烧结磁石的制造方法转让专利

申请号 : CN200910132524.5

文献号 : CN101577177B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 后藤真史皆地良彦远田嘉广工藤俊一会田智彦

申请人 : TDK株式会社

摘要 :

本发明提供一种烧结磁石的制造方法,该方法具有以下步骤:在表面活性剂的存在下将磁粉进行湿式粉碎的步骤;使进行了湿式粉碎的上述磁粉(20)干燥,得到附着有上述表面活性剂的磁粉(20)的步骤;将干燥过的上述磁粉(20)与粘合剂树脂一起进行加热混炼而形成颗粒的步骤;使上述颗粒熔融,并在施加了磁场的金属铸模内进行注塑成型而得到预成型体的步骤;和对上述预成型体进行烧成的步骤。

权利要求 :

1.烧结磁石的制造方法,该方法具有以下步骤:在表面活性剂的存在下将磁粉进行湿式粉碎的步骤;

使进行了湿式粉碎的上述磁粉干燥,得到附着有上述表面活性剂的磁粉的步骤;

将干燥过的上述磁粉与粘合剂树脂一起进行加热混炼而形成颗粒的步骤;

使上述颗粒熔融,并在施加了磁场的金属铸模内进行注塑成型而得到预成型体的步骤;和对上述预成型体进行烧成的步骤;

其中,上述磁粉是铁氧体粉末,上述粘合剂树脂是热塑性树脂。

2.权利要求1所述的烧结磁石的制造方法,其中,干燥后的上述磁粉的平均粒径为

0.03~0.7μm的范围内。

3.权利要求1或2所述的烧结磁石的制造方法,其中,上述表面活性剂是山梨糖醇和甘露糖醇中的至少一种。

4.权利要求1或2所述的烧结磁石的制造方法,其中,相对于100重量份上述磁粉,含有0.05~5重量份的上述表面活性剂。

5.权利要求1或2所述的烧结磁石的制造方法,其中,在具有多个对上述磁粉进行湿式粉碎的步骤的情况下,在最后的湿式粉碎步骤中、在上述表面活性剂的存在下对上述磁粉进行湿式粉碎。

6.权利要求1或2所述的烧结磁石的制造方法,其中,具有在湿式粉碎的步骤之前对上述磁粉进行干式粗粉碎的步骤,并且上述表面活性剂在进行干式粗粉碎的步骤中添加。

说明书 :

烧结磁石的制造方法

技术领域

[0001] 本发明涉及烧结磁石的制造方法,更详细地说,涉及能够以高生产性制造磁特性优异的烧结磁石的烧结磁石的制造方法。

背景技术

[0002] 作为烧结磁石的制造方法,已知有干式成型法(例如,日本特开2004-296849号公报)和湿式成型法(例如,日本专利第3833861号公报)。在干式成型法中,对干燥过的磁粉进行加压成型并施加磁场,形成预成型体,然后再对预成型体进行烧成。在湿式成型法中,对含有磁粉的浆料进行加压成型并施加磁场而除去液体成分,形成预成型体,然后再对预成型体进行烧成。
[0003] 就干式成型法而言,由于是在金属铸模内对干燥过的磁粉进行加压成型,因此具有成型步骤所需时间短这样的优点,但在成型时难以提高由磁场所产生的磁粉的取向率,结果,得到的烧结磁石的磁特性比采用湿式成型法而得到的烧结磁石的磁特性差。另外,就湿式成型法而言,虽然在成型时磁粉容易通过磁场而取向,烧结磁石的磁特性良好,但由于一边除去液体成分一边进行加压,因此存在成型需要长时间这样的问题。
[0004] 需要说明的是,如日本专利第3229435号公报所示,提出了一种将含有磁粉和粘合剂树脂的混炼颗粒注射到施加了磁场的金属铸模中来进行成型的方法。但是,就这样的在施加了磁场的金属铸模内进行注塑成型的方法而言,在形成混炼颗粒时,特别是小粒径的磁粉容易凝聚而分布不均匀,存在在随后的注塑成型中不能良好地进行磁粉的磁场取向等问题。

