喷涂静电卡盘40的电极材料,例如喷涂钨(W)。从而,形成规定厚度的电极膜40a。
接着,如图18F中所示,跨越基座主体12的整个主面而在电极膜40a的上面喷涂介电体材料,例如喷涂氧化铝。从而,将上部绝缘膜40c形成至规定的厚度。
在本实施方式中,在基座主体12的主面上,可以在一次喷涂工序中同时形成用来填充凹部80的介电体82和构成静电卡盘40的一部分的下部绝缘膜40b。
此外,在本实施方式中,虽然省略了图示,但是,也可以将在电极的主面上离散地设置作为电极掩模部而发挥功能的多个凹部的构成,运用于相对电极、即上部电极38。因此,也可以是在基座12一侧设置凸部70,在上部电极38一侧设置凹部80的构成,或者是在基座12一侧设置凹部80,在上部电极38一侧设置凸部70的构成。
图19和图20分别是表示根据第三实施方式的下部电极结构和上部电极结构的平面图。也就是说,图19示出将第三实施方式运用于基座12的构成例。图20示出将第三实施方式运用于上部电极38(准确地说是电极板56)的构成例。
在本实施方式中,在电极的主面、即等离子体生成空间一侧的面(上部电极38的场合为下面,基座12的场合为上面)上配置介电体膜或者介电体层90。电极中心部的介电体膜90的膜厚构成为大于电极边缘部的介电体膜90的膜厚。介电体膜90的表面(等离子体生成空间一侧的面)形成为大致共面。该介电体膜或者介电体层90可以通过例如在由铝制成的电极基板上喷涂例如由氧化铝(Al2O3)制成的陶瓷而形成。
如果采用该电极结构,则相对等离子体PZ电极中心部一侧的阻抗相对地大而相对电极边缘部一侧的阻抗相对地低。因此,在电极边缘部一侧的高频电场加强,另一方面,在电极中心部一侧的高频电场削弱。其结果,电场强度或者等离子体密度的均匀性得到改善。特别是,在图19的构成例中,从电极12的里面一侧因趋肤效应而向主面一侧返回的电流,如果流入介电体膜90则很容易从膜厚小的部分(介电体层薄的部分)向等离子体一侧漏出。因此,能够增强电极边缘部一侧的高频电力的放出和等离子体密度。
图21是表示第三实施方式中的平行平板电极结构之一例的图。图22是表示在图21的平行平板电极结构中,以上部电极中心部的膜厚为参数的电极间的径向的电场强度分布的图。在介电体膜90的膜厚分布特性中,重要的参数之一是电极中心部的膜厚。如图21中所示,在设置圆盘状的介电体膜90的平行平板电极结构中,以上部电极38中心部的膜厚Dc为参数而模拟求出电极间的径向的电场强度分布。
对于该模拟来说,作为被处理基板假定是300mm口径的半导体晶片。分别假定上部电极38为铝,介电体膜90为氧化铝(Al2O3),下部电极12为铝。如图22中所示,在0.5mm~10mm的范围内,电极中心部的膜厚越大则电场强度的面内均匀性越能够提高,8mm~10mm的膜厚特别好。其中,在图22的横轴上“0”的位置表示电极中心点的位置。
此外,介电体膜90的膜厚从电极中心部向电极边缘部减小变化的轮廓也是很重要的。图23A~图23D是表示第三实施方式中的关于上部电极的介电体膜的膜厚轮廓的更具体的实施例的图。图24A和图24B是表示分别由图23A~图23D的实施例和理想轮廓所得到的电极间的径向的电场强度分布特性的图。
在图23A中所示的实施例〔1〕中,针对介电体膜90的膜厚D,设定成在(直径)0~30mm处,D=9mm(平坦,即恒定),在30~160mm处,D=8mm(平坦),在160~254mm处,D=8~3mm(倾斜)。在图23B中所示的实施例〔2〕中,设定成在0~30mm处,D=9mm(平坦),在30~80mm处,D=8mm(平坦),在80~160mm处,D=8~3mm(倾斜)。在图23C中所示的实施例〔3〕中,设定成在0~30mm处,D=9mm(平坦),在30~160mm处,D=8mm(平坦),在160~330mm处,D=8~3mm(倾斜)。
