基于阵列波导光栅的温度补偿结构转让专利

申请号 : CN200910302204.X

文献号 : CN101576637B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈征马卫东赵秀丽胡家艳

申请人 : 武汉光迅科技股份有限公司

摘要 :

本发明公开一种基于阵列波导光栅的温度补偿结构,设置在底板上的AWG芯片,AWG芯片被切割成位于切缝左侧的左AWG芯片和位于切缝右侧的右AWG芯片,还设置有二次温度补偿结构,二次温度补偿结构是由旋转杆和温度补偿装置铰接构成呈夹角状的结构,所述旋转杆和温度补偿装置的铰接点固定设置在左AWG芯片上或带动左AWG芯片相对移动的放置装置上,旋转杆和温度补偿装置的另一端分别对应连接在设置于底板或带动左AWG芯片相对移动的放置装置上的第一旋转轴和第二旋转轴上,从而带动左AWG芯片相对右AWG芯片进行位移。本发明结构简单,操作方便,适合工业生产。可使AWG芯片波长的稳定性大大提高,具有很大的工作温度范围,适应WDM-PON的要求,且无需外接电源。

权利要求 :

1.一种基于阵列波导光栅的温度补偿结构,包括有底板(7),设置在底板(7)上的AWG芯片(6),所述的AWG芯片(6)被切割成位于切缝(5)左侧的左AWG芯片(6a)和位于切缝(5)右侧的右AWG芯片(6b),其特征在于,还设置有二次温度补偿结构,所述的二次温度补偿结构是由旋转杆(3)和温度补偿装置(2)铰接构成呈夹角状的结构,所述旋转杆(3)和温度补偿装置(2)的铰接点(c)固定设置在左AWG芯片(6a)上或带动左AWG芯片(6a)相对移动的放置装置上,所述的旋转杆(3)和温度补偿装置(2)的另一端分别对应连接在设置于底板(7)或带动左AWG芯片(6a)相对移动的放置装置上的第一旋转轴(12)和第二旋转轴(13)上,从而带动左AWG芯片(6a)相对右AWG芯片(6b)进行位移,所述的温度补偿装置(2)的热胀系数大于旋转杆(3)的热胀系数,所述的温度补偿装置(2)采用由热致伸缩材料制作的杆。

2.根据权利要求1所述的基于阵列波导光栅的温度补偿结构,其特征在于,所述的带动左AWG芯片(6a)相对移动的放置装置采用底板(7),所述的底板(7)与左AWG芯片(6a)之间采用弹性胶粘接。

3.根据权利要求1所述的基于阵列波导光栅的温度补偿结构,其特征在于,所述的设置铰接点(c)的放置装置是采用将底板(7)切割后的左部底板(7a),所述的底板(7)的下面设置有基板(10),所述的基板(10)同底板(7)之间采用弹性胶粘接,所述的第一旋转轴(12)和第二旋转轴(13)分别对应设置在基板(10)上。

4.根据权利要求1所述的基于阵列波导光栅的温度补偿结构,其特征在于,所述的温度补偿装置(2)采用由热致伸缩材料制作的左部底板(7a′)。

5.根据权利要求1所述的基于阵列波导光栅的温度补偿结构,其特征在于,所述的旋转杆(3)采用由热膨胀系数远小于温度补偿杆(2)的底板(7a″)。

说明书 :

技术领域

本发明涉及一种阵列波导光栅。特别是涉及一种能够实现AWG在很大温度范围内具有稳定的波长和正常的工作,且无需外接电源的基于阵列波导光栅的温度补偿结构。

背景技术

阵列波导光栅(AWG)是基于平面光波导集成技术的重要光器件。随着市场需求的变化和技术的进步,AWG已开始从第一代的加热型向第二代的无热型过渡,即AWG工作时无须对其加热。优势在于:省去复杂的温度控制电路和加热器,降低了成本而且器件的稳定性增强,属于纯无源器件;节省了通信系统的能耗;应用范围更广,如可用于无供电条件的场所。
无热AWG开辟了两个新的市场。一个是在机架不能供电或者不方便提供额外电源进行温度控制的时候,无热AWG可以代替薄膜滤光片(TFF)用于DWDM系统的复用器/解复用器模块。另一个更富有潜力的市场是新兴的WDM-PON系统,因为WDM-PON系统要求在室外-30℃到70℃的温度范围内都可以正常运行,而TFF的温漂大,不符合室外WDM-PON系统的应用要求,所以系统可能会使用大量的无热AWG以提供超过百兆的光纤到户业务。
通常的无热AWG采用温度补偿的技术保持波长的稳定,如用金属补偿杆连接输入波导,在杆热胀冷缩的驱动下使输入波导移动来补偿波长随温度的漂移。这些补偿方法都是对波长的温度特性进行线性补偿。但实际的AWG波长-温度曲线并不是线性的,如图1所示。因此这些补偿方法只能在有限的温度范围内保持波长的稳定性,对于室外等较大温度变化范围的应用则难以满足。