发明内容

[0005] 本发明就是鉴于上述实际情况而作成的,其目的在于提供一种能够以高生产性制造磁特性优异的烧结磁石的烧结磁石的制造方法。
[0006] 为了实现上述目的,本发明的烧结磁石的制造方法具有以下步骤:
[0007] 在表面活性剂的存在下将磁粉进行湿式粉碎的步骤;
[0008] 使进行了湿式粉碎的上述磁粉干燥,得到附着有上述表面活性剂的磁粉的步骤;
[0009] 将干燥过的上述磁粉与粘合剂树脂一起进行加热混炼而形成颗粒的步骤;
[0010] 使上述颗粒熔融,在施加了磁场的金属铸模内进行注塑成型而得到预成型体的步骤;和
[0011] 对上述预成型体进行烧成的步骤。
[0012] 上述表面活性剂可以直接添加到湿式粉碎前的磁性粉末中,或者也可以添加到用于进行湿式粉碎的浆料中。
[0013] 在本发明的方法中,由于表面活性剂介入到磁粉的粒子和粘合剂树脂之间,因此粘合剂树脂确实地进入到磁粉的粒子之间。因此,即使将磁粉与粘合剂树脂一起进行加热混炼而进行颗粒化,磁粉仍保持良好的分散状态,磁粉在注塑成型的金属铸模内对应于磁场而均匀地分散并流动,从而良好地进行磁场取向。因此,最终得到的烧结磁石的取向度得以提高。
[0014] 另外,在本发明的方法中,粘合剂树脂以介于磁粉粒子之间的状态而成为预成型体,因此可以得到磁粉均匀分散的预成型体,对该预成型体进行烧成而得到的烧结磁石的磁特性变得均匀。
[0015] 此外,在本发明的方法中,在注塑成型时,通过使熔融的粘合剂树脂作为输送介质,可以将磁粉输送到金属铸模的内部,并且可防止磁粉粒子之间的凝聚,同时可防止粒子对输送路径接触面的附着。
[0016] 并且,在金属铸模内利用磁场进行磁粉的取向时,不必除去输送介质。因此,在本发明的方法中,可以是磁粉均匀地填充到狭窄的模腔中,并且一次注料所需的时间短,生产性优异。此外,在本发明的方法中,在用于除去输送介质的流路中不会产生堵塞,并且不会产生脱气处理的问题。其结果,能够以高生产性制造出比较薄型的烧结磁石。
[0017] 即,在以往的湿式方法中,在特定磁场中对磁粉进行加压处理时,要求除去作为输送介质的溶剂,但顺利地除去该溶剂并不是很容易的。因此成型体中容易产生裂纹,并且一次注料所需要的时间长,存在生产性明显较差这样的不良情况。
[0018] 另外,在以往的干式方法中,在特定磁场中对磁粉进行加压处理时,要求对作为输送介质的空气或氮气进行脱气,用来进行所述脱气的处理繁杂,并且由于在金属铸模内对干燥过的磁粉进行加压成型,因此,磁粉粒子彼此之间容易以凝聚的状态进行压缩成型。因此,即使对金属铸模施加磁场,由于凝聚的磁粉粒子之间的摩擦或者粒子间的结合力,容易以粒子的易磁化轴方向分散的状态进行成型。
[0019] 在本发明中,优选上述磁粉为铁氧体粉末,并且干燥后的上述磁粉的平均粒径为0.03~0.7μm的范围内。在本发明的方法中,即使是平均粒径为0.7μm以下的铁氧体粉末,也可以抑制铁氧体粉末在成型之前发生凝聚,能够以铁氧体粉末均匀分散在金属铸模的模腔内的状态进行磁场成型。因此,能够制造出具有高的磁特性的铁氧体磁石。
[0020] 作为上述表面活性剂,没有特别限定,但优选含有通式Cn(OH)nHn+2表示的多元醇,更优选含有山梨糖醇和甘露糖醇中的至少一种。通过使用这些表面活性剂,本发明的效果得到提高。
[0021] 优选相对于100重量份上述磁粉,含有0.05~5重量份的上述表面活性剂。通过含有这样范围的表面活性剂,本发明的效果得以提高。
[0022] 在具有多个对上述磁粉进行湿式粉碎的步骤的情况下,可以在最后的湿式粉碎步骤中、在上述表面活性剂的存在下对上述磁粉进行湿式粉碎。作为粉碎步骤的最终结果物而得到的磁粉分散在用于湿式粉碎的溶剂中,因此,粉末粒子的凝聚被解开,介于粒子之间的溶剂将表面活性剂导入到磁粉之间。因此,即使干燥后的磁粉再次凝聚,在磁粉粒子之间也会夹有表面活性剂。其结果,再次凝聚的颗粒(磁粉粒子的集合体)在后续步骤(混炼、成型)中会对分解成磁粉粒子作出贡献,并且可以使取向度提高。
[0023] 更优选的是,本发明的方法具有在湿式粉碎时不添加表面活性剂、而在湿式粉碎的步骤之前对上述磁粉进行干式粗粉碎的步骤,并且上述表面活性剂在进行干式粗粉碎的步骤中添加。
[0024] 在湿式粉碎之前进行干式粗粉碎的情况下,如果在干式粗粉碎时添加表面活性剂,则可以在表面活性剂附着在粗粉碎过的粒子表面的状态下开始湿式粉碎。因此,在湿式粉碎中,表面活性剂容易介于而不是遍布在磁性粒子之间,并可以提高取向度。
[0025] 附图说明
[0026] 下面,基于附图所示的实施方式对本发明进行说明。
[0027] 图1是本发明的一个实施方式所涉及的烧结磁石的制造方法中使用的磁场注塑成型机的要部截面图。
[0028] 图2(A)是示出进行磁场注塑成型之前的磁粉状态的概略图;图2(B)是示出进行了磁场注塑成型之后的磁粉的取向状态的概略图。
[0029] 图3是进行磁场注塑成型之前的颗粒的截面SEM照片。

