成形的非矫正护目镜镜片及提供该种镜片的方法转让专利

申请号 : CN200910002108.3

文献号 : CN101493584B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 科林·佩洛特金姆·A·斯托克曼安东尼·D·米勒

申请人 : 卡尔蔡司视觉澳大利亚控股有限公司

摘要 :

公开的内容涉及成型的眼科镜片及提供该种镜片的方法,该种镜片包括有互补曲率的非二次表面的无放大作用镜片。该种镜片可以有离开对称轴的曲率极大和基本恒定的壁厚度。公开了说明该种镜片的方程式及其设计方法,包括把两个基本不同曲率的球面按照加权函数合并,并用优值函数调整的实施例。

权利要求 :

1.一种提供无光焦度光学镜片单元的方法,包括:

选择第一和第二二次参考表面;

在数学上用加权函数合并第一和第二参考表面,以给出镜片单元的前表面的描述,使该前表面由在镜片单元顶点的第一参考表面描述,并随着离顶点距离的增加而逐渐接近第二参考表面,其中,所述前表面是非二次表面;和用该前表面和镜片单元的互补的后表面形成镜片单元。

2.按照权利要求1的方法,其中,镜片单元的后表面由向被描述为前表面的表面上附加一多项式来描述。

3.按照权利要求2的方法,其中,提供的所述多项式的附加,是根据优值函数给出,该优值函数至少使光焦度误差、像散误差、RMS模糊、棱镜的幅值、RMS模糊的变化、或棱镜的幅值的变化中之一最小。

4.按照权利要求3的方法,其中优值函数M取如下形式

M=Σθ(a[RMSBlur]2+b[(Static Prism)θ]2)θ其中的a和b是非负权重,用于控制RMS Blur和Static Prism优化在视场的不同区中的相对贡献,其中RMS Blur是均方根模糊,Static Prism是静态棱镜。

5.按照权利要求3的方法,其中RMS光焦度误差被最小化,使得RMS光焦度在与眼睛旋转至少40°对应的注视场的外边界上至少低至0.75D。

6.按照权利要求3的方法,其中像散误差被最小化,使得像散误差在与眼睛旋转至少40°对应的注视场的外边界上至少低至0.75D。

7.按照权利要求3的方法,其中令棱镜最小,使平均角增长率在旋转和静态棱镜分量两者的幅值上,在与注视场对应的整个孔径上,为40mD/度视场角或更小。

8.按照权利要求3的方法,其中平均角增长率在静态棱镜分量幅值上,从镜片单元的正面视线到最外周边缘,小于60mD/度。

9.按照权利要求1的方法,其中后表面是非二次表面,描述为按照加权函数合并两个不同的曲率的球面形成的表面,该加权函数的值随距离由两个球面曲率中心定义的光轴的距离而变化。

10.按照权利要求9的方法,其中,距离后表面的顶点平面的表面高度z(r)由下面的方程式描述z(r)=W(r)*(ρ1-ρ12-r2)+(1-W(r))*(ρ2-ρ22-r2)这里W(r)是加权函数;

ρ1是第一球面半径;

ρ2是第二球面半径;并且

r=x2+y2.

11.按照权利要求10的方法,其中的加权函数W(r)取如下形式

W(r)=11+nrp这里n和p对该镜片单元是常数。

12.按照权利要求11的方法,其中n在1×10-12到1×10-13的范围,而p在8到9的范围。

13.按照权利要求10的方法,其中的加权函数W(r)取如下形式

W(r)=a*[Sech(r/b)]n

这里n、a和b对该镜片单元是常数。

14.按照权利要求10的方法,其中

ρ1在75.7mm到530.0mm范围;和

ρ2在40.8mm到58.9mm范围。

15.按照权利要求14的方法,其中

ρ1在75.7mm到265.0mm范围。

16.一种无光焦度的光学镜片单元,包括:

旋转对称的第一表面;和

与第一表面具有互补曲率的旋转对称的第二表面,

其中的第一表面是非二次表面,描述为按照加权函数合并两个不同曲率的球面形成的表面,该加权函数的值随距离由两个球面曲率中心定义的光轴的距离而变化,并且其中的第一和第二表面,给出佩戴者的注视场中为零的平均通过光焦度。

17.按照权利要求16的光学镜片单元,其中的镜片单元在佩戴者的注视场中有恒定的壁厚度。

18.按照权利要求16的光学镜片单元,其中静态棱镜的变化率在±50°的注视场中最小。

19.按照权利要求16的光学镜片单元,其中的互补后表面描述为向前表面附加一多项式形成的表面,所述多项式附加给出光学校正和根据选择的优值函数的性能。

20.按照权利要求19的光学镜片单元,其中的优值函数,是基于使至少光焦度误差、像散误差、RMS模糊、棱镜的幅值、RMS模糊的变化、或棱镜的幅值的变化之一最小。

21.按照权利要求20的光学镜片单元,其中的优值函数,包括使至少RMS模糊和静态棱镜变化率的组合的最小。

22.按照权利要求21的光学镜片单元,其中优值函数M取如下形式

M=Σθ(a[RMSBlur]2+b[(Static Prism)θ]2)θ其中的a和b是非负权重,它控制RMS Blur和Static Prism优化在视场的不同区中的相对贡献,其中RMS Blur是均方根模糊,Static Prism是静态棱镜。

23.按照权利要求20的光学镜片单元,其中RMS光焦度误差被最小化,使得RMS光焦度在与眼睛旋转至少40°对应的注视场的外边界上至少低至0.75D。

24.按照权利要求20的光学镜片单元,其中像散误差被最小化,使得像散误差在与眼睛旋转至少40°对应的注视场的外边界上至少低至0.75D。

25.按照权利要求20的光学镜片单元,其中令棱镜最小,使平均角增长率在旋转和静态棱镜分量两者的幅值上,在与注视场对应的整个孔径上,为40mD/度视场角或更小。

26.按照权利要求20的光学镜片单元,其中平均角增长率在静态棱镜分量幅值上,从镜片单元的正面视线到最外周边缘,小于60mD/度。

27.按照权利要求16的光学镜片单元,其中,其中,距离第一表面的顶点平面的表面高度Z(r)由下面的方程式描述z(r)=W(r)*(ρ1-ρ12-r2)+(1-W(r))*(ρ2-ρ22-r2)这里W(r)是加权函数;

ρ1是第一球面半径;

ρ2是第二球面半径;并且

r=x2+y2.

28.按照权利要求27的光学镜片单元,其中的加权函数W(r)取如下形式

W(r)=11+nrp这里n和p对该镜片单元是常数。

29.按照权利要求27的光学镜片单元,其中的加权函数W(r)取如下形式

W(r)=a*[Sech(r/b)]n

这里n、a和b对该镜片单元是常数。

说明书 :