发明内容

本发明所要解决的技术问题是,提供一种能够实现AWG在很大温度范围内正常工作,且无需外接电源的基于阵列波导光栅的温度补偿结构。
本发明所采用的技术方案是:一种基于阵列波导光栅的温度补偿结构,包括有底板,设置在底板上的AWG芯片,所述的AWG芯片被切割成位于切缝左侧的左AWG芯片和位于切缝右侧的右AWG芯片,还设置有二次温度补偿结构,所述的二次温度补偿结构是由旋转杆和温度补偿装置铰接构成呈夹角状的结构,所述旋转杆和温度补偿装置的铰接点固定设置在左AWG芯片上或带动左AWG芯片相对移动的放置装置上,所述的旋转杆和温度补偿装置的另一端分别对应连接在设置于底板或带动左AWG芯片相对移动的放置装置上的第一旋转轴和第二旋转轴上,从而带动左AWG芯片相对右AWG芯片进行位移,所述的温度补偿装置的热胀系数大于旋转杆的热胀系数,所述的温度补偿装置采用由热致伸缩材料制作的杆。
所述的带动左AWG芯片相对移动的放置装置,采用底板,所述的底板与左AWG芯片之间采用弹性胶粘接。
所述的设置铰接点的放置装置是采用将底板切割后的左部底板,所述的底板的下面设置有基板,所述的基板同底板之间采用弹性胶粘接,所述的第一旋转轴和第二旋转轴分别对应设置在基板上。
所述的温度补偿装置采用由热致伸缩材料制作的左部底板。
所述的旋转杆采用由热膨胀系数远小于温度补偿杆的底板。
本发明的基于阵列波导光栅的温度补偿结构,结构简单,操作方便,适合工业生产。通过对AWG芯片增加二次补偿结构,可使其波长的稳定性大大提高,具有很大的工作温度范围,适应WDM-PON的要求,能够实现AWG在很大温度范围内正常工作,且无需外接电源。本发明无需改变芯片特性,不会造成芯片其它性能的恶化。

附图说明

图1是二氧化硅材料的AWG芯片的波长-温度曲线;
图2是AWG芯片经过完全的一次线性温度补偿后的波长-温度曲线;
图3是AWG芯片经过完全的一次和二次温度补偿后的波长-温度曲线;
图4是二次温度补偿原理图;
图5是二次温度补偿的简化原理图;
图6是本发明第一实施例结构示意图;
图7是本发明第二实施例结构示意图;
图8是本发明第三实施例结构示意图;
图9是本发明第四实施例结构示意图。
其中:
2:温度补偿装置            3:旋转杆
5:切缝                    6:AWG芯片
6a:左AWG芯片              6b:右AWG芯片
7:底板                    7a:左部底板
7b:右部底板               10:基板
12:第一旋转轴             13:第二旋转轴