具体实施方式

[0030] 首先,对图1所示的磁场注塑成型装置2进行说明。如图1所示,该磁场注塑成型装置2具有:具有投入颗粒10的料斗4的挤出机6、以及用于使从挤出机6挤出的颗粒10的熔融物在模腔12内成型的金属铸模8。该磁场注塑成型装置是利用了CIM(陶瓷注塑成型,ceramicinjection molding)成型的成型装置。
[0031] 在本实施方式涉及的烧结磁石的制造方法中,首先准备磁粉的原料粉末。作为磁粉的原料粉末,没有特别限定,优选使用铁氧体,特别优选使用磁铁铅矿型的M相、W相等六方晶系的铁氧体。
[0032] 作为这样的铁氧体,特别优选为Mo·nFe2O3(M优选为Sr和Ba中的一种以上,n=4.5~6.5)。还可以在这样的铁氧体中进一步含有稀土元素、Ca、Pb、Si、Al、Ga、Sn、Zn、In、Co、Ni、Ti、Cr、Mn、Cu、Ge、Nb、Zr等。
[0033] 特别优选在主相中具有六方晶磁铁铅矿型(M型)铁氧体的铁氧体,所述六方晶磁铁铅矿型(M型)铁氧体包含下述所示的A、R、Fe和M作为构成元素。其中,A是选自Sr、Ba、Ca和Pb中的至少一种元素;R是选自稀土元素(包含Y)和Bi中的至少一种元素;M是Co和/或Zn。相对于金属元素总量,这些A、R、Fe和M各种金属元素的总构成比例如下:
[0034] A:1~13原子%、
[0035] R:0.05~10原子%、
[0036] Fe:80~95原子%、
[0037] M:0.1~5原子%。
[0038] 在该铁氧体中,R存在于A位点、M存在于Fe的位点时的铁氧体的组成式可以如下述的式1所示。需要说明的是,x、y、z是由上述的量计算出的值。
[0039] A1-xRx(Fe12-yMy)zO19 ...式1
[0040] 在制造这样的各向异性铁氧体的原料粉末时,在预烧之前将铁氧体组合物的原料氧化物或通过烧成而形成氧化物的化合物进行混合,然后进行预烧。预烧可以在下面的条件下进行:在大气中、例如在1000~1350℃下进行1秒钟~10小时;特别是在得到M型的Sr铁氧体的微细预烧粉时,可以在1000~1200℃下进行1秒钟~3小时左右。
[0041] 这样的预烧粉实质上由具有磁铁铅矿型的铁氧体结构的颗粒状粒子构成,其平均一次粒径为0.1~1μm,特别优选为0.1~0.5μm。平均粒径可以利用扫描型电子显微镜(SEM)进行测定,其变动系数为80%以下,通常优选为10~70%。另外,饱和磁化σs优选为65~80emu/g,特别是对M型Sr铁氧体而言,饱和磁化σs优选为65~71.5emu/g;保磁力HcJ优选为2000~8000Oe,特别是对M型Sr铁氧体而言,保磁力HcJ优选为4000~8000Oe。
[0042] 在该实施方式中,根据需要对这样制造的预烧粉进行干式粗粉碎,然后进行一次以上的湿式粉碎。
[0043] 在干式粗粉碎步骤中,通常粉碎至BET比表面积达到2~10倍左右。优选粉碎2