技术领域

本发明涉及光学镜片和镜片半成品,用于非矫正护目镜,包括太阳镜、运动护目镜、安全眼镜、防护镜、和遮阳护目镜。

背景技术

现有技术中众所周知,制造非矫正的眼镜,诸如有裹脸部分的太阳镜或防护眼镜,该裹脸部分是为保护眼睛,避免在佩戴者的颞部视场中入射的光、风、和外来物体而设计的。这种面型护目镜可以沿水平方向绕眼窝弯曲,“裹脸”并封闭眼睛,一直到离开视线100°。镜片内部下方区向着脸颊的竖直轮廓,与如何获得该作用有关,被不同地称为“全部翘起式(pantoscopic tilt)”或“拢住脸(rake)”。镜片可以设计成装配进一双镜片框里,或者,镜片可以是整体的防护罩型式。裹脸和/或拢住脸在美学上建立使佩戴者舒适的赏心悦目的护目镜,但也引入光学畸变,对佩戴者精确的视觉工作带来困难。为了改进裹脸和拢住脸提供的密闭性,已经采用各种表面形式和布局。虽然一些布局已经能在佩戴者远场视觉的正面视线上实现准确成像,但因佩戴时在镜片光轴与正面视线之间缺乏空间一致性,从而引入固有的倾斜折射误差。现有技术在20世纪早期,采用近似恒定厚度的球形和椭圆形双重设计,所以没有光轴,但这些设计有负的光焦度,并每当曲率中心不落在正面视线上时,表现出基本的折射和棱镜的畸变。为获得双镜片护目镜的功能,该种镜片必需有异常高的基本曲线(~16到21D),以便可以近似与佩戴者眼睛的运动同心地戴上该种镜片。或者,整体的镜片应有低D值的基本曲线,使一只眼睛的正面视线,与位于佩戴者中间平面内的光轴之间的偏移距离,远远小于弯曲部分的顶点半径,举例说,在1到2D范围内。大部分护目镜使用在这些条件之间的基本曲线。
Rayton在75年前提出的现有技术(美国专利1,741,536),试图使名义上零光焦度的镜片向外和/或向下斜置,并使镜片光学中心与佩戴者正面视线对齐,以获得裹脸和/或拢住脸效应。该方法由于佩戴位置中存在棱镜畸变而被放弃。更近代的技术,对成对的低的负镜片,教导一种克服这种棱镜误差的方法。Reichow和Citek在他们的美国专利6,129,435(U.S.Patent 6,129,435)中公开,通过使镜片几何中心向内和/或向外位移,可以获得表观的裹脸和/或拢住脸,通过绕镜片前表面曲率中心旋转镜片,把光轴向内和/或向上安置,校正佩戴时引起的棱镜误差,而不改变镜片的物理外观。但是,在正面视线上仍然有负的光焦度误差。可以证明,对成对的低的正镜片,一组相反的旋转可以校正佩戴时的棱镜误差。然而,大部分非矫正护目镜的装配,是根据Prentice′s Rule(1888),这是近似的分析,它预测相对于镜片偏心的视线上的光学棱镜,与该镜片后顶点光焦度之间的线性关系。最普通的是,设计镜片,使它给出零的后顶点光焦度。它们的光轴与佩戴者佩戴时的正面视线,在需要时可以相互侧向位移,同时在它们之间保持平行。这种布局如图1A所示,直线2-2′是正面视线,而1-1′是位移的光轴。
Rayton在美国专利1,741,536(U.S.Patent 1,741,536)中,和Jannard在美国专利4,674,851及4,859,048(U.S.Patent 4,674,851and 4,859,048)中,公开圆柱形镜片。Jannard(U.S.Patent 4,867,550)及Burn(U.S.Patent 4,741,611)说明圆环形镜片。Montesi和King(U.S.Patent 4,271,538)及Conway(U.S.Patent 5,555,038)说明的整体护目镜,有左、右球面镜片部分,它们的光轴在佩戴时从正面视线向鼻方向位移。Houston等人(U.S.Patent 5,648,832、5,689,323、和6,010,218)说明沿水平和竖直平面两个方向相对于正面视线离心的球面镜片。Fecteau等人(U.S.Patent 5,825,455、6,019,469、和6,254,236)说明的整体的镜片,由椭圆、抛物线、或双曲线,绕靠近佩戴者眼睛的水平轴旋转形成的表面构成。Davis和Waido(U.S.Patent 5,604,547)说明的整体的镜片,其表面是在外侧区弯曲、在佩戴者的注视点以外形成侧面包裹的抛物面。他们还说明整体款式的太阳镜或眼睛保护镜,其镜片有扁球状的内部和外部表面。他们讨论的表面还在镜片表面上有最大表面像散区。Tackles(U.S.Patent5,774,201)说明整体镜片款式和双镜片款式两种镜片,其中镜片断面的水平弧有中间部分和侧端部,该侧端部相对于中间部分的弯曲部分,有逐渐收紧的弯曲部分,基本上与0.1到0.85范围偏心率的椭圆部分一致。竖直的弯曲部分可以取任何需要的形式。
为了使球面镜片有零的后顶点光焦度,它的前和后半径R1和R2,由R1-R2=t(n-1)/n关联,这里t是镜片中心厚度,而n是材料折射率。该关系规定,镜片的卡尺厚度(caliper thickness)(垂直于每一表面测量),在镜片中心有最大值,然后离开镜片光轴逐渐变薄,这是眼科光学早已熟知的事实。例如,Rayton说明的镜片有离开镜片光轴逐渐变薄的壁厚度。Conway注意到,从最大厚度点(光学中心)向外逐渐变薄的镜片,在20°眼睛扫视角上常常有零的光焦度和低的棱镜不平衡,而类似的恒定壁厚度镜片,则有负的光焦度和相对更高的棱镜不平衡。其他人,包括Montesi、Jannard、Tackles、和Houston等人,特别针对以逐渐变薄厚度为特征的非矫正镜片,作出权利要求。
在明显相反的观点中,Davis和Waido的权利要求是有“基本上全部均匀厚度”的非矫正整体镜片。他们声称,研发的目的是“提供有全部相对均匀厚度,不牺牲光学性能的改进的太阳镜和安全护目镜”。具体说,设计任务是在外侧弯曲区中,校正镜片不需要的减薄,并避免制造不必要地重的镜片的任何需要。已经分析了公开在美国专利5,604,547中的每一种这些设计,并已经发现相应的镜片,有从光学中心横贯视野到外侧弯曲的逐渐变薄的厚度,在该区中,镜片壁局部地增厚。在同一区中,存在随之而来的负折射误差。因此,该专利公开的内容与现有知识不矛盾。
非矫正镜片的设计,通过本工业在向前凝视中的远场视觉质量的专注,已经极大地简化。光学测试通常用对准几何轴的望远镜实施,在佩戴时的正面视线上评价光学装置。对眼科镜片设计非常重要的倾斜折射误差,在非矫正镜片的分析中常常被忽略。工业标准通常只引用“佩戴”位置上的折射误差和棱镜误差的公差。见下表1。表1。非矫正镜片佩戴时,正面视线折射误差和棱镜误差的一些指标。
与基本曲线、材料、和镜片中心厚度有关,这些公差允许倾斜视场中有显著不同的镜片特征。上面说明的现有技术的布局和装置,全部导致把镜片光轴置于空间中不与正面视线重合的地方。该两个矢量可以在一些平面中相交,它们可以严格平行,或者它们可以斜交。所有这些布局对简单的物场导致像差,这些像差对单目旋转是不对称的,使经受的倾斜误差幅值增加。它也使佩戴者左、右眼经受镜面的像差场,对侧转运动引入双目视差。这些都是远场视觉中的基本光学要求,该视差是当前设计的明显缺点。另一方面,眼科镜片照例是放在眼睛之前,使光轴与正面视线精密地相同。倾斜场的设计,要基本上对单目旋转对称,并基本上在侧转及聚散运动中没有双目视差,除非方案要求。
因此,极其需要的是方法和装置的设计,借助这些方法和装置,把美学上赏心悦目和有用形状的非矫正镜片,以贴合脸形的外形,呈现在佩戴者之前,要实现:镜片光轴与佩戴者正面视线基本上对齐,或者:视场对单目旋转是对称的,最好是:两者都能实现。已知本领域的现有技术状况,应当期望满足我们目的的镜片,表现出不寻常的物理特征,特别在它们表面的贴合性上。本发明一对镜片的实施例,示于图2。
Reshef等人说明弯曲得非常利害的非矫正防护镜,它有球形表面(半径在35mm以下)和逐渐变薄的厚度(U.S.Patent5,094,520)。本申请人也研发了新颖方案的镜片、太阳镜片、和护目镜,它们以急剧弯曲的表面(~16到18D)为特征,该急剧弯曲的表面接近球面并与眼睛旋转的形心同心。这些目的在Sola Internatonal的U.S.Patent 6,142,624中有详细说明,本文收录该专利全部公开的内容,供参考。本类型镜片基本上脱离常规的、相对平坦的镜片形状。但是,这种镜片的外形,是基于已采用的普通球面参考表面,且它们在倾斜场中的光学性质,对镜片位置误差是敏感的。
Sola Internatonal已经研发改进的用于裹脸框的非球面方案镜片,如在他们的U.S.Patent 6,361,166中所述,本文收录该专利全部公开的内容,供参考。Sola Internatonal已经研发其他新颖的光学镜片,适合用于裹脸或防护的护目镜。这些镜片在授予SolaInternatonal的U.S.Patent 6,334,681和6,454,408中说明,本文收录这些专利全部公开的内容,供参考。这些申请说明紧密密切方案的护罩、遮光镜,或双镜片方案的太阳镜,它们的物理形式的获得,是通过强迫Rx镜片弯曲部分,特别是在佩戴者向前视场中发生局部变化,以便显著背离常规的(二次的)圆锥面形式,还通过在镜片的水平与竖直子午线之间采用显著的形状不对称。但是,这些表面形式缺乏完整的全面的定义,从佩戴者的观点看,给优化镜片外观和宽视场功能带来困难。镜片表面的构造在数学上是复杂的,即使对有简单轴对称的镜片。还有,在佩戴者注视场的极限上,形成的倾斜光学误差,可能比更经典的结构的那些光学误差更不如意,这些更经典的结构是指根据二次型的标准光学表面,有或没有表面的非球面校正。专门名词
在下面本发明讨论中使用的一些技术术语和描述符,或者在本文中有专门含义,或者是非矫正镜片设计领域中生疏的。为了明晰和理解起见,我们列举本文下面使用的那些术语及它们的含义。数学术语及含义,遵从CRC Concise Encyclopedia of Mathematics,by E.W.Weisstein,Chapman&Hall,New York 1999。数学术语及原理,遵从Optical Society of America Handbook of Optics,Volume I,Part 1,M.Bass(Ed),Second Edition,McGraw Hill,New York 1995,或ThePrinciples of Ophthalmic Lenses,M.Jalie,Fourth Edition,London1994。
术语“光学镜片单元”,在与本申请具体实施例相称的行文中,是指已完成的光学或眼镜镜片、需要切边和装配进框组件的镜片半成品、或为提供左、右镜片并适合最终作为非矫正护目镜的一体光学单元或护罩而形成的透光物品。
术语“单目视野(monocular field of view)”,在与本申请具体实施例相称的行文中,是指人眼能够从佩戴者前面接收和辨识像的立体角部分。一般认为颞部(temporally)可扩展到约90°,而鼻部可达60°,次一点的是70°,好一点的是50°,取决于个人的脸形结构、照明、和刺激源的大小、持续时间、及色彩。
术语“双目视野(binocular field of view)”,在与本申请具体实施例相称的行文中,是指左和右单目视野的重叠区,由佩戴者的中央平面从中心分开。
术语“侧转运动(version movement)”,在与本申请具体实施例相称的行文中,是指物平面中双目的跟踪,其中两只眼睛沿相同方向作同样的运动。
术语“聚散运动(vergence movement)”,在与本申请具体实施例相称的行文中,是指离观察者不同距离上双目的跟踪,其中两只眼睛沿相反方向作同样的运动。
术语“注视场(visual fixation field)”,在与本申请具体实施例相称的行文中,是指镜片表面上点集合定义的区,这些点是当佩戴者注视中央平面的物体时,他或她的视线与镜片表面相交的点。该视场通常伴随眼睛旋转约40到50°。
术语“视觉周边场(peripheral field of vision)”,在与本申请具体实施例相称的行文中,是指镜片表面上点集合定义的区,这些点是当佩戴者一般注视正面视线中的物体时,进入他或她瞳孔的光线与镜片表面相交的点。眼睛通常是静态的,只表现出小的旋转。
术语“二次的标准形式”,在与本申请具体实施例相称的行文中,是指属于17种普通标准形式二次表面的任一种,其具体例子如在CRC Concise Encyclopedia of Mathematics,by E.W.Weisstein,Chapman&Hall,New York 1999,p.1485中阐明。
术语“二次型的标准光学表面”,在与本申请具体实施例相称的行文中,是指圆锥、圆柱、球、球体、或二次曲面一部分的任何双凸或平凸表面,上述曲面属于椭球或圆环的生成族,该椭球或圆环由普通圆锥弧绕轴旋转而形成,该轴可以是某一表面的法线,或是平行于并离开某一表面切线的线。该表面至少到第三阶导数都是连续的,并对至少一个参考法线矢量有明确的对称性。
术语“对称轴”,在与本申请具体实施例相称的行文中,是指法线矢量,该表面的叶相对于该法线矢量至少有反射对称性,且个别表面单元的弧矢曲率中心,位于该法线矢量上。
术语“顶点(vertex)”,在与本申请具体实施例相称的行文中,是指表面与它的对称轴的交点。术语“尖(apex)”,我们用它表示佩戴时镜片表面最前面的点。
术语“光轴”,在与本申请具体实施例相称的行文中,是指两个表面的弧矢曲率中心所在的轴。它在对称轴共线时形成。表面的叶通常以柱坐标(r、□、z)定义,这里坐标的原点是表面的顶点,光轴是轴Oz,而径向距离r是在表面通过表面顶点的相切平面,即“顶点平面”内测量的。从顶点平面到该表面的定向距离z(r),亦称表面“下弯”。按照本发明的镜片,最好戴在佩戴者前面,以便镜片光轴与佩戴者的正面视线在远场视觉中基本上重合。
术语“光学中心”,在与本申请具体实施例相称的行文中,是指光轴与镜片前表面相交的点。它实际上可以作为镜片的零光学棱镜的位置确定,同时,光轴的取向,可以通过在该位置识别与表面相切的平面的法线矢量发现。
术语“弧矢曲率中心”,在与本申请具体实施例相称的行文中,是指任一子午线中表面倾角定义的旋转曲率中心。它位于表面的凹陷侧,离顶点的距离由下式给出R=z+rz这里zzr
术语“标准光学参考表面”,在与本申请具体实施例相称的行文中,是指二次表面,如果有非球面校正项,也包括在内,这种表面以切向和弧矢表面曲率随离开对称轴的单调变化为特征,没有局部极大或极小。
术语“与标准光学参考表面的显著的偏离”,在与本申请具体实施例相称的行文中,是指有二次的和更高阶分量的表面,如果有非球面校正项,也包括在内,整个表面是以沿至少一条子午线的倾斜位置上,至少切向曲率或平均曲率呈现一极大值为特征。
术语“在表面曲率方面与二次型标准光学参考表面的显著的偏离”,在与本申请具体实施例相称的行文中,是指各个表面单元的切向曲率和/或弧矢曲率,在离开对称轴时首先呈现增加的差值,然后离开对称轴更远时呈现下降的差值。
术语“在表面像散方面与标准光学表面的显著的偏离”,在与本申请具体实施例相称的行文中,是指切向和弧矢表面曲率偏离足够地大,以致向镜片表面引入较大的光学像散畸变。
术语“静态棱镜(static prism)”,在与本申请具体实施例相称的行文中,是指当佩戴者注视向前直视位置中的物体并眼睛不动时,可感觉到进入他或她瞳孔的抽样光线的棱镜分量。该棱镜通常与周边视觉有关。
术语“旋转棱镜”,在与本申请具体实施例相称的行文中,是指当佩戴者旋转眼睛时,可感觉到沿他或她视线的抽样光线的棱镜分量。该棱镜通常与约40到50度的眼睛旋转有关。
术语“弧矢深度”,在与本申请具体实施例相称的行文中,是指在镜片前顶点的表面切平面,与前表面最接近颞部边缘点之间的距离。术语“弧矢深度之差”,我们用它指前表面最接近颞部边缘点上的弧矢深度,与前表面最接近鼻部边缘点之间的差。
术语“平均通过光焦度(mean through power)”是沿给定视线的一条主子午线内的通过光焦度,与沿该视线的另一条主子午线内通过光焦度的平均。“平均光焦度误差”(MPE)是与需要的折射校正相比,沿给定视线的主子午线内镜片通过光焦度实际误差的算术平均值。“RMS光焦度误差”(RMSPE)是与需要的折射校正相比,沿给定视线的主子午线内实际镜片通过光焦度的均方根误差。术语“基本上零的平均通过光焦度”,在与本申请具体实施例相称的行文中,是指平均通过光焦度在佩戴者注视场中,在-0.50D到+0.125D范围,可取的是-0.30D到+0.05D,更为可取的是在±0.09D,而最可取的是在±0.05D。
术语“表面Q值”,在与本申请具体实施例相称的行文中,是指曲线或表面可以描述为二次的程度的测量。对曲线,它由沿曲线长度的一阶和二阶导数确定。对表面,它是由切向曲率和弧矢曲率确定,或由曲率半径确定。
术语“偏心率”和“形状因子”,在与本申请具体实施例相称的行文中,是指圆锥断面背离理想圆断面的程度的标准测量。
按照本发明优选实施例的术语“表面曲线”,在与本申请具体实施例相称的行文中,是指平面曲线,该平面曲线有:对称轴;中心部分相对低的曲率和侧端部相对高的曲率;中心部分与侧端部之间的中间位置上的曲率局部极大,且还有特征是,曲线的法线矢量在它最大切向曲率的相对两区,相互地在角度上向对方偏斜。
术语“密切表面(osculating surface)”,在与本申请具体实施例相称的行文中,是指一对表面,在它们相交的封闭曲线上彼此共同相切。这两个表面在它们的交线上有相等的弧矢曲率。