在图23D上,以曲线简明地示出上述实施例〔1〕、〔2〕、〔3〕的轮廓。同时,虽然图未示出截面形状,但是还示出了被设定成在mm处,D=0.5mm(平坦)的实施例〔4〕,进而还示出了理想的轮廓。这里,理想的轮廓是指被设定成在0~300mm处,D=9~0mm(倾斜型)。
如图24A和图24B中所示,理想轮廓产生的电场强度分布特性在面内均匀性方面是最佳的。在实施例〔1〕、〔2〕、〔3〕、〔4〕之中,接近于理想轮廓的实施例〔1〕和〔3〕在面内均匀性方面均比较优秀。
其中,在上部电极38(电极板56)中,因为受到来自扩散的等离子体PZ的高频电流,所以可以使边缘部沿着半径方向而向外侧延长,使得直径大于被处理基板的口径。这里,也可以在上部电极38的主面处,在介电体膜90的周围或者径向外侧的部分上例如形成20μm膜厚的喷镀覆盖膜92。虽然省略了图示,但是可以在腔室10的内壁面上也形成同样的喷镀覆盖膜92。作为喷镀覆盖膜92,例如可以使用Al2O3、Y2O3等。此外,使在介电体膜90和喷镀覆盖膜92中的各个表面,即暴露于等离子体的面形成为大致共面。
图25A~图25D是表示第三实施方式中的关于上部电极的介电体膜的膜厚轮廓的更具体的另一个实施例的图。图26A和图26B是表示由图25A~图25D的实施例所得到的电极间的径向的电场强度分布特性的图。
在图25A中所示的实施例〔5〕中,针对介电体膜90的膜厚D,设定成在0~250mm处,D=5mm(平坦)。在图25B的实施例〔6〕中,设定成在0~30mm处,D=9mm(平坦),在30~250mm处,D=8~3mm(倾斜)。在图25C的实施例〔7〕中,设定成在0~30mm处,D=9mm(平坦),在30~250mm处,D=5~3mm(倾斜)。在图23D中以曲线简明地示出实施例〔5〕、〔6〕、〔7〕的轮廓。
如图26A和图26B中所示,在这些实施例〔5〕、〔6〕、〔7〕之中,最接近于理想轮廓的实施例〔6〕在面内均匀性方面是最佳的。此外,实施例〔5〕也具有足够的实用性。也就是说,即使像实施例〔6〕那样,从电极中心部向着电极边缘部,介电体膜90的膜厚D几乎直线地或者倾斜状地减小的轮廓,也可以得到接近于拱形的理想的轮廓的面内均匀性。此外,即使像实施例〔5〕那样,从电极中心部向着电极边缘部,介电体膜90的膜厚D几乎恒定(平坦)的轮廓,也可以得到具有实用性的面内均匀性。
图27A~图27C是表示第三实施方式中的关于上部电极的介电体膜的膜厚和膜质轮廓的更具体的其他实施例的图。图28A和图28B是表示由图27A~图27C的实施例所得到的电极间的径向的电场强度分布特性的图。
在图27A中所示的实施例〔8〕中,针对介电体膜90的膜厚D,设定成在0~30mm处,D=9mm(平坦),在30~250mm处,D=8~3mm(倾斜)。在图27B的实施例〔9〕中,设定成在mm处,D=5mm(平坦),在30~250mm处,D=5~3mm(倾斜)。在图27C中以曲线简明地示出实施例〔8〕、〔9〕的轮廓。
这里,以介电率ε为参数,将实施例〔8〕分成:介电体膜90的材质为介电率ε=8.5的氧化铝(Al2O3)的实施例〔8〕—A,和为ε=3.5的氧化硅(SiO2)的实施例〔8〕—B。此外,实施例〔9〕也一样被分成:为ε=8.5的氧化铝(Al2O3)的实施例〔9〕—A,和为ε=3.5的氧化硅(SiO2)的实施例〔9〕—B。
如图28A和图28B中所示,在ε=8.5的实施例〔8〕—A,〔9〕—A之间,电极中心部的膜厚Dc大的〔8〕—A一方电场强度E的面内均匀性比〔9〕—A要好。在ε=3.5的实施例〔8〕—B,〔9〕—B之间,电极中心部的膜厚Dc小的〔9〕—B一方电场强度E的面内均匀性比〔8〕—B要好。