具体实施方式

下面结合实施例和附图详细说明本发明的基于阵列波导光栅的温度补偿结构。
本发明基于阵列波导光栅的温度补偿结构的相关工作原理描述如下:
AWG的衍射方程:dnssinθi+dnssinθo+ncΔL=mλ    (1)
其中ns和nc分别是AWG的输入输出平面波导也就是罗兰圆部分的有效折射率和阵列波导的有效折射率,d是相邻阵列波导在罗兰圆周上的间距,θi和θo是输入和输出平面波导的衍射角,ΔL是相邻阵列波导的长度差。m是衍射级次。λ是真空波长。
AWG的中心波长满足:mλ=ncΔL    (2)
旁轴近似条件下(θi<<1,θo<<1),公式(1)两边微分得角色散公式:
=mnsdngnc---(3)
其中θ是输入衍射角,ng是群折射率,且
ng=nc-λdnc---(4)
设罗兰圆焦距是R,通过横向移动输入波导来保持中心波长不变,则旁轴近似下输入波导的横向位移x=Rθ    (5)
其位移色散是:
dx=Rmnsdngnc---(6)
位移对温度的微分公式:
dxdT=dxdT=RmnsdngncdT=RΔLnsdngncdncdT---(7)
上述公式表示输入波导的位移随温度的变化率与折射率对温度的导数成线性关系。
对于二氧化硅材料的AWG芯片,其折射率随温度的变化并不完全是线性关系,因此前述的一些线性补偿方案并不能完全补偿波长-温度漂移。当AWG芯片的波长-温度曲线受到精确的一次线性补偿时,曲线变成一个开口向上的抛物线形,如图2所示,即由中心往两端是递增的,如果抛物线顶点偏离中心工作温度点,无热AWG芯片的工作温度范围将大大变小。由于WDM-PON系统对AWG的工作温度范围有很高的要求,因此有必要对AWG芯片的波长-温度曲线进行二次补偿,以便进一步提高AWG产品波长对温度的不敏感性。本发明提出一种在原有阵列波导光栅的线性补偿结构基础上增加用于二次补偿的补偿结构,能够实现AWG在很大温度范围内正常工作。
二次温度补偿原理图如图4所示,二次温度补偿结构由一个旋转杆3和一个温度补偿装置2铰接组成,两杆呈一定角度放置,以直角为例。其中旋转杆3采用热胀系数很小的材料制成,温度补偿装置2用热胀系数相对较大的材料制成,在温度变化过程中旋转杆3的长度变化远小于温度补偿装置2。旋转杆与温度补偿装置的铰接处粘接在AWG芯片或AWG芯片底板上,当该点变动时,就会带动这部分AWG芯片或AWG芯片底板的移动。图中实线表示初始状态,虚线表示温度变化时的情况。图5是简化的原理示意图,当温度补偿装置2受温度影响长度发生变化时,例如以膨胀为例,设其长度增加x,在小角度近似的情况下可得到θ=sin(θ)=xL,其中L是旋转杆的长度。则惰Δx=L-Lcos(θ)(9)式,cos(θ)按泰勒奶数展开,当角度很小时可忽略高次项,只考虑二次项,则有cos(θ)=1-12(xL)2,代入式(9)得Δx=L2(xL)2=x22L.
由以上推导可知,Δx与温度补偿装置2的长度变化量成二次关系。由于旋转杆3和温度补偿装置铰接处粘在下面的AWG芯片或AWG芯片底板上,因此Δx就是这部分AWG芯片或底板的横向位移,它起到温度补偿的作用。由前述推导可知x与温度成线性关系,因此AWG芯片的横向位移就与温度成二次关系。
由以上分析可知,我们通过合理的选择温度补偿装置材料和设计长度,就能够对二次波长-温度曲线进行补偿,从而在更大的温度范围内得到更稳定的波长,适应WDN-PON系统的要求。本发明采用二次补偿结构和一次线性温度补偿技术共同使用,以达到AWG器件在很宽温度范围工作的目的。
本发明的基于阵列波导光栅的温度补偿结构,包括有底板7,设置在底板7上的AWG芯片6,所述的AWG芯片6被切割成位于切缝5左侧的左AWG芯片6a和位于切缝5右侧的右AWG芯片6b,还设置有二次温度补偿结构,所述的二次温度补偿结构是由旋转杆3和温度补偿装置2铰接构成呈夹角状的结构,所述的温度补偿装置2的热胀系数大于旋转杆3的热胀系数。所述旋转杆3和温度补偿装置2的铰接点c固定设置在左AWG芯片6a上或带动左AWG芯片6a相对移动的放置装置上,所述的旋转杆3和温度补偿装置2的另一端分别对应连接在设置于底板7或带动左AWG芯片6a相对移动的放置装置上的第一旋转轴12和第二旋转轴13上,从而带动左AWG芯片6a相对右AWG芯片6b进行位移。