发明内容

今天,大多数矫正的和非矫正的镜片,是用一对二次型表面建立的,它们的几何图形是按某些方式,从圆或圆锥断面旋转或平移的图形导出。在单视觉镜片设计领域中,横贯佩戴者注视场显著偏离标准二次型的表面的使用,经验非常少。即使有这方面的经验,仍然缺乏全面的设计方法,以便需要的表面形式可以借助该方法建立。因此,如果提供横贯镜片孔径的基本上偏离标准二次型表面的裹脸型非矫正护目镜,并在水平包裹(在眉毛附近)及竖直拢住脸两方面,能有宽范围的选择款式,最大地引起佩戴者的兴趣,这将是本领域的显著进步。如果镜片能在全部视场上,如有必要,从视场中心到视场周边,与二次型镜片的光学性质匹敌,这将是本领域更为显著的进步。
本发明的另一个目标,是克服,或至少减轻现有技术非标准表面在倾斜注视场中以及在周边视场中出现的误差。本发明还有的目标,是提供优越的如用优值函数测量的光学性能;简化表面的数学结构;和使提供这种改进的倾斜光学性质所必需的表面调整,变得更容易。表面曲线的形象化
现有技术的非矫正表面,一般是通过绕圆锥的对称轴或绕垂直于该对称轴的轴,旋转圆锥断面建立的凸的形状,或与之非常接近的形状。对圆柱、圆锥、和圆环镜片的形式,旋转轴的定位垂直于佩戴者。对表面为椭圆面、抛物面、双曲面、和球面的镜片旋转轴,可以是水平的,也可以平行于佩戴者佩戴时的正面视线。圆锥断面是容易想象的,属直立圆锥与平面相交形成的形状范围。
当前感兴趣的表面,是由不属于上述任何种类的曲线产生的。除极少特殊例子外,它们不能按严格的数学形式分类。但是,它们的一般特性是容易想象的。图2B所示的是圆柱穹顶的透视图,圆柱穹顶在中间断面的对称底面是圆,并有基本上平坦的竖直断面的中间区。向底面偏斜的平面与穹顶相交产生的相交曲线,受穹顶竖直弯曲部分和相交高度的强烈影响。这些曲线有对称轴3-3′,形状如图2B的曲线集合(a)所示。它们必然有特征上不同于椭圆形状的非二次型,与直立圆柱斜交将发现椭圆形,例如在图2B的曲线集合(c)所示。按照本发明的实施例,是利用这些曲线和其他类似的特征,而不是圆锥断面,来产生镜片表面。
背离规则形式的光学表面,用相对于顶点平面的表面高度,按离开顶点的径向距离项的Taylor级数展开描述,于是,非球面可以作为球面且与球面的偏离,按惯例处理,该球面在顶点与该非球面的曲率匹配,而非圆锥的非球面,可以作为在顶点匹配的圆锥和与圆锥的偏差处理。例如见,Optical Society of America Handbook of Optics,Volume I,Part 1,M.Bass(Ed),Second Edition,McGraw Hill,NewYork 1995 p.1.39。这里假定偏差是小的,且沿表面子午线出现的表面高度曲线,是普通的圆或普通的圆锥。表面曲线的这一特征,可以通过物理曲线的变差和曲线渐开线的变差测试,曲线渐开线是沿物理曲线单元的切向曲率中心的轨迹。
圆的渐开线是曲率唯一中心上的一点。遵从下面方程式的椭圆x2a2+(y-b)2b2=1有被称为“圆内旋轮线”的Lamé曲线渐开线(ax)2/3+(b(y-b))2/3=c4/3这里ca2-b2aep(ab)2有形状因子p=4(偏心率e=0.87)的椭圆和它的渐开线在图2B中以曲线(c)和(cc)画出。注意,圆内旋轮线有四个尖点,并对椭圆的短轴和长轴两者对称。
任何曲线的渐开线,可以由切向曲率中心的轨迹分析确定,渐开线对运动点(x,y)的坐标是(X,Y),这里X=x-{1+(y′)2}y′/y″和Y=y+{1+(y′)2}/y″
因此我们发现,图2B的曲线(a)有如(aa)所示的渐开线。如果圆的一部分与它的密切圆合并,如图2B的曲线(b),则它的渐开线取曲线(bb)的形式。这是在表面曲线短轴上有齿状顶点的不规则圆内旋轮线,对应于曲线接近于圆的外侧区。一对水平配置尖点对,与切向曲率的最大值位置对应,如同它们在椭圆的情形一样。但这种情形的出现不需要顶点的形成,而对椭圆则是必需的,因为曲线倾角在最高曲率区保持有限,且法线矢量向短轴偏斜而不是与之垂直(即,φ<π/2)。见图2C和2D。
在下面表4C中说明的本发明一个表面实施例,有一扩展区,其中的代表性表面曲线,近似有最大切向曲率外部区的圆锥。表面曲线及它的渐开线在图2C(b)中画出。渐开线形状,即图2C(c)的曲线1,在内部区非常接近椭圆的渐开线,即图2C(c)的曲线2,这里a=34.5mm,b=9.25mm。这一事实表明,表面曲线从它的中心到切向曲率最大值,一般是椭圆形,形状因子p=13.9,偏心率e=0.963。这样导出的椭圆与物理曲线在该孔径中是紧密匹配的。见图2C(a)。
表面曲线内部如此高的偏心率值,是从设计思路得到的,该设计思路使曲率围绕顶点缓慢变化,然后对外侧弯曲施加快速的变化率。这种现象不是顶点曲率自身特有的。高偏心率椭圆有a>>b,并可以把它比作有突然且浅的外侧弯曲区的扩展圆弧。按照本发明实施例的不同表面,如在下面的表3A所描述,是用一对2阶和4阶多项式系数构建的。它有非常突然的外侧弯曲突变,该突变以尺寸a=10.95mm和b=0.28mm开始,相应于偏心率e=0.9997(或p=1530)。它的特征在图2D画出。如此高偏心率曲线的使用是不切实际的,除非采用某些措施,防止表面曲线在小的距离上自前平面向内转弯。我们的方法使曲线在侧端部区,呈螺旋形从椭圆向外盘旋。
因此,在本发明一个实施例的一个方面中,是提供有内侧和外侧凸表面的镜片,其间有一定厚度,其中,至少所述表面之一的断面至少沿一水平子午线有弯曲的形式,使该断面曲线:有中心部分和与中心部分隔开的侧端部,有一对称轴;曲率从中心部分向侧端部增加,和;在中心部分与侧端部之间的中间,有曲率的最大值。
在较为可取的一个方面中:曲线在中心区的形状,接近椭圆形,和;曲线在侧端部区,呈螺旋形从椭圆向外盘旋。
在更可取的一个方面中,曲线中心区的渐开线,接近与偏心率大于约e=0.95(形状因子约p=10)的椭圆对应;曲线的渐开线有一对与最大切向曲率区对应的水平尖点,从曲线到所述尖点的法线矢量,以非90°的角度向曲线的短轴偏斜,和曲线靠近侧端部的渐开线,以从水平位移尖点向曲线凹侧上的短轴延伸的分支点为特征。
可取的是,曲线在最高切向曲率相反位置上的法线矢量,以小于φ=75度的角度向对称轴偏斜,较可取的是小于60度,而最可取的是小于45度。在更为可取的一个方面中,曲线中心区的渐开线,近似对应于有偏心率约e=0.96(形状因子约p=14)或更大的椭圆。公开的实施例的更多方面
按照本发明一个实施例的凸镜片表面,可由上述普通类型的对称弧绕它们自身对称轴旋转产生,或绕垂直于曲线对称轴并位于表面单元后部的共面轴旋转产生。在另一种安排中,镜片表面的水平子午线,可以是按照本发明实施例的表面曲线,而竖直曲线可以有任何合适的形式。
在本发明一个实施例的第二方面中,是提供一种光学镜片单元,包括有对称轴的第一表面;和有对称轴的互补曲率的第二表面;至少一个表面在表面曲率和表面像散中,表现出与二次型标准光学参考表面的显著的偏离;局部地围绕镜片孔径上的顶点开始的表面像散的偏离,一般地横贯整个表面延伸,并在镜片表面上形成最大表面像散的环形区;和第一和第二表面组合,定义光学中心、光轴、和表现出基本上零平均通过光焦度的光学带。
按照本发明当前实施例的镜片表面,最好按表面切向及弧矢曲率沿横向收敛设计,以便在镜片孔径周边区之内或附近的表面上,定义一脐状环。更可取的是,表面切向光焦度一般横贯镜片孔径高于弧矢曲率,且镜片表面呈扁球状。镜片表面的平均光焦度,在40°视场角中可以改变1.0D,最好可以改变3.0D,更为可取的是,在50°视场角中可以改变5.0D,而最可取的是,在50°视场角中可以改变6.0D。
可取的是,在佩戴者注视场之内或接近佩戴者注视场边界,有最大像散的倾斜区。较可取的是,表面像散在镜片孔径的周边区中下降至零。镜片表面的像散可以改变1.0D,可取的是在40°视场角中改变3.0D,较可取的是在50°视场角中改变5.0D,而最可取的是在50°视场角中改变6.0D。因为切向和弧矢表面曲率,在镜片孔径周边附近收敛至脐状环,所以表面像散将在镜片孔径周边区下降。可取的是,表面像散在75°视场角上小于3.0D,较可取的是在在75°视场角上小于2.0D,而最可取的是小于1.0D。
可取的是,按照本发明当前实施例的镜片,将呈现至少10mm的弧矢深度,较可取的是15mm,而最可取的是在径向距离40mm上为20mm。可取的是,按照本发明的镜片,封闭佩戴者的整个注视场,较可取的是,至少对着相对眼睛旋转中心60°的视场角,而最可取的是在70到75°范围。
相应地,在本发明一个实施例的第三方面中,是提供一种光学镜片,包括有对称轴的第一表面;和有对称轴的互补曲率的第二表面;至少一个表面在表面曲率和表面像散中,表现出与二次型标准光学参考表面的显著偏离;局部地围绕镜片孔径上的顶点开始的表面像散的偏离,一般地横贯整个表面延伸,通过倾斜地位于镜片表面上的极大值,并在镜片周边形成低表面像散的外部带,镜片表面围绕镜片周边近似呈脐状,和;第一和第二表面组合,定义光轴和表现出基本上零平均通过光焦度的光学带。
显而易见,按照本发明的光学镜片,允许用相对于标准眼科镜片是完全径向形状的表面,制造非矫正的镜片,但本发明仍然提供一种镜片体,该镜片体的平均通过光焦度,在正常的眼科标准内,从光轴到倾斜于注视场边界,是相对恒定的。该偏离表面可表现出显著的光学畸变,例如在镜片孔径的大部分上,有高程度的表面像散。但是,折射平均光焦度、RMS光焦度、和像散误差,在正常的眼科标准内,从光轴到倾斜于注视场边界,仍然是小的。
我们已经发现,当优化受本文所述表面形式限制的非矫正镜片的光学性质时,在与佩戴时近似的注视场对应的孔径中,镜片厚度表明没有逐渐变薄或变厚的征兆。这一现象的出现与二次型表面预计的不同,没有伴随负折射光焦度误差的发展或扩大的棱镜误差。例如见Houston等人(U.S.Patent 5,648,832、5,689,323、和6,010,218)和Conway(U.S.Patent 5,555,038)。这些镜片横贯50°视场角表现出的光学误差,确实低于外侧边缘有等价弧矢深度的真正的球形面镜片。镜片厚度在光轴上通常有浅的极小值,该浅的极小值在倾斜场略为变深,并维持至注视场边缘或以外,然后在镜片周边区逐渐变薄。
在本发明实施例的再一个方面中,是提供一对在裹脸型框中或结构中的非矫正镜片,能把镜片准确戴在佩戴者前面,使正面视线基本上与相应的镜片光轴重合,镜片依靠其物理形状及弧矢深度而贴合脸形并封闭至少向前视场,其中,每一镜片的特征如下:有对称轴的第一镜片表面;和有互补曲率及对称轴的第二镜片表面;至少一个表面在表面高度中,表现出与二次型标准光学参考表面显著的偏离;局部地围绕镜片孔径上的顶点开始的表面高度的偏离,一般地横贯整个表面延伸;偏离的表面表现出高像散的倾斜区,和可供选择地在周边中低表面像散的外部带,围绕该周边,表面区呈近似的脐状;第一和第二表面组合,定义光轴和光学带,在该光学带中,镜片厚度基本上恒定(不变薄地维持)地横贯与佩戴时接近注视场相对应的孔径;佩戴时在正面视线上没有显著的折射或棱镜误差,和;当眼睛横过注视场旋转并进入视场的周边时,倾斜折射光焦度误差仍然是小并对称的。
最好是,倾斜折射光焦度误差和棱镜误差,至少在注视场一对正交子午线上是对称地变化的。
可取的是,正面视线上的镜片平均通过光焦度,在-0.25到+0.125D范围,较可取的是在±0.09D范围,而最可取的是在±0.05D范围。可取的是,正面视线上的折射误差和棱镜误差至少如0.125D那样小,较可取的是小于0.09D,而最可取的是小于0.05D。
光学误差通常在倾斜场中增加,并对佩戴者按照他们在视场内的位置,有不同程度的可接受性。可取的是,倾斜场中的平均通过光焦度在-0.50到+0.125D范围,较可取的是,在与接近注视场对应的孔径中,在-0.30到+0.05D范围,而最可取的是在所述孔径中,在-0.125到+0.05D范围。可取的是,倾斜折射误差的幅值小于0.60D,较可取的是在与接近注视场对应的孔径中小于0.25D,再较可取的是在所述孔径中小于0.125D,而最可取的是在所述孔径中小于0.05D。
最好是,光学棱镜中,旋转和静态作用两者的幅值增加的平均角速率,至少如视场角的40mD/度一样慢,可取的是比25mD/度更慢,较可取的是,横贯基本上与注视场对应的孔径,如12.5mD/度一样慢,而最可取的是,在围绕正面视线30°的角度场内,如20mD/度一样慢。再较可取的是,从约50°到80°场角度的向外周边视场内,静态光学棱镜幅值中变化的平均速率,至少保持如同80mD/度一样慢,甚至更可取的是小于40mD/度,而最可取的是小于25mD/度。
这些及其他的目的和特征,可从包括附图的本申请中明显看出。通过这里说明的本发明各个方面及实施例,可以达到一个或多个目的和优点(但不一定是全部)。