图29是根据图28A和图28B的数据点作成的表示给出在实用上足够的面内均匀性的介电体膜90的介电率ε与中心部的膜厚Dc的相关关系的图。如该曲线所示,只要对应于介电体膜90的介电率ε设定中心部的膜厚Dc即可。
图30A和图30B是就有机膜蚀刻的蚀刻速度分布特性,对比表示将第三实施方式运用于上部电极的实施例A和比较例B的图。这里,示出了使用实施方式的等离子体蚀刻装置(图1)的有机膜蚀刻的蚀刻速度分布特性(X方向、Y方向)。在实施例A中,在上部电极38上设置根据第三实施方式的介电体膜90。在比较例B中,在上部电极38上不设置介电体膜90。其中,实施例A相当于上述实施例〔1〕。主要蚀刻条件如下所述:
晶片口径:300mm
蚀刻气体:NH3
气体流量:245sccm
气体压力:30mTorr
RF电力:下部=2.4kW
晶片里面压力(中心部/边缘部):20/30Torr(He气体)
温度(腔室侧壁/上部电极/下部电极):60/60/20℃。
从图30A和图30B可以很明确地看出,与电场强度分布特性相呼应地在蚀刻速度的面内均匀性方面,实施例A一方明显优于比较例B。
图31A和图31B是对比表示将第三实施方式运用于下部电极的结构的实施例A与比较例B的图。在图31A的实施例A中,现对于口径300mm的半导体晶片W,使基座12处的介电体膜90的膜厚D在电极中心部处设定成为4mm,在电极边缘部处设定成为200μm。在图31B的比较例B中,在基座12的上面设置有一样膜厚0.5mm的介电体膜94。介电体膜90、94的材质全都可以为氧化铝(Al2O3)。
图32A和图32B是就有机膜蚀刻的蚀刻速度分布特性,对比表示图31A的实施例A与图31B的比较例B的图。这里,示出了使用实施方式的等离子体蚀刻装置(图1)的有机膜蚀刻的蚀刻速度分布特性(X方向、Y方向)。蚀刻条件与图30A和图30B是相同的。
如图32A和图32B中所示,在基座(下部电极)12的场合,实施例A一方的蚀刻速度的面内均匀性方面明显优越于比较例B。此外,就蚀刻速度本身而言,也是实施例A一方大约比比较例大10%。其中,虽然在实施例A中将电极中心部处的介电体膜90的膜厚D设定成4mm,但是即使大到9mm左右也可以得到同样的效果。
图33A和图33B是表示根据本发明的另外一个实施方式的上部电极结构的实施例的局部截面图。该实施方式特别适合运用于在上部电极38上设置介电体膜90的构成。
如图33A和图33B中所示,在上部电极38的主面上设置覆盖介电体膜90的一部分(通常边缘部周边)的导电性的屏蔽板100。该屏蔽板100最好例如是由被阳极氧化处理(92)了表面的铝板制成,通过螺钉102而能够可装卸地、即可更换地安装于上部电极38。在屏蔽板100的中心部上,形成有与介电体膜90同轴地至少露出中心部的期望的口径θ的开口部100a。屏蔽板100的板厚例如可以选定为5mm左右。
作为具体例,在图33A中所示的实施例A中,设定成θ=200mm,在图33B中所示的实施例B中,设定成θ=150mm。两个实施例中的任何一个,都是将介电体膜90形成为直径250mm的圆盘形,将其膜厚轮廓设定成在0~160mm处为D=8mm(平坦),在160~250mm处为D=8~3mm(倾斜)。
图34是表示由图33A和图33B的实施例所得到的电极间的径向的电场强度分布特性的图。如图34中所示,通过由导电性的屏蔽板100覆盖介电体膜90的一部分,而能够降低或者消除其覆盖区域中的介电体膜90的作用,也就是电场强度降低效果。因而,通过改变屏蔽板100的开口部100a的口径θ(通过更换屏蔽板100的零件),而能够调整两个电极12、38间的电场强度分布特性。
图35A~图35C是分别表示根据本发明的又一个实施方式的上部电极结构的实施例、比较例、和参考例的局部截面图。该实施方式也特别适合运用于在上部电极38上设置有介电体膜90的构成。