所述的温度补偿装置2采用由热致伸缩材料如不锈钢,铜等金属或玻璃,塑料等非金属材料制作的杆。
设置第一旋转轴12和第二旋转轴13的带动左AWG芯片6a相对移动的放置装置采用底板7,所述的底板7与左AWG芯片6a之间采用弹性胶粘接。
所述的设置铰接点c带动左AWG芯片6a相对移动的放置装置是采用将底板7切割后的左部底板7a,所述的底板7的下面设置有基板10,所述的基板10同底板7之间采用弹性胶粘接,所述的第一旋转轴12和第二旋转轴13分别对应设置在基板10上。
所述温度补偿装置2采用由热致伸缩材料如不锈钢,铜等金属或玻璃,塑料等非金属材料制作的左部底板7a′。
或者,所述的旋转杆3采用由热膨胀系数远小于温度补偿装置2的材料如铟钢,玻璃等制成底板7a″。
如图6所示,本发明的第一个实施例AWG芯片粘在一块底板7上,该底板可以由金属,金属合金或硬塑料材料制成。在AWG芯片6的输入平面波导(slab)部分适当位置切一条切缝5,可以用任何适合的方式切割,这些方式包括利用切割锯,水喷射切割,化学蚀刻,激光切片,线锯,EDM等方式。切缝5将AWG芯片6分为大小不等的左AWG芯片6a和右AWG芯片6b两个部分。本实施例的二次补偿结构,由温度补偿杆2和旋转杆3铰接在一起,两杆的角度可以是但不限于直角,两杆铰接处可以转动,该铰接粘接在左AWG芯片6a上,温度补偿杆2和旋转杆3两杆的另外一端分别由第二旋转轴13和第一旋转轴12固定在底板7上。AWG芯片6与底板7之间采用弹性胶粘接,使得左AWG芯片6a可以相对底板移动。本发明的工作过程具体如下:当温度变化时,温度补偿杆2的长度发生变化,由于旋转杆3的热膨胀系数很小,则两杆铰接处相对AWG芯片6切缝5方向的横向位移与温度成二次关系。该铰接处带动下面左AWG芯片6a在缝隙端做相对位移。
图7是本发明的第二个实施例,该实施例的特点在于:二次补偿结构没有直接粘接到AWG芯片6上,而是粘接在底板7上。将AWG芯片6粘接在一块底板7上,沿着AWG芯片6的输入部分适当位置切一条切缝5,将AWG芯片6和底板7分为大小不等的左右两个部分,左AWG芯片6a和右AWG芯片6b分别粘接在左部底板7a和右部底板7b上。左AWG芯片6a和右AWG芯片6b之间形成切缝5,左部底板7a和右部底板7b之间形成缝隙4。基板10用于放置左部底板7a和右部底板7b,该基板10可以由金属、金属合金或玻璃,硬塑料材料制成。温度补偿杆2和旋转杆3两杆的一端分别固定在基板10上,温度补偿杆2和旋转杆3两杆的铰接点c粘接在左部底板7a上。基板10与左部底板7a之间用弹性胶粘接,使得左部底板7a可在基板上移动。当温度变化时,温度补偿杆2和旋转杆3铰接处的位移变化可以带动左部底板7a的移动,使得粘接在左部底板7a上的左AWG芯片6a发生移动。
图8是本发明的第三个实施例,底板7a′是采用热致伸缩材料制成,可以是但不限于金属,合金或塑料等,底板7a′一端被轴13固定在基板10上,并且可以绕轴13旋转。另一端与旋转杆3粘接在一起,粘接位置应较接近底板缝隙4。本实例施中,热致伸缩材料的底板7a′作用类似于前面实施例所提到二次补偿结构中的温度补偿杆,当温度变化时,底板7a′长度发生变化,在旋转杆3的作用下,带动底板7a′上的左AWG芯片6a与切缝5另一端右AWG芯片6b相对位移,其位移与温度成二次关系。
图9是本发明的第四个实施例,底板7a″可绕第一旋转轴12旋转,该底板7a″采用热膨胀系数远小于温度补偿杆2的材料,该底板7a″可以采用金属或者合金材料,例如采用铟钢。底板7a″另一端与温度补偿杆2粘接,该温度补偿杆2采用热致伸缩材料。当温度变化时,温度补偿杆2的长度发生变化,推动底板7a″绕第一旋转轴12旋转,带动其上的左AWG芯片6a相对切缝5方向横向位移,且与温度近似成二次关系。
如图3所示是经过完全的一次和二次温度补偿后的波长-温度曲线示意图,在-40℃到85℃的温度范围内其波长偏移在5pm内。
本发明的实施例中还涉及到具有一次线性温度补偿功能,该线性补偿技术可以是温度补偿杆移动输入波导技术,或温度补偿杆移动输入Slab技术,阵列波导挖槽填充折射率温度系数与二氧化硅不同的材料的技术,应力补偿技术等其它一次线性温度补偿方法。