附图说明

图1A画出一对现有技术裹脸的眼镜,这里的美观要求,是通过在鼻部和相对佩戴者佩戴时的正面视线2-2′向上移动镜片光轴1-1′达到的。
图2
图2A:画出按照本发明一个实施例的镜片的前透视图(从上面、直接在前面、和在下面观看)。这些镜片给出必要的配合脸形的几何图形,同时保持佩戴时光轴与正面视线共线。
图2B:画出圆柱穹顶和它与偏斜平面的倾斜相交线,产生有对称轴3-3′的相交曲线。通过改变平面的偏斜度,产生一族这样的相交曲线,如图上曲线集合(a)所示,而加重的曲线的渐开线,如曲线(aa)所示。把部分曲线(a)与它的密切圆合并形成的闭合曲线(b),有渐开线(bb)。图上画出一族套叠的椭圆,以便与曲线集合(c)比较,而形状因子p=4的椭圆及其渐开线,以曲线(cc)画出。
图2C:画出通过本发明一个实施例的表面子午线的断面性质,并用表4C描述。该表面曲线和它的渐开线,作为图的一部分(b)画出,而图的一部分(c)画出渐开线曲线(1)和与曲线(1)在表面曲线中心区匹配的拟合的椭圆(2)渐开线。物理曲线(实线)用于与图的一部分(a)中导出的椭圆(虚线)比较。
图2D:画出通过本发明一个实施例的表面子午线的断面性质,并用表3A描述。该表面曲线和它的渐开线,作为图的一部分(b)画出,而图的一部分(c)画出渐开线曲线(1)和与曲线(1)在表面
图3说明现有技术由Davis和Waido描述的整体镜片。
图3A:画出顶点曲率3.78D和偏心率e=0.866(形状因子p=4.0)的椭圆形整体镜片。其折射性质对眼睛在正面视线两侧的旋转是不对称的。
图3B:画出接近抛物线的整体镜片形式,它有产生颞部弯曲的高阶系数。它对眼睛在正面视线两侧的旋转是不对称的,且曲线渐开线(1)不像任何规则形式曲线的渐开线。最接近的椭圆渐开线(2)的形状因子p=4.0,但不是满意的匹配。
图4画出现有技术设计的球面非矫正双镜片护目镜。
图4A:画出光轴与正面视线共线的9D基本曲线的球形面镜片。
图4B:画出按照Houston等人方法获得的裹脸/拢住脸的8D基本曲线镜片,它是球形面镜片,轴在分析平面偏移15mm。折射性质对眼睛在正面视线两侧的旋转是不对称的。
图5画出按照本发明实施例的非矫正表面的性质,这些表面有球形顶点及外侧脐状环(图5A),其中之一有外侧脐状带(图5B)。表面的性质概括在表3A和3B中。
图6A和6B画出两种表面的性质,该两种表面作为一对有不同曲率的球面的加权组合,在数学上形成。两者在外部区是脐状的,并在顶点有球点。它们的性质概括在表4A和4B中。
图7把涉及佩戴者眼睛旋转中心的表4A所示表面,其入射特征的内部角,与相等表面高度的球面的入射特征内部角,在半径35mm上进行比较(图7A),以及与椭球相等弧矢深度并有偏心率e=0.75者进行比较(图7B)。参照佩戴者向前凝视的瞳孔光阑确定的性质,在图7C和7D画出。
图8A和8B画出一对第4阶旋转对称非矫正镜片的光学性质,它们在对称轴的顶部曲率是1.75和3.5D。前表面参数集合在表5中给出(5B型和5C型)。
图9A和9B画出一对第4阶旋转对称非矫正镜片的光学性质,它们在对称轴的顶部曲率是3.5和5.0D。前表面参数集合在表5中给出(5D型和5E型)。
图10画出第4阶非矫正镜片的光学性质,它有水平方向曲率3.5D和竖直方向曲率0.0D的圆环形顶点。
图11画出图10镜片在单目40°旋转范围中的光学性质等值线图,和该镜片40mm孔径内镜片的物理性质等值线图。等值线的间隔如下:视觉棱镜,步幅0.25D;折射光焦度,围绕±0.005D的场的步幅0.025D;镜片棱镜,增量1D;表面高度,围绕-0.25mm的场的步幅5mm;镜片厚度相对于中心的步幅+0.025mm;和表面像散,围绕1.25D的场的步幅4D。
图12画出图13镜片在单目40°旋转范围中的光学性质等值线图,和该镜片40mm孔径内镜片的物理性质等值线图。等值线的间隔如下:视觉棱镜,步幅0.25D;折射光焦度,围绕±0.005D的场的步幅0.025D;镜片棱镜,增量1D;表面高度,围绕-0.25mm的场的步幅5mm;镜片厚度相对于中心的步幅+0.025mm;和表面像散,围绕1.25D的场的步幅4D。
图13画出第4阶非矫正镜片的光学性质,它有水平方向曲率3.5D和竖直方向曲率7.0D的圆环形顶点。
图14A和14B画出旋转对称非矫正镜片的光学性质,它有表4C描述的前表面和按照两种优值函数优化。
图15画出非矫正镜片的光学性质,它的前表面通过两个椭球的数学组合形成,该两个椭球在垂直于光轴的平面中有偏心率e=0.71。
图16画出图15镜片在单目40°旋转范围中的光学性质等值线图,和该镜片40mm孔径内镜片的物理性质等值线图。等值线的间隔如下:光学棱镜和折射光焦度,步幅0.10D;镜片棱镜,增量0.25D;表面高度,步幅2mm;镜片厚度相对于2mm的中心,步幅+0.05mm;和表面像散,围绕1.0D的场的步幅4D。