如图35A中所示,在本实施方式中,在上部电极38的主面上,从比介电体膜90大的径向位置(口径ω的位置),使外侧的电极部分38f向基座12一侧或者等离子体生成空间一侧伸出期望的突出量(伸出量)。这里,电极部分38f处的电极间隙Gf小于介电体膜90处的电极间隙Go。
在图35A中所示的实施例A中,介电体膜90的直径被设定成80mm,膜厚轮廓被设定成在0~60mm处为D=3mm(平坦),在80mm处为D=3~1mm(倾斜),且ω=260mm。现对于介电体膜90处的电极间隙Go=40mm,被设定成h=10mm,使外侧电极伸出部38f处的电极间隙Gf形成为Gf=30mm。其中,使外侧电极伸出部38f的伸出台阶部倾斜大约60°。该倾斜角可以选成任意的大小。
在图35B中,作为比较例B,示出在上部电极38上不设置伸出部38f而设置与实施例A同一直径尺寸和同一膜厚轮廓的介电体膜90的构成。此外,在图35C中,作为参考例C,示出在上部电极38上不设置伸出部38f和介电体膜90的任何一个的构成。图35B和图35C的任何一个电极间隙在径向是一定的,为Go=40mm。
图36是表示分别由图35A~图35C的实施例A、比较例B、和参考例C所得到的电极间的径向的电场强度分布特性的图。如图36中所示,在实施例A中,通过在介电体膜90的径向外侧设置伸出部38f,而使得在半导体晶片W的边缘部附近的区域(图示的例子中,离开中心半径大约90mm~150mm的区域)处可以在提高电场强度E的方向上控制或调整电场强度分布特性。该伸出部38f引起的电场强度分布控制的加减量可以由伸出量h来调整,最好是h=10mm以上。
外侧电极伸出部38f的伸出台阶部的位置(口径ω的值)可以任意地选定。图37A~图37C是分别表示上部电极结构的另外两个实施例与比较例的局部截面图。
在图37A的实施例中,设定成ω=350mm,在图37B的实施例中,设定成ω=400mm。此外,对于两个实施例A、B的任何一个,介电体膜90的膜厚轮廓为在0~80mm处为D=8mm(平坦),在160mm处为D=8~3mm(倾斜)。相对介电体膜90处的电极间隙Go=30mm,伸出量被设定成h=10mm,使外侧电极伸出部38f处的电极间隙Gf成为Gf=20mm。此外,使外侧电极伸出部38f的伸出台阶部大约倾斜成60°。
在图37C中,作为比较例C,示出在上部电极38上不设置伸出部38f而设置与实施例A、B同一直径尺寸和同一膜厚轮廓的介电体膜90的构成。电极间隙在径向上是恒定的,为Go=30mm。
图38是表示分别由图37A~图37C的实施例A、B和比较例C所得到的氧化膜蚀刻的蚀刻速度(规格化值)分布特性的图。作为主要的蚀刻条件,使用晶片口径为300mm,压力为15mTorr,处理气体为C4F6/Ar/O2/CO。在图35A和图35B的实施例A、B中,是在上部电极38的主面上在半导体晶片W的边缘的径向外侧设置外侧电极伸出部38f的伸出台阶部的构成。如图38中所示,在该构成中,越使伸出台阶部位置靠近晶片(使ω越小)则在晶片附近的区域(图示的例如离开中心半径大约70mm~150mm的区域)中使蚀刻速度(也就是电场强度或等离子体电子密度)增大的效果越大。
在参照图35A~图38说明的实施方式中,如上所述,形成为在上部电极38的主面上使介电体膜90径向外侧的电极部分向等离子体生成空间伸出的构成。相反,如图39A中所示,也可以在上部电极38的主面上,使介电体膜90向等离子体生成空间伸出期望的突出量(伸出量)k的构成。图39A~图39C是分别表示根据本发明的又一个实施方式的上部电极结构的实施例、比较例、和参考例的局部截面图。