具体实施方式

对本发明实施例的镜片,第一和第二表面至少对三阶导数是连续的,并呈现无可见的不连续性,更具体说,是没有光学的不连续性。最好是,镜片表面是共同变化的表面,使光学带基本上表现出零的平均通过光焦度。按照本发明实施例的镜片,是以它们的光轴基本上与每一眼睛的正面视线重合地戴在佩戴者前面。镜片的特征在于光学带,在该光学带中,镜片厚度横贯孔径光滑地变化,虽然不必须是线性变化,该孔径等于从其中心到边缘的佩戴者的注视场,在中间区获得相对更大的厚度,并在近似对应于佩戴时的注视场的孔径上维持,之后,在它的外侧尽头,逐渐变薄到较薄的厚度,而其中没有出现不需要的负折射光焦度的趋势。镜片表面的定义
镜片表面的设计,常常按照它们形状的特定属性,诸如包裹佩戴者脸的几何形状,或定义与佩戴者脸形贴合度的倾角,和同样定义对佩戴者及观察者两者可见的光反射性质的属性。因此,要求用数学程序定义上面详细描述的、有特定曲率属性的表面的物理形式。一般涉及这些设计的高阶和混合阶的闭合表面。是旋转的蛋形或卵形,如在CRC Concise Encyclopedia of Mathematics,by E.W.Weisstein,Chapman&Hall,New York 1999,p.1293中所述。除了少数特殊例子,它们不被严格的数学方式分类,而可以通过许多数学途径获得,下面我们以实例说明。
标准的二次型眼科表面,最常见的是作为圆锥断面旋转图形产生的表面。这种圆锥断面的数学当然是十分熟悉的,例如在Jalie的标准教科书中说明:The Principles of Ophthalmic Lenses,M.Jalie,Fourth Edition,London 1994,Chapter 21。把该形式的所有表面联系在一起的一个特征,是表面高度z(r)一阶导数与二阶导数之间的关系,即R2=z(rz)3=rS3rTR2=KT(r)[KS(r)]3这里R是曲率顶点半径;rT和rS是曲率的切向和弧矢半径;KT(r)和KS(r)是切向和弧矢曲率。因此,如果表面是二次的,从部分曲线任何点的导数计算的“暗指的顶点半径”R(r),在表面任何部分都保持常数。如果表面是非二次的,根据表面是长球状的或扁球状的,暗指的顶点半径将增加或降低。我们把暗指的顶点半径与真正的顶点半径之比,命名为该表面的“Q值”,Q(x)=R(x)/R(0)。
因此,在本发明的另一方面中,是提供一种光学镜片,包括有对称轴的第一表面;和有对称轴的互补曲率的第二表面;至少一个表面在表面高度中,表现出与二次型标准光学参考表面显著的偏离;局部地在镜片孔径上开始的表面高度的偏离,一般地横贯整个表面延伸;该偏离的表面,作为标准光学形式内密切表面与标准光学形式外密切表面之间的内接表面形成,该外密切表面的标准光学形式,有不同于第一个的顶点半径;切向和弧矢半径横贯偏离表面变化,使Q(r)≡rS3/rTR(0)2是非恒定的,在顶点等于1,而离开对称轴至少改变0.25,这里式中rT和rS分别是曲率的切向和弧矢半径,而R(0)是曲率顶点半径;对应的切向和弧矢曲率KT和KS横贯偏离表面变化,使Q(r)≡KT(r)*[KS(0)]2/[KS(r)]3是非恒定的,在顶点等于1,而离开对称轴至少改变0.25,这里KS(0)是顶点弧矢曲率;偏离的表面可供选择地在周边中表现出低表面像散的外部带,在该周边中,表面近似呈脐状;和第一和第二表面组合,定义光轴和表现出基本上零平均通过光焦度的光学带。
最好是,内密切表面是相对光轴旋转的圆锥面,而偏离表面的顶点是脐状的,是球点。内密切表面可以是复曲面。可取的是,该复曲面在所有子午线中都是圆形。更可取的是,内和外密切表面对公共轴有相同的旋转对称性。
可取的是,表面“Q值”在围绕佩戴时的正面视线的镜片孔径中心区中,近似是恒定的,并从此下降离开,在镜片场角度~60°的周边视场中小于0.75,较可取的是在镜片场角度~40°的注视场内小于0.75。最可取的是,“Q值”在佩戴者注视场边界中脐状区上,和/或进入周边视觉带,有稳定的极小。
偏离的表面,将基本上表现出倾斜表面像散,从顶点增加,在中间的场角度上经历最大,然后向接近脐状周边区下降。可取的是,选择的镜片孔径将位于佩戴者注视场边界中最大表面像散区。更可取的是,选择的镜片孔径将位于紧靠佩戴者周边视场的镜片边缘的近似脐状区。
一种合适的基本上不同于二次表面的旋转对称扁球状表面,将满足如下关系z(r)=Σn2mAnrn这里z(rz)3<<(12A2)2
该条件规定,多项式形式将由系数An支配,这里n≥3,且这些系数将按一定次序变化,与圆锥面的变化不同。数值指数n是定义表面分量“序数”的整数。在设计本发明实施例的镜片前表面中,使用2到8的序数已经足够,而最重要部分是在3到5范围的系数上。有时把该表面按下面的形式表达是方便的z(r)=C(r)+Σn3mAnrn这里C(r)=Rp[1-1-pr2R2]
第一项规定完全的二次表面。它可以是有顶点半径R和形状系数p的旋转圆锥面,由此,多项式仅描述与圆锥面的偏离。在这种情形中,有心的球由形状因子p=1定义,抛物线由p=0定义,而双曲面由p<0定义。其他的p值定义椭球面。另外,比可以是圆环和一般的椭球面。如有必要,可以用加权函数以达到特定的设计目的。
因此,在本发明优选实施例的再一个方面,是提供一种光学镜片,包括有对称轴的第一表面;和有对称轴的互补曲率的第二表面;至少一个前表面在表面高度中,表现出与二次型标准光学参考表面显著的偏离;局部地在镜片孔径上开始的表面高度的偏离,一般地横贯整个表面延伸;该偏离的前表面,作为由附加在参考表面的多项式表面高度定义的表面形成,系数的序数在从2到8的范围;偏离的表面表现出高像散的倾斜区,并可供选择地在周边中表现出低表面像散的外部带,围绕该周边,表面近似呈脐状,和;第一和第二表面组合,定义光轴和表现出基本上零平均通过光焦度的光学带。
在按照本发明实施例的替代途径中,一对不同曲率B1和B2的二次表面C1(r)和C2(r),用适当的加权函数M(r)组合,给出最后的旋转对称表面,形式如下z(r)=M(r)*C1(r)+(1-M(r))*C2(r)
可以使用任何合适的加权函数,作为例子,使用双曲正割:M(r)=a*sech(r/b)
该表面与它的外密切表面在外侧区合并,又与内密切表面在它的顶部合并。表面“Q值”在顶部是1(unity),然后离开轴向着外侧的恒定值光滑下降,该恒定值与两个圆锥区内的达到曲率比B1/B2对应。表面像散离开顶部迅速增长,并随后在外部区中光滑地下降至低的值,表面在该外部区可以呈脐状。这一性质由加权函数控制,加权函数必须从坐标原点两侧的1光滑地下降。在现在的表示中,参数b控制表面变化的一般速率,而参数a设置中心值。如果加权函数的中心值小于1,则顶点区有定义该两个表面曲率的中间曲率,和相对更宽的脐状顶部。
因此,在本发明优选实施例的一个不同方面,是提供一种光学镜片,包括有对称轴的第一表面;和有对称轴的互补曲率的第二表面;至少一个表面在表面高度中,表现出与二次型标准光学参考表面显著的偏离;局部地在镜片孔径上开始的表面高度的偏离,一般地横贯整个表面延伸;该偏离的表面,借助适当的加权函数,通过合并参考表面高度与第二表面高度形成;偏离表面的设计,至少到它的第三阶导数都是光滑的;偏离表面表现出高像散的倾斜区,并可供选择地在周边中表现出低表面像散的外部带,围绕该周边,表面近似呈脐状,和;第一和第二表面组合,定义光轴和表现出基本上零平均通过光焦度的光学带。
镜片的倾斜光学性质,是通过对镜片执行光线跟踪分析确定的,不是以佩戴时眼睛的旋转中心作参考,就是以佩戴时向前凝视瞳孔光阑中心作参考。因为在倾斜表面单元和以大于20°等角度离开光轴的主光线之间入射角度的变化,产生简单的二次表面的倾斜误差。除了如此简单的表面外,还要加上倾斜场中快速变化的表面曲率的复杂性。但是,按照本发明实施例的表面形式,可以在实际上简化光学系统的三角测量术。具体说,已经发现,上面描述的表面形式,通常有限制入射的离轴角的作用。从眼睛旋转中心到按照本发明实施例优选表面的倾斜单元的主光线,使中心孔径中的内入射角升高得比用于标准光学参考表面更快速。然后,内入射角饱和,保持在近似恒定的更高视场角的值。对瞳孔光阑中心的主光线,有类似的性质。
可以不通过表面高度本身,而是通过选择内入射角变化的适当函数形式,详细描述按照本发明实施例的表面。基本几何关系的分析产生如下涉及折射内角d(r)、表面高度z(r)、和表面倾角z′(r)的微分方程式:r-z(r)(L-z(r))=sin[d(r)]r2+(L-z(r))2(1+[z(r)]2)这里L是从表面顶点到分析的参考中心的距离。该方程式在给定适当的d(r)模型函数及一个边界条件,例如顶点的物理位置下,容易用现代数学程序求解。我们发现有用的模型函数是sin d(r)=sinγ*(1-exp(-nr2/L2))1/2它指定角度在整个倾斜场是准确地恒定的,d=.y。以此方式确定表面,是准球形穹顶;外部表面区不合并进球形区,但表现出脐状环,围绕该脐状环,表面像散是低的并变化缓慢。
因此,在本发明优选实施例又一个方面中,是提供一种光学镜片,包括有对称轴的第一表面;和有对称轴的互补曲率的第二表面;至少一个表面在表面高度中,表现出与二次型标准光学参考表面显著的偏离;局部地在镜片孔径上开始的表面高度的偏离,一般地横贯整个表面延伸;偏离表面是作为从眼睛旋转中心倾向主光线形成的,以便第一近轴区中的入射角随眼睛旋转而升高,随后从倾斜场到外侧极限保持近似恒定或缓慢下降;偏离表面表现出高像散的倾斜区,并可供选择地在周边中表现出低表面像散的外部带,围绕该周边,表面近似呈脐状,和;第一和第二表面组合,定义光轴和表现出基本上零平均通过光焦度的光学带。
可取的是,主光线从眼睛旋转中心到倾斜表面区形成的入射角,在30°或更小角度上基本保持恒定,较可取的是在20°,而最可取的是小于15°。可取的是,主光线从瞳孔光阑中心到倾斜表面区形成的入射角,在45°或更小的值上基本保持恒定,较可取的是小于35°,而最可取的是小于30°。镜片特性的优化
因此显然,必须在表面形状及倾角中满足十分细致的要求,以便生产极其理想的眼科镜片产品。这就是本发明的一个目的。当设计者承担建立镜片的前和后表面的工作时,至少前表面的美学形式,两个表面制造的可靠性,和定义“良好”镜片的判据都是问题。按照本发明实施例的非矫正镜片,有恒定的厚度,或横贯围绕顶点的孔径有增加的厚度,镜片在或靠近光轴处要相对较薄。设计参数的选择,允许对厚度变化和孔径大小进行控制,在孔径中,维持在或大于镜片中心厚度值,对正面视线的折射和棱镜误差没有影响,正面视线在佩戴时与光轴对齐。这种作用对可用于镜片设计的优化过程有附加的较大影响。
有预定前表面的(假定)镜片后表面的表面校正,可以凭借计算方法的帮助,这些计算方法包括优值函数的使用,把达到的性质与目标性能目的之间的关系定量化。优值函数通常以被观察的折射误差为基础,这些折射误差是,平均光焦度误差MPE、RMS光焦度误差RMSPE(亦称RMS模糊(blur))、和像散或柱面误差,其中RMSPE=[MPE]2+14[CylError]2
下面的优值函数,常常被选来优化在眼睛旋转θ范围内的镜片:M2=Σθ([RMSBlur]2)θM2=Σθ([MPE]2+[CylError]2)θM3=Σθ(116[MPE]2+[CylError]2)θM4=Σθ([MPE]2+116[CylError]2)θ,选择在策略上是根据光焦度与像散之间的加权。在这种情形下,引入其他优值函数,例如测量镜片的光学棱镜,和测量诸如模糊及棱镜性质的变化速率的优值函数,举例说:Mα,β=Σθ(α[RMSBlur]2+β[|StaticPrism|]2)θ,Ma,b=Σθ(a[RMSBlur]2+b[(StaticPrism)θ]2)θ
这些优值函数被用于注视点和周边场两者之上。但是,对每一光线方向(眼睛旋转)有一非负的权重,用于控制每种不同场中RMS模糊(a)及静态棱镜(b)的相对贡献。通常,是在外部角度范围控制静态棱镜,用施加于内部场的优值函数更通用的RMS模糊部分,获得理想的且稳定的光学配置。
在本发明实施例再又一个方面中,是提供一对在框中或在裹脸型结构中的非矫正镜片,能把镜片准确戴在佩戴者前面,使正面视线基本上与镜片对应光轴重合,镜片贴合脸形,并借助它们的物理形状及弧矢深度,基本上封闭前方和周边视场,其中,每一镜片的特征如下:有对称轴的第一镜片表面;和有互补曲率及对称轴的第二镜片表面;至少一个表面在表面高度中,表现出与二次型标准光学参考表面显著的偏离;表面高度的偏离开始局部地在镜片孔径的顶点上,一般地横贯整个表面延伸;偏离的表面表现出高像散的倾斜区,和可供选择地在周边中低表面像散的外部带,围绕该周边,呈近似的脐状;第一和第二表面组合,定义光轴和光学带,在该光学带中维持镜片厚度,从封闭佩戴时视场的全部镜片孔径到周边极限,没有逐渐变薄;佩戴时在正面视线上没有显著的折射或棱镜误差;在大部分注视场内,倾斜折射光焦度保持在小的及设定的极限值以下,在大部分注视场外,它们在注视场边缘和在周边视场附近,光滑地升高到稳定的最大值,该周边视场通过临床上建立的麻烦模糊阈值定义;光学棱镜的静态贡献的幅值,横贯近似注视场的孔径,随增加的视场角光滑地增加,表现出拐点的这一趋势,以便棱镜幅值可以假定为稳定值,横贯周边视场基本上没有变化;和光学棱镜中旋转贡献的幅值,从正面视线的零,随眼睛横贯注视场的旋转缓慢地增加。
最好是,倾斜折射光焦度与棱镜,至少在注视场的一条子午线中对称地变化,最好至少在注视场的一对正交子午线中。
最好是,RMS光焦度误差和像散误差两者:在角宽度约±25°的近轴场中小于0.15D;在约一半注视场面积中小于0.30D;在大部分注视场上小于0.4D,和;在与眼睛旋转约40°或更大对应的注视场上,至少像0.75D一样低,最好小于0.5D。可取的是,在旋转棱镜分量幅值中,增长的平均角速率像25mD/度一样小,较可取的是,约12.5mD/度横贯注视场,并在静态棱镜分量幅值中,增长的平均角速率像60mD/度一样小,更可取的是,从正面视线到外部周边极限,约为30mD/度。或者,棱镜可以最小化,使旋转和静态棱镜分量两者的幅值中,增长的平均角速率,横贯与注视场基本对应的孔径,约为视场角的40mD/度或更小。