在图39A的实施例A中,介电体膜90的直径为250mm,其膜厚轮廓为,在0~160mm处为D=8mm(平坦),在160~250mm处为D=8~3mm(倾斜)。使倾斜面90a向基座12一侧设定成k=5mm,将介电体膜90处的电极间隙Gm设置为Gm=35mm。介电体膜90的径向外侧的电极部分为平坦面,电极间隙Go为Go=40mm。
在图39B中,作为比较例B,示出在上部电极38上不使与实施例A同一膜厚轮廓的介电体膜90伸出而设在相反方向(倾斜面90a向里侧)上的构成。此外,在图39C中,作为参考例C,示出在上部电极38上不设置介电体膜90的构成。图39B和图39C的任何一个电极间隙在径向都是一定的,Go=40mm。
图40是表示分别由图39A~图39C的实施例A、比较例B、和参考例C所得到的电极间的径向的电场强度分布特性的图。如图40中所示,如实施例A那样,通过使介电体膜90伸出,与不这样做的比较例B相比,在径向的各位置上,在增强电场强度E的方向上可以控制或调整电场强度分布特性。该伸出部38引起的电场强度分布控制的加减量,可以由伸出量k来调整,最好是k=5mm以上。
图41是表示根据图35A~图38的实施方式的变形例的上部电极结构的局部截面图。如图41中所示,在上部电极38的主面上,在介电体膜90的径向外侧设置伸出部38f。这样一来,也可以是使介电体膜90的边缘部连接于外侧电极伸出部38f,或介电体膜90的边缘部与外侧电极伸出部38f一起伸出的构成。
图42A~图42D是表示根据本发明的又一个实施方式的上部电极结构的局部截面图。如图42A~图42D中所示,在本实施方式中,由内部具有空洞104的中空的介电体,例如中空陶瓷来构成设置在上部电极38的主面上的介电体膜90。在该实施方式中,在中空介电体90中,最好是使径向中心部一侧的厚度大于边缘部一侧的厚度的轮廓。
在该中空介电体90的空洞104中,以期望的量填入流动性的介电性物质NZ。空洞104内的介电性流动体NZ根据其占有体积而构成介电体90的一部分。作为这种介电性流动体NZ,虽然也可以是粉体,但是一般来说最好是有机溶剂(例如热传导液(ガルデン))。
作为用来使介电性流动体NZ出入空洞104的通口,例如可以将多根管子106、108从电极38的里面一侧连接于空洞104的不同部位(例如中心部与边缘部)。介电性流动体NZ进入中空介电体90的空洞104时,如图42B中所示,一边从一方的管子106引入介电性流动体NZ,一边从另一方的管子106放出空洞104内的空气。减少空洞104内的介电性流动体NZ的量时,如图42C中所示,只要一边从一方的管子106送入空气,一边从另一方的管子106放出空洞104内的介电性流动体NZ即可。
图43是表示图42A~图42D的实施方式中的具体实施例的局部截面图。在本实施例中,整个中空介电体90形成为直径210mm的圆盘,厚度在0~60mm处为D=6mm(平坦),在60~210mm处为D=6~3mm(倾斜)。中空介电体90的空洞104,厚度α为2mm,直径β为180mm。
图44是表示由图43的实施例所得到的电极间的径向的电场强度分布特性的图。在图44中,ε=1的分布特性A是在图42A的状态,也就是中空介电体90的空洞104完全空着而被空气充满的状态下所得到的。此外,ε=2.5的分布特性B是在图42C的状态,也就是中空介电体90的空洞104被热传导液完全充满的状态下所得到的。通过调整进入空洞104的热传导液的量,而可以得到两个特性A、B间的任意的特性。
这样一来,在本实施方式中,通过改变进入中空介电体90的空洞104的介电性物质NZ的种类和量,可以可变控制介电体90的总体的介电率或介电性阻抗。
图45A~图45D,是表示根据图42A~图42D的实施方式的变形例的上部电极结构的局部截面图。