现在将参照附图及例子,更完整地说明本发明。但是显然,下面的说明只是演示性的,不应以任何方式视作对上述本发明的普遍限制。例1(现有技术)非矫正椭圆镜片
Tackle在美国专利5,774,201中说明,适合用于整体的或双镜片护目镜的非矫正镜片形式,是在水平面中有基本的椭圆形断面,而在竖直方向上有各种形式。优选的水平弧是椭圆,偏心率在0.10到0.85范围,在长轴达到与相反的顶点间围绕短轴顶点延伸。因此,(1)镜片水平弧的中间部分比弧的其余部分有更低的曲率,(2)侧端部相对于中间部分有逐渐密致的曲率,和(3)从中部沿水平方向到外侧区,曲率变化是光滑的,被称为该结构的优点。
Tackle特别允许椭圆的长轴长度沿弓形部分的长度变化,只要断面基本上与椭圆符合。虽然允许断面外形与椭圆有些偏离,但必需保持上述有利的特征。一个这种特征是曲率随镜片中间部分单调变化,该中间部分比末端部分有较小的曲率。第二个是,使镜片光轴显著从佩戴时的正面视线偏移的能力,但不对正面视线引起光学误差,特别是光学棱镜。按照本发明实施例的镜片表面曲线,不提供后面所述这些特性。具体说,这些镜片表面曲线,在子午线的中心区和侧端部中间(即在镜片的中部),表现出切向表面曲率的极大值,且这些镜片表面曲线,基本不适合使正面视线从光轴偏移。
在美国专利5,604,547(Davis和Waido)中说明一种非矫正椭球面镜片,它的性质在图3A中画出。该镜片的前表面有偏心率e=0.866(形状因子p=4.0),且前表面的位置,可使光轴在佩戴者的中间平面内的中央轴(Cyclopean axis)上。正面视线被移离中心34mm,前表面半长轴长度70mm,表面的扁长缘出现在正面视线侧面36mm处。首先请注意,前表面切向光焦度向着该扁长缘光滑地增加。前表面像散在正面视线上是小的,也向着该扁长缘光滑地增加。其次请注意,镜片厚度从光轴上的极大,光滑地逐渐变薄,如同Tackle要求的较小偏心的椭圆镜片一样。最后,折射性质和棱镜幅值表明,在正面视线上没有显著的误差。在侧面比在鼻部有相对更大的倾斜误差,对侧转运动产生显著的左/右眼双目视差。
前表面椭圆的渐开线在图2B的一部分(bb)中画出。如上面的讨论,从该表面到椭圆渐开线的水平位移尖点的法线矢量,对应于曲线顶点,并垂直地指向椭圆短轴。角度φ不能与90度差别太大。例2(现有技术)非球面太阳镜
在美国专利5,604,547中,Davis和Waido说明整体的裹脸风格的非矫正太阳镜或眼睛保护聚碳酸酯镜片,包括一对形成始终“基本均匀”厚度的镜片的表面,每一表面都是圆锥截面产生的旋转图形。旋转轴是镜片的光轴。该轴位于佩戴者佩戴时正面视线的中间,与佩戴者的中间平面内的中央轴对应。Davis和Waido特别公开(权利要求18)一种方法,通过把含有曲率在1.0到6.0D之间中央区的前、后表面,与指数在10到30之间的其他多项式项,按照下弯方程式组合,使整体的防护罩的周边极限,在佩戴者前向双目视场外(就是说,在离开佩戴者正面视线40°或50°之外的视场角)弯曲,该下弯方程式如下z=Ar2+BrC这里A和B是系数,C是偶的整数指数并控制包裹度。径向距离r是从光轴测量的,或从佩戴者的中央轴测量。
为了帮助了解镜片的性质,已经在表2A中建立每一镜片的设计。镜片的水平断面描绘出与下弯方程式二次项关联的稳定的中心曲率,和向颞部稍微突然的弯曲,如在图3B所示。一般说,高阶项提供需要的侧面包裹深度,并对镜片单元前视部分的光学性质没有显著影响。这种向内突入的最大尺度,由镜片Hi-14#2的设计展示。所有这些镜片从光轴光滑地逐渐变薄,越过正面视线侧面的视场(见表2A)。(表2A)表2A。根据Davis和Waido美国专利5,604,547的镜片设计系数,和在光学中心tO及在正面视线tE上的镜片厚度。  x  (mm)   θ  (Deg)  1/2(K-  S+KT)  (D)  |KS-KT|  (D)  KT  (D)  Φ(x)  (Deg) R(x)/R(0)   35.0  30.0  25.0  20.0  15.0  10.0  5.0  0.0  -5.0  -10.0  -15.0  -20.0  -25.0  -30.0  -35.0  -40.0  49.4  45.1  40.1  34.4  27.6  19.8  10.6  0.0  -11.6  -23.8  -35.7  -46.7  -56.7  -66.3  -77.0  -88.4  4.0  4.0  4.0  4.0  3.9  3.9  3.8  3.8  3.7  3.8  4.1  5.1  7.6  11.4  12.3  8.0  0.0  0.0  0.0  0.0  0.1  0.1  0.2  0.2  0.2  0.1  0.5  2.3  6.6  12.6  12.3  2.6  4.00  3.99  3.97  3.93  3.88  3.81  3.73  3.65  3.60  3.72  4.34  6.29  10.88  17.71  18.46  9.28  0.43  1.73  3.89  6.03  8.16  10.27  12.35  14.40  16.43  18.49  20.76  23.77  28.79  38.06  52.81  68.50  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.01  1.03  1.11  1.27  1.47  1.46  1.14  0.71
表2B。镜片Hi-14#2的前表面性质,它作为水平距离及从正面视线向着颞部的视场角的函数。
在结果的表示中,轴Oz(x=0)已经置于佩戴者左眼的正面视线上,而鼻部光轴在x=+34mm上。配置在颞部正面视线的镜片部分,与x的负值对应。对被研究的设计,前表面曲率对鼻部和颞部正面视线视场的大部分,基本上保持恒定。前表面性质的细致变化,在表2B和图3B中给出。前和后表面两者都是长球状的,在中央区没有像散,这样,从光轴到与眼睛旋转约35°的颞部对应的区,切向曲率下降,在该区之外,前表面切向曲率KT、平均曲率1/2(KS+KT)、和表面像散,从外部颞注视场光滑地增加,到完全在注视场之外的约70°场角度的颞部弯曲中,经历最大值。“表面Q值”Q=R(x)/R(0)在离开正面视线大概75°,保持大于1。
前表面曲线渐开线(1),在高阶弯曲系数影响下发生改变,并近似线性,直到水平位移尖点,表面法线矢量以大概φ=50°向光轴偏斜。该渐开线不符合标准形式的曲线。椭圆渐开线最接近的拟合,在图3B中以曲线(2)表示,对应于a=75mm,b=39mm,e=0.854,和p=3.70。
镜片Hi-14#2的卡尺厚度不恒定,而是从光轴上的1.7mm逐渐变薄到正面视线的1.65mm,在侧面弯曲处稍微加厚。镜片有折射性质、光焦度误差、和棱镜,它们都随眼睛旋转光滑地变化,不过对侧转运动,左右眼之间有差别,如在图3B所示。静态棱镜也有左右视差。这是离心镜片设计的典型缺点。
可以把光轴和正面视线在佩戴时共线的球面镜片(图4A),与按照Houston等人方法的向鼻部平移15mm的类似镜片(正面视线与前表面成103°角)作比较,Houston等人的方法,在美国专利5,648,832和5,689,323(图4B)中说明。包裹的/拢住脸的球面镜片,呈现左/右眼视差。例3“非二次”多项式
本发明实施例的基础,是通过使用产生的曲线,获得理想并可控的表面形状的能力,这些曲线基本上是圆、椭圆、或任何标准二次曲线的数学变形。对标准二次曲线施加变形函数,可以产生需要的曲线。或者,可以通过函数或多项式表达式,直接定义曲线。直接形成产生的曲线的表面,常常是需要的。下面给出一种这样的办法。
一个适合的旋转对称的扁球状表面,应满足关系z(r)=Σn2mAnrn这里z(rz)3<<(12A2)2
该条件规定,多项式形式将由系数An支配,这里n≥3,且这些系数将按一定次序变化,与圆锥面的变化不同。
我可以在顶点r=0和侧面位置r=ρ加上各种边界条件,以便预先安排表面的形式,例如:定义中心曲率          z″(0)=A2=K0定义侧向弧矢深度z(ρ)=Σn2mAnρn=Z定义侧向倾角条件z(ρ)=Σn2mnAnρn-1=S边缘上的侧向脐状条件  KS(ρ)=KT(ρ)>>K0侧向脐状条件的稳定性  KS′(ρ)=KT′(ρ)=0。  X   z(x)   θ   KT  |KT-KS|  Φ(x)   Q(x)  0.0  2.5  5.0  7.5  10.0  12.5  15.0  17.5  20.0  22.5  25.0  27.5  30.0  32.5  35.0  37.5  40.0   -0.0  -0.0  -0.0  -0.1  -0.2  -0.3  -0.5  -0.9  -1.4  -2.0  -3.0  -4.2  -5.8  -7.8  -10.2  -13.3  -17.0   0.0  5.0  10.0  14.8  19.4  23.9  28.2  32.3  36.4  40.4  44.4  48.5  52.8  57.4  62.4  67.9  73.9  1.1  1.3  2.0  3.2  4.9  7.0  9.5  12.3  15.1  17.6  19.4  20.0  19.2  17.3  14.6  11.7  9.0  0.0  0.2  0.6  1.4  2.5  3.9  5.6  7.4  9.1  10.5  11.1  10.7  9.0  6.4  3.4  0.4  -2.2  0.00  0.31  0.75  1.44  2.52  4.11  6.33  9.29  13.06  17.66  23.03  28.99  35.30  41.64  47.70  53.28  58.25  1.00  0.99  0.93  0.80  0.66  0.53  0.42  0.34  0.28  0.23  0.20  0.17  0.14  0.12  0.11  0.10  0.08
表3A。按照本发明一个实施例,有1D顶部曲率的表面设计系数和多项式表面性质。
施加越多这样的条件,可以指定的系数数目越多。但是,因为合适的匹配表面,必需提供满足规定的光学优值函数的镜片体,受更高约束的表面给镜片优化造成更大的困难。一般说,把前表面多项式的最高阶限制在m≈8是充分的。按照本发明实施例这样构造的两个表面例子,以及它们优越的性质,示于表3A及3B,也在图5画出。  X   z(x)   θ   KT  KT-KS  Φ(x)   Q(x)  0.0  2.5  5.0  7.5  10.0  12.5  15.0  17.5  20.0  22.5  25.0  27.5  30.0  32.5  35.0  37.5  40.0  -0.0  -0.0  -0.0  -0.1  -0.2  -0.4  -0.7  -1.2  -1.8  -2.7  -3.8  -5.2  -6.9  -8.9  -11.2  -13.8  -17.0  0.0  5.0  10.0  14.8  19.5  24.0  28.4  32.6  36.9  41.1  45.4  49.8  54.2  58.9  63.7  68.7  74.0  1.0  1.4  2.7  4.7  7.2  9.9  12.6  14.9  16.2  16.6  16.0  14.9  13.5  12.3  11.5  11.1  10.7  0.0  0.3  1.1  2.4  4.0  5.7  7.2  8.2  8.5  7.9  6.6  4.8  3.1  1.7  0.8  0.4  0.0  0.0  0.3  0.8  1.8  3.4  5.7  8.8  12.6  17.0  21.7  26.6  31.4  36.0  40.4  44.8  49.2  54.0  1.00  0.98  0.83  0.64  0.48  0.36  0.28  0.23  0.19  0.16  0.14  0.12  0.11  0.10  0.10  0.10  0.09
表3B。按照本发明一个实施例,有1D顶部曲率的表面设计系数和多项式表面性质。
两个表面都有脐状顶点、1D的顶部曲率和位于约r=±38mm的脐状环,对应于约68°视场角。该角度不能通过眼睛旋转达到,因而把脐状区置于佩戴者周边视场中。表面在顶部显著地平,并趋向它们外侧的密切球。在图5A画出的表面A与密切球(曲线c)简单相交,而作为结果,在侧向表面上呈现脐状环。与表面径向截面对应的渐开线曲线,已经在上面结合图2D讨论过。从表面到曲线渐开线的水平位移尖点的法线矢量,以约φ=30°向对称轴偏斜。图5B所示的表面B,与密切球合并,并在外侧极限呈现扩展的脐状带。表面在最大切向曲率位置上的法线矢量,以约φ=22°向对称轴偏斜。在与佩戴者向前注视场最大切向曲率关联的表面像散中,两个表面都呈现一极大。表面像散清楚地在表面的脐状区消失。在每一例子中,“表面Q值”在大部分表面上基本小于1。  X   z(x)   θ   KT  |KT-KS|  Φ(x)   Q(x)  0.0  2.5  5.0  7.5  10.0  12.5  15.0  17.5  20.0  22.5  25.0  27.5  30.0  32.5  35.0  37.5  40.0  42.5  45.0  -0.0  -0.0  -0.2  -0.4  -0.7  -1.2  -1.7  -2.3  -3.1  -4.0  -5.0  -6.2  -7.6  -9.2  -11.1  -13.3  -16.1  -20.0  -28.9  0.0  5.0  10.0  15.0  19.8  24.6  29.2  33.8  38.2  42.5  46.8  51.0  55.1  59.3  63.5  67.9  72.8  78.6  90.5  7.8  7.8  7.8  7.9  8.0  8.1  8.3  8.5  8.8  9.1  9.5  9.9  10.5  11.2  12.1  13.2  14.6  16.6  19.3  0.0  0.0  0.1  0.1  0.2  0.4  0.5  0.8  1.0  1.4  1.8  2.3  3.0  3.8  4.9  6.4  8.3  11.1  15.1  0.0  2.1  4.2  6.4  8.6  10.8  13.2  15.6  18.2  20.9  23.8  27.0  30.6  34.6  39.3  44.9  52.0  62.2  87.5  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0  1.0
表3C。现有技术椭球表面的表面设计系数和性质。
表3C为了比较,给出偏心率0.75的椭圆性质,该椭圆在径向距离37.5mm上有等价的弧矢深度。按照本发明实施例的表面,有如下卓越特性:它有从中心区向侧面边缘增加的切向曲率,而椭圆只在侧面边缘明显弯曲;从中心区到从边缘,有基本的表面像散,而椭球表面向着侧面边缘显示逐步增加的像散;在中心区到侧面边缘之间的中间位置,有切向曲率极大,但在椭圆中没有观察到;在中心区到侧面边缘之间的中间位置,有表面像散极大,但在椭圆中没有观察到;在外侧有低像散区及相关的脐状条件,但在椭圆中没有观察到;离开中心区,表面Q值显著小于1,而对椭圆表面,则是不变化的,和;在最大切向曲率位置上,表面法线向光轴偏斜的角度φ,显著小于90°,但在椭圆情形中,它们垂直于对称轴。
如果把例2(表2B和图3B)现有技术镜片,与按照本发明实施例的表面作类似的比较,有如下卓越特性:它对正面视线是对称的,而正面视线不是现有技术镜片表面的法线;它的切向及平均表面曲率和表面像散,在接近,且沿所有方向接近正面视线时,基本上呈现增长,而现有技术镜片,仅在外侧区当视场角在佩戴者注视场之外时,才有这种特性;它的镜片表面Q值在离开中心区时低于1,而现有技术镜片的颇大部分,该Q值是不变的,和它在对称轴上是扁球状的,并按扁球状离开对称轴,而例2的现有技术镜片横贯大部分镜片孔径是长球状的。例4“非二次”表面函数
在按照本发明另外的途径中,我们把一对不同曲率B1=530/ρ1和B2=530/ρ2的球面,用适当的加权函数W(r)组合,给出最后旋转对称的表面,有如下形式,z(r)=W(r)*(ρ1-ρ12-r2)+(1-W(r))*(ρ2-ρ22-r2)
可以用任何合适的加权函数,作为例子,可以使用双曲正割;W(r)=a*(Sech(r/b))n
这种表面的两个例子,示于图6和表4A及4B中。
表面的D值在图6A中说明。它以它在侧面区中的密切球与在它顶部的低曲率球,在加权函数条件下合并,该加权函数以曲线“加权值”画出。表面Q值在顶部是1,然后离开轴光滑地下降至恒定值Q=0.2,与两个球面区曲率比B1/B2对应。离开顶部,表面像散和表面切向曲率快速增长,经过极大值,随后向着外部脐状区光滑下降。变化的速率由双曲正割函数控制,该双曲正割函数在坐标原点两侧从1光滑下降。增加指配给参数b的值,使下降速率变慢并使外部脐状区位移;而脐状区曲率直接由参考球的选择设定;增加指配给n的值,使加权函数的中央峰变尖锐,并使遇到的最大表面像散增加。表面在它的最大切向曲率区的法线,以约20°向对称轴偏斜。  x   z(x)   θ   KT  |KT-KS|  Φ(x)   Q(x)  0.0  2.5  5.0  7.5  10.0  12.5  15.0  17.5  20.0  22.5  25.0  27.5  30.0  32.5  35.0  37.5  40.0  -0.0  -0.0  -0.1  -0.2  -0.5  -1.0  -1.7  -2.6  -3.8  -5.2  -7.0  -9.1  -11.6  -14.7  -18.5  -23.8  -33.6  0.0  5.0  10.0  14.9  19.7  24.4  29.2  34.1  39.0  44.0  49.3  54.8  60.6  66.9  74.1  82.8  97.3  2.5  3.9  7.5  11.7  14.9  16.7  17.2  16.9  16.2  15.4  14.7  14.1  13.7  13.4  13.2  13.1  13.2  0.0  1.0  3.2  5.6  7.0  7.2  6.4  5.2  3.9  2.7  1.8  1.1  0.6  0.3  0.1  0.1  0.1  0.0  0.8  2.3  4.9  8.6  13.0  17.7  22.6  27.6  32.5  37.5  42.6  47.9  53.7  60.3  68.6  83.1  1.00  0.96  0.77  0.57  0.43  0.35  0.29  0.26  0.23  0.22  0.21  0.20  0.20  0.19  0.19  0.19  0.19
表4A。按照本发明一个实施例,有2.5D顶部曲率的表面设计系数和表面函数性质。
如果参数a的值被设为小于1,则在顶部引入密切球分量,使局部曲率增加至接近等于分式混合a*B1+(1-a)*B2的值。这导致在表面顶部出现更宽的脐状区,例如与表面E对应的图6B所示。作为其他参数b和n选择的结果,表面趋于与密切球更缓慢的合并,且侧面的脐状开始接近实际镜片表面应该有的周边。不然表面的一般特性类似于表面D的那些特性。表面在它的最大切向曲率区的法线,以约25°角向对称轴偏斜。  x   z(x)   θ   KT  |KT-KS|  Φ(x)   Q(x)  0.0  2.5  5.0  7.5  10.0  12.5  15.0  17.5  20.0  22.5  25.0  27.5  30.0  32.5  35.0  37.5  40.0  -0.0  -0.0  -0.1  -0.3  -0.6  -1.0  -1.6  -2.4  -3.5  -4.9  -6.5  -8.5  -11.0  -14.0  -17.8  -22.9  -32.7  0.0  5.0  10.0  14.9  19.7  24.4  29.2  33.9  38.7  43.6  48.7  54.0  59.7  65.9  73.0  81.6  95.9  4.4  5.1  6.9  9.4  12.1  14.5  16.2  17.0  17.1  16.7  16.0  15.2  14.5  13.9  13.5  13.3  13.8  0.0  0.4  1.6  3.2  4.7  5.9  6.5  6.4  5.6  4.6  3.4  2.4  1.5  0.9  0.4  0.2  0.6  0.0  1.3  2.9  5.0  8.0  11.6  15.9  20.7  25.7  30.9  36.2  41.6  47.2  53.2  60.0  68.3  82.9  1.00  0.99  0.96  0.88  0.78  0.68  0.59  0.53  0.47  0.43  0.40  0.38  0.36  0.35  0.34  0.34  0.35
表4B。按照本发明一个实施例,有4.4D顶部曲率的表面设计系数和表面函数性质。
欧洲的设计标准,例如CEN 1836“Sunglass&SunglassFilter for General Use”要求,在10mm半径的区中,平均球面光焦度落在0.00±0.09D范围内。因此,值得做的是,建立本身有类似尺寸的宽的和稳定顶部的表面。用适当地修改的加权函数设计的“表面F”,在表4C中描述。该表面保留了表面基本性能,在中心部分与侧端部间的中间,有切向曲率的极大值和表面像散。但是,请注意,表面Q值对与中心顶部对应的扩展区,保持接近1。如同结合图2C的讨论一样,顶部的中心区是有偏心率e=0.963(形状因子p=13.9)的椭圆,但在它的最大切向曲率区的法线,以约30°角向对称轴偏斜。  x   z(x)   θ   KT  |KT-KS|  Φ(x)   Q(x)  0.0  2.5  5.0  7.5  10.0  12.5  15.0  17.5  20.0  22.5  25.0  27.5  30.0  32.5  35.0  37.5  40.0  -0.0  -0.0  -0.1  -0.2  -0.4  -0.6  -0.9  -1.3  -1.7  -2.2  -2.8  -3.6  -4.7  -6.0  -7.7  -9.9  -12.6  0.0  5.0  10.0  14.9  19.6  24.2  28.5  32.7  36.7  40.6  44.3  47.9  51.5  55.3  59.3  63.6  68.3  4.3  4.3  4.3  4.3  4.4  4.6  5.0  5.8  7.3  9.6  12.7  16.2  19.1  20.3  19.3  16.8  14.1  0.0  0.0  0.0  0.0  0.1  0.2  0.6  1.2  2.5  4.4  6.9  9.6  11.6  11.8  10.0  7.0  3.9  0.00  1.17  2.34  3.51  4.69  5.91  7.20  8.66  10.43  12.73  15.82  19.91  25.10  31.19  37.73  44.23  50.39  1.00  1.00  1.00  1.00  1.00  1.01  1.04  1.07  1.11  1.13  1.11  1.03  0.92  0.79  0.67  0.57  0.50
表4C。按照本发明一个实施例,有4.3D顶部曲率的表面设计系数和表面函数性质。
图5A、5B、6A、和6B,包括作为镜片上径向距离函数的入射角图表。图上画出两个角度,以实线曲线画出的是,当以位于后顶点距离27mm的眼睛旋转中心作参考时,对适当曲线的内入射角。其他角度是对向前凝视的静态眼睛瞳孔光阑的内入射角,瞳孔光阑是旋转中心向前11mm。应当特别指出,这些角度倾斜场中有近似恒定值。表面对两个光学参考点有近似恒定的偏斜。
表面D和E有极端的弧矢范围,延伸到大于90°视场角(表4A和4B)。Tackle还有Houston等人,把倾斜中间光线的内入射角被镜片配置限制,特别是被椭圆形式的使用及逐渐变薄的镜片壁厚度限制,称为带来的光学利益。因此,我们把按照本发明实施例的表面,即表面E,与球形表面及与偏心率e=0.75的椭圆表面比较,这些表面被安排成有公共顶点并在外侧场中有交点(±35.0,-17.8)。
图7(A和B)曲线画出对旋转眼睛的形式光线跟踪分析中,主光线的内入射角,实线与表面E对应,而虚线是等价的球(图7A)和等价的椭球(图7B)。图7(C和D)曲线画出对静态眼睛的形式光线跟踪分析中,主光线的内入射角,实线与表面E对应,而虚线是等价的球(图7C)和等价的椭球(图7D)。在两种光线跟踪配置中,球表面显示出内入射角在整个镜片倾斜区稳定地增加。对极其偏心的椭球,内入射角的倾斜增长被变化的表面曲率遏止,呈现恒定的偏斜区,在该区之外,则快速变化。恒定偏斜区扩展到相应的主光线,是本发明设计的表面的特征。近轴场以外,任何地方的内入射角都有相对低和稳定的值,从而有助于在实际镜片设计中获得稳定的周边光学结构。这是优于椭圆形式的优点。
这些特性提供又一种按照本发明优选实施例构建镜片表面的方法。正是表面z(r)的函数形式,定义眼睛旋转中心或瞳孔光阑上内入射角的变化,另一方面,反之亦真。使内入射角变化的函数形式的详细规格,定义该物理表面。基本几何关系的分析,产生如下关于内折射角d(r)、表面高度z(r)、和表面斜率z′(r)的微分方程式:r-z(r)(L-z(r))=sin[d(r)]r2+(L-z(r))2(1+[z(r)]2)这里L是从表面顶点到分析的参考中心的距离。该方程式容易用现代数学程序求解,给出d(r)合适的模型函数及一个边界条件,诸如顶点的物理位置。我们发现的一个有用的模型函数是sin d(r)=sinγ*(1-exp(-nr2/L2))1/2该函数定义如图7的变化过程,其中的角度在整个倾斜场上是精确地恒定的,d=.y。这样确定的表面是准球形穹顶。它们的性质,除外部表面区不合并进球形区外,非常类似于表面E,但呈现一脐状环,表面像散围绕该脐状环是低的并缓慢变化。例5对称的非矫正镜片
按照本发明优选实施例的镜片表面,有类似穹顶的形状,在对称轴上有陡峭的侧壁和相对更平坦的区。我们可以用公式表示每一镜片表面,例如有曲率半径ρ1和形状因子p1的二次曲面C(r),借助有关的加权函数,横贯镜片孔径提供表面的平稳控制。因此,按照本发明实施例这个例子的完整的镜片表面,有如下的数学结构;z(r)=C(r)*Sech(r/q)+Σn3mAnrn这里C(r)=ρ1p1(1-1-p1*r2/ρ12)
已经用表5所示参数集合构成的前表面,设计了一组镜片。镜片材料是聚碳酸酯。镜片有后顶点光焦度0.00D.S.和1.5mm的中心厚度。由针对后顶点距离27.0mm的光线跟踪确定的光学性质,在图8和9画出。平均光焦度误差MPE、倾斜像散误差OAE、RMS光焦度误差RMSPE、和光学棱镜幅值|棱镜|(转动),对注视场中眼睛的旋转画出。静态光学棱镜幅值|棱镜|(静态),参照佩戴者向前凝视时瞳孔光阑确定。镜片卡尺厚度和弧矢深度,作为相对镜片单元对称轴的径向位置的函数画出。在镜片边缘(r=40mm)有等价弧矢深度和校正轴对齐的球面非矫正镜片性质,在图4A中画出,以资比较,而那些为获得包裹使轴偏移的相同球面的镜片,在图4B中画出。表5。用于设计图8和9镜片的前表面系数。