在图45A的变形例中,由陶瓷板91来形成介电体90的表面,在内侧的空洞104中,由上部电极的基体材料(铝)来形成与陶瓷板91相对的壁面。也就是说,是在上部电极38的主面上形成对应于介电体90的形状的凹部38c,用陶瓷板91盖住该凹部38c的构成。为了封固陶瓷板91的外周,例如最好是设置有O形圈等密封构件110。在该场合,凹部38c或空洞104的形状是重要的,最好仍然是使中心部一侧的厚度大于边缘部一侧的厚度的形状。
在图45B、C的变形例中,在中空介电体90内,将分配给介电性流动体NZ的空间或空洞104限定或局部化于特定的区域。例如,如图45B中所示,将空洞104的空间局部化于介电体90的中心部区域。作为替代,如图45C中所示,通过使陶瓷板91的厚度在径向上变化(从中心部向边缘部逐渐减小),而可以将空洞104的空间相对地局部化于介电体90的周边部区域。这样一来,在中空介电体90中,将空洞104的空间规定于期望的区域或形状,从而,在介电性流动体NZ的介电率调整功能中可以得到各种方案。
在图45D的变形例中,将中空介电体90内的空洞104分割成多个室而针对每个室独立地控制介电性流动体NZ的出入。例如,如图45中所示,可以由在陶瓷板91上整体形成的环状的隔壁板91a将空洞104一分为二成中心部一侧的室104A和周边部一侧的室104B。
虽然,以上分别个别地说明了本发明的最佳实施方式,但是将不同的实施方式中的电极结构组合起来也是可能的。例如,将根据上述第三实施方式或其以下的实施方式的具有介电体90的电极结构与根据上述第一实施方式的具有凸部70的电极结构或根据第二实施方式的具有凹部80的电极结构组合起来也是可能的。
也就是说,将根据第三实施方式或其以下的实施方式的电极结构例如如图19那样运用于基座12,在上部电极38上运用根据上述第一实施方式的电极结构(图2、图3)或根据上述第二实施方式的电极结构(图15、图16)的应用是可能的。此外,将根据第三实施方式或其以下的实施方式的电极结构如图20那样运用于上部电极38,在基座12上运用根据上述第一实施方式的电极结构(图2、图3)或根据上述第二实施方式的电极结构(图15、图16)的应用也是可能的。
当然,将根据第一、第二、第三实施方式,或其以下的实施方式的电极结构运用于上部电极和下部电极双方的应用也是可能的。此外,将根据第一、第二、第三实施方式,或其以下实施方式的电极结构仅运用于上部电极或下部电极,在另一方的电极上用现有一般的电极的应用等也是可能的。
此外,上述实施方式的等离子体蚀刻装置(图1)是将等离子体生成用的一个高频电力施加于基座12的方式。但是,虽然省略了图示,本发明运用于在上部电极38一侧施加等离子体生成用的高频电力的方式是可能的。此外,本发明运用于在上部电极38与基座12上分别施加频率不同的第一和第二高频电力的方式(上下高频施加式)是可能的。此外,本发明运用于在基座12上重叠施加频率不同的第一和第二高频电力的方式(下部两频率重叠施加式)等也是可能的。
广义地说,本发明可以运用于在能够减压的处理容器内具有至少一个电极的等离子体处理装置。进而,本发明还能够运用于等离子体CVD、等离子体氧化、等离子体氮化、溅射等其他等离子体处理装置。此外,本发明中的被处理基板不限于半导体晶片,平板显示器用的各种基板、或照相掩模、CD基板、印制基板等也是可能的。
工业实用性
如果用本发明的等离子体处理装置或者等离子体处理装置用的电极板,则通过上述这种构成和作用,可以高效率地实现等离子体密度的均匀化。
此外,如果用本发明的电极板制造方法,则可以高效率地制作本发明的等离子体处理装置用的在电极板一体设置静电卡盘的结构。
本案是申请日为2004年2月3日、申请号为200480003417.8的、发明名称为“等离子体处理装置和等离子体处理装置用的电极板和电极板制造方法”的专利申请的分案申请。