通过定义后顶点的光焦度,在近轴区定义与给定前表面对应的后表面。至少对后表面,必须进行第二次非球面校正,以控制注视场上的倾斜光学性质,如果适当,还控制从注视场边缘附近进入周边场的倾斜光学性质。在这样做时,在按照特定佩戴者需要判断镜片的优值中,必须有清楚的优先顺序。可以对内部和外部设计场应用各不相同的判据。
在构建图8的镜片表面中,已经施行不同于图9镜片使用的作业。图8A和8B的镜片,与分别有顶部曲率1.75和3.5D的前表面5B型和5C型对应,是为了使眼睛在注视场内旋转(±40°)经受的光学棱镜幅值最小而设计的。因为镜片表面在注视场中央部分低的曲率,和负平均光焦度误差向着注视场边缘逐渐增长,所以棱镜幅值和它在注视场中央部分的变化速率,在特征上是低的。如果该负的折射光焦度误差,限制在平均佩戴者自然适应的范围,且不应超过-0.35D,最好不大于-0.25D,则被认为是可接受的。已经设计镜片孔径的外部区,避免增加不需要的负平均光焦度误差,否则该负平均光焦度误差将在周边场出现。因此,平均光焦度误差或RMS光焦度误差的趋势,在这里显著地不同,而随眼睛旋转经受的光学棱镜幅值,一旦遇到这种外部设计区,可以看到快速地升高。设计重点的变化,在光学性质呈现的趋势中很明显。
我们已经横贯镜片中心场,特别获得棱镜幅值非常低的变化速率。光学棱镜幅值,随增加的顶部曲率呈现增加的近轴变化,但在注视场内保持仍然是低的。在比较中,图4描述的现有技术球面镜片,在宽的视场内有更低的折射误差,但更高的光学棱镜(静态的和旋转的眼睛两种作用)。图4B包裹的现有技术镜片,左/右眼是视差的,但按照本发明优选实施例的镜片,没有发生这种视差。还应注意,现有技术镜片的壁厚度,离开光轴中心到处都逐渐变薄。图8镜片的一种特殊特性,是它们从顶点区向着边缘向外增厚,这是一种本发明优选实施例发现的性质。
本例的第二对镜片设计,有示于图9的特性,并根据前表面5D型和5E型。这些镜片有低的近轴棱镜幅值变化速率。但是,基本特性是横贯注视场遇到的相对低的倾斜折射误差,这里允许增加光学棱镜。维持这个目的,是为了在约35°视场角外使表面优化,获得与球面比较总要小的平均光焦度误差或RMS平均光焦度误差,和避免任何不能自然适应的误差。在光学性质趋势中没有明显改变,因为横贯镜片孔径,应用了相同的设计判据。
这些设计,对眼睛在注视场中的旋转(±40°),与现有技术的球面比较,提供低的倾斜平均光焦度误差MPE或倾斜RMS平均光焦度误差RMSPE,同时在大部分孔径上,光学棱镜幅值仍然比等价的球形面镜片更低。再次指出,镜片单元普遍恒定的卡尺厚度,优于相对局部地在镜片边缘附近逐渐变薄。例6不对称的非矫正镜片
用于太阳或其他保护目的的非矫正护目镜,常常沿水平方向比沿竖直方向有不同的曲率。这种表面形式的不对称性,通常由于调用合适的不对称二次表面形式而引入。例如见美国专利1,741,536、4,741,611、4,867,550、和5,825,455。一种按照本发明实施例的合适的方法,是把镜片表面描述为如下形式;z(r)=C(κ)*Sech(κ/q)+Σn3mAnrn这里C(κ)=ρ1p1(1-1-p1*κ2/ρ12)和κ2=x2+τy2
该方法按照赋予参数τ的值,在水平和竖直形状之间产生需要的不对称性。使用参数集合5C型并取τ=0,制成顶点上水平方向曲率3.5D和竖直方向曲率0.0D的镜片。得到的性质沿水平和竖直子午线变化,如图10所示。图11所示等值线,给出40°眼睛旋转的场中的视觉性质,和镜片在40mm孔径中的性质。视觉棱镜按0.25D步幅绘制,而折射误差按0.025D步幅围绕±0.005D的中心范围绘制。镜片棱镜按1.0D增量绘制。表面高度按5mm步幅围绕顶点0.25mm内的中心场绘制。镜片厚度在等于中心值的内部场中,按+0.025nm的正增量绘制,而在该内部场外,按-0.02mm步幅绘制。前表面像散按4.0D步幅围绕1.0D带绘制。
典型的框孔径形状,往往只要抓取镜片竖直部分较短的长度,所以增强竖直弯曲是必要的。因此,我们已经用5C型的参数集合并取τ=0设计镜片。该镜片顶点的水平方向曲率3.5D和竖直方向曲率7.0D。它的特征在图2A、12、和13说明。请注意较低的倾斜折射误差和它们对眼睛旋转的对称性。
这些对称性的变化,对表面像散特征有重要作用,如在图11和12的等值线所示。虽然镜片在光轴全都有零的折射像散,但表面在该轴上没有球面点,而代之以复曲面。对本例的镜片,前者在每一表面上的球面点,分为一对脐状点,位于较低曲率的轴上。代替外部脐状环的,是低表面像散的外部环,它包括与两种子午线相交的四个脐状弧。随着平均表面曲率的增加,这些弧变得更接近。例7光学上校正的镜片
Houston及合作者(美国专利5,648,832、5,689,832、和6,010,218)已经详细说明,对整体和双镜片裹脸的运动及太阳保护护目镜,它们的镜片单元有必要进行“光学上校正”。他们在第一方面中指出,光学上校正的镜片必须从中心到边缘逐渐变薄,声称:“最好是,镜片厚度光滑地,但不一定必须是线性地,从最大厚度逐渐变薄,...到外侧边缘较薄的厚度”。在第二方面中,他们强调,对以包裹的和拢住脸结构佩戴的镜片,正面视线的光学质量“按本说明书中使用的术语,是指表现出相对低畸变的镜片,该畸变是按佩戴时的取向,用下面值之一或多个测量:棱镜畸变、折射光焦度、和像散”。正面视线上的目标性能,对误差,棱镜和折射误差两者,至少如1/4D一样低,可取的是小于1/8D,较可取的是小于1/16D,而最可取的是小于1/32D。
从历史上说,非矫正镜片是以前和后表面相同曲率制作的,或横贯镜片孔径,以固定的卡尺厚度制作。近代镜片通常用聚碳酸酯制作,中心厚度达1.5mm左右,为了有足够弧矢深度,满足双镜片的运动和太阳护目镜包裹和拢住脸的需要,它们有8或9D的基本曲率。如果这种镜片被同样前和后弯曲,它们从中心到边缘急剧变薄,并有正的后顶点光焦度约+0.095D。如果它们有恒定厚度,则它们是有约-0.17D后顶点光焦度的低的负镜片。两种镜片没有一种满足高性能镜片的标准。例如,CEN 1836“Sunglass&Sunglass Filter forGeneral Use”要求,在10mm半径的区中,平均球面光焦度落在0.00±0.09D范围内。因此,镜片厚度必须从中心到边缘逐渐变薄,但不能像前和后表面同样弯曲的镜片那样快速。
表6A和6B表明三种有9.0D球面前表面的非矫正镜片性质。称为“9.0D球面”的镜片在光轴上有零折射光焦度和由球面表面定义的变薄的厚度。称为“9.0D同心球面”的镜片有恒定厚度,且是负镜片。称为“9.0D非球面”的镜片在光轴上有零折射光焦度,并已校正,使之横贯宽的视场保持零平均光焦度,该宽的视场对应于从后顶点距离27.0mm处的视觉。它从中心到边缘的逐渐变薄,要比球形面镜片略快。在表7A和7B中,我们为了比较,出示三种镜片的性质,即在镜片边缘有相同弧矢深度达9D基本球面的本发明实施例。这些镜片有0.0、3.5、和5.0D的顶点曲率,已经标明,它们的光学性质已在图9以曲线画出。类似上面举出例子中的任一镜片,这些镜片的卡尺厚度横贯注视场的整个孔径,基本恒定,或离开光学中心缓慢增加。它们的卡尺厚度向镜片边缘下降;该卡尺厚度对60°视场角以外的零曲率顶部、55°以外的3.5D顶部曲率、和50°以外的5.0D顶部曲率,下降至中心厚度以下。光学中心不是最大厚度点。
按照现有技术的二次表面设计,有较恒定壁厚度的本发明实施例的镜片,将在光学中心有负的平均光焦度,和在侧面场中有增加的负的倾斜平均光焦度误差。但是,它们没有呈现出任何趋向该性能(表7)的趋势。光轴(对应于旋转轴)上没有光学误差,且倾斜误差一般小于,或大致等同于视场角达50°或更大的球形面镜片。因此,按照本发明实施例的这种镜片实施例,遵从的光学校正定义,基本上不同于现有技术和Houston等人明确说明中的理解。
在本发明镜片实施例的定义方面中,是提供一种非矫正镜片,当以正面视线基本上与光轴重合佩戴时,镜片贴合佩戴者的脸形,其中:在佩戴时,横贯近似与注视场对应的孔径,不逐渐变薄地维持镜片的厚度;在佩戴时的正面视线上,没有显著折射的或棱镜的误差,和;当眼睛横贯注视场旋转并进入周边视场时,倾斜折射光焦度误差仍然是小的。表6A。对三种有9.0D球面前表面的非矫正镜片:球形面、非球形面、和恒定厚度镜片,列出作为径向距离函数的物理尺寸:卡尺厚度、前表面高度(弧矢深度)、和对应的眼睛旋转角度。表6B。表6A镜片的作为眼睛旋转角度函数的光学性质。该非球面镜片已经校正到零平均光焦度。表7A。对按照本发明实施例有非二次前表面和0.0、3.5D和5.0D顶点曲率的三种非矫正镜片,列出作为径向距离函数的物理尺寸。表7B。表7A镜片的作为眼睛旋转角度函数的光学性质。例8镜片特性的优化
有预定前表面的镜片后表面的表面校正,可以凭借计算方法的帮助,这些计算方法包括优值函数的使用,把达到的性质与目标性能目的之间的关系定量化。该优值函数通常以被观察的折射误差为基础,这些折射误差是,平均光焦度误差MPE、像散或柱面误差、和RMS光焦度误差RMSPE(亦称RMS模糊),其中RMSPE=[MPE]2+14[CylError]2
附加的优值函数,也可以包括镜片的光学棱镜误差,和诸如模糊及棱镜等性质的变化速率,例如:
两种采用这两个优值函数用于优化的镜片例子,分别在图14A和14B中画出。前表面由两个球面的组合描述,如同例4,但用如下的加权函数W(r)组合W(r)=11+nrp.
前表面是表4C描述的表面。它有参数集合  参数   值   N   2.5e-9   P   5.32   ρ1(B1)  122.55mm  (4.32D)
  参数   值   ρ2(B2)   50.45mm  (10.51D)
对应的后表面通过向该前表面加上第10阶多项式构成,用于提供必需的光学校正和与选择的优值函数有关的性能。在另一个实施例中,n在1×10-12到1×10-13的范围,和p在8到9的范围。
RMS光焦度误差EMSPE的量值,和光学棱镜|棱镜|(转动)的幅值,按注视场中眼睛旋转角表示。同时还出示静态光学棱镜幅值|棱镜|(静态),该|棱镜|(静态)是参考佩戴者向前凝视时的瞳孔光阑确定的。镜片卡尺厚度和前表面的弧矢深度,作为相对于镜片对称轴的径向位置函数列出。
优值-1(图14A)已经获得显著低的静态棱镜幅值,特别是在周边场。但是,RMS光焦度误差横贯注视场快速升高,特别是当例如与图4A现有技术球面镜片比较时,已达到临界的高度。该镜片是通过横贯注视场用RMS模糊优化,又随后使静态棱镜幅值在离开视场角约60°的周边场中最小而获得的。第二个优值函数,即优值-2(图14B),揭示低得多的RMS光焦度误差值,横贯整个注视场,其值约小于0.50D。这里再次指出,RMS模糊已在内部角度范围优化,但现在是使静态棱镜的变化速率在离开视场角约50°成为最小。眼睛旋转40°时RMS光焦度误差的比较揭示,RMS光焦度误差至少比优值-1在相同点少三倍,同时,静态棱镜与相同点的优值-1相比,仅在40°视场角时略为更大。显然,优值-2优化优值函数,能横贯整个视场,使RMS模糊的幅值与静态棱镜之间折衷。因为已经在优值-2的外部场中,选择RMS光焦度误差为较小,所以静态光学棱镜允许在这里增加。
两个已优化镜片的比较,还表明优值-2允许对镜片厚度有更大的控制。按照目前说明的本发明,横贯封闭注视场的全部镜片孔径,没有向周边场的逐渐变薄。与优值-1的镜片不同,可以看到,在接近注视场进入周边场的边界时,逐渐变薄显著增加,优值-2的镜片,在镜片边缘附近,在厚度在开始降低回中心值之前,仅稍稍增加。
同样,通过合并两个顶点曲率B1和B2的非球面表面,能够用于构建按照选择的优值函数优化的镜片。用上面说明的相同加权函数W(r),组合两个非球面表面,使最后的非旋转对称表面有如下形式z(r,λ)=W(r)*(ρ1-ρ12-λ2)+(1-W(r))*(ρ2-ρ22-λ2)这里r=x2+y2,λ=(ax)2+(by)2
前表面的参数集合是: 参数   值  N   2.5e-9  P   5.32  A   1  B   0.7  ρ1(B1)  122.55mm  (4.32D) ρ2(B2)  50.45mm  (10.51D)
这里沿竖直断面的曲率,现在一般比沿水平断面的曲率更平坦。
这样形成的非对称镜片,用优值-2函数优化。得到的光学、表面、和镜片性质,沿水平和竖直子午线变化,并在图15和16画出。图16的等值线,代表在眼睛旋转±40°的场中的光学性质,和在40mm半径的孔径中的镜片及表面性质。光学棱镜和折射误差,按0.1D步幅绘制。前表面高度按2mm间隔绘制,和镜片棱镜按0.25D间隔绘制。镜片厚度按离2.00mm中心值的间隔0.05mm绘制,而前表面像散以离1D的第一等值线按增量4D绘制。
前表面在镜片的几何中心不再是脐状的,沿竖直子午线看,只有两个局部球点。沿水平断面的曲率,从中心部分向侧端部增加,曲率的最大值在略靠中间位置,于本发明其他优选实施例一致。镜片没有外部脐状区,但确实呈现出最大表面像散的倾斜区。没有折射或棱镜。
关于正面视线上的误差,倾斜折射误差在正面视线两侧沿水平和竖直两个方向,都是对称的。同样,按照本发明的一个方面,横贯注视场的大部分,镜片厚度不逐渐变薄地被维持。
已经参照一些举出的例子和实施例,讨论了本发明实施例的各个方面和特性。但是,本发明受下面权利要求书规定的内容保护,也不能认为受权利要求书没有举出的方面和特性限制。
本申请是基于申请号为200480041156.9、申请日为2004年12月2日、发明名称为“成形的非矫正护目镜镜片及提供该种镜片的方法”的专利申请的分案申请。