后的平均粒径为0.1~1μm左右、BET比表面积为4~10m/g左右,粒径CV为80%以下,特别优选保持在10~70%。粉碎装置没有特别限定,例如可使用干式振动磨、干式磨碎机(介质搅拌型磨)、干式球磨机等。特别优选使用干式振动磨。粉碎时间可以根据粉碎装置适宜确定。
[0044] 干式粗粉碎还具有向预烧体粒子中导入结晶应变来减小保磁力HcB的效果。通过降低保磁力,粒子的凝聚被抑制,分散性得以提高。另外,取向度也得到提高。导入到粒子中的结晶应变在后面的烧结步骤中被释放,由此,返回本来的硬磁性而成为永久磁石。
[0045] 在干式粗粉碎之后,制备含有预烧体粒子和水的粉碎用浆料,使用该粉碎用浆料进行湿式粉碎。优选粉碎用浆料中的预烧体粒子的含量为10~70重量%左右。湿式粉碎中使用的粉碎装置没有特别限定,通常优选使用球磨机、磨碎机、振动磨等。粉碎时间可以根据粉碎装置适宜确定。
[0046] 在本实施方式中,在实施粉碎时添加表面活性剂。作为表面活性剂优选使用通式Cn(OH)nHn+2表示的多元醇。多元醇的碳原子数为4以上,优选为4~100,更优选为4~30,进一步优选为4~20,最优选为4~12。
[0047] 多元醇的上述通式是骨架均为链状且不含不饱和键的情况下的式子。多元醇中的羟基数、氢原子数也可以比通式中所表示的数量稍少一些。上述多元醇可以是饱和的,也可以含有不饱和键;基本骨架可以是链式也可以是环式,但优选为链式。另外,如果羟基数为碳原子数n的50%以上,则可实现本发明的效果,但优选羟基数多者,最优选羟基数与碳原子数相同。
[0048] 作为本发明中使用的表面活性剂,具体来说,优选n=6的山梨糖醇、甘露糖醇。作为上述的优选的表面活性剂,其结果如下式所示。
[0049] [化学式1]
[0050]
[0051] 山梨糖醇 甘露糖醇
[0052] 就本发明中使用的表面活性剂而言,通过由于粉碎而发生的机械化学反应,其结构可能会发生变化。另外,还能够通过如下方法而实现本发明的目的,例如,添加能够通过水解反应等而生成与本实施方式中使用的表面活性剂相同的有机化合物的化合物,例如酯等。需要说明的是,表面活性剂还可以联合2种以上使用。此时,联合使用的表面活性剂并不限定于本发明的范围。
[0053] 相对于100重量份磁粉,表面活性剂的添加量优选为0.03~5重量份,更优选为0.03~3.0重量份。如果表面活性剂的添加量过少,则取向度的提高变得不充分,而如果表面活性剂过多,则成型体和烧结体存在容易产生裂纹的倾向。
[0054] 表面活性剂的添加时期没有特别限定,可以在干式粗粉碎时添加,也可以在制备湿式粉碎时的粉碎用浆料时添加,还可以在干式粉碎时添加一部分,剩余部分在实施湿式粉碎时添加。或者还可以在湿式粉碎之后通过搅拌来添加。由于任何一种情况都会在后述的颗粒中存在表面活性剂,因此可实现本发明的效果。
[0055] 但是,特别是在湿式粉碎之前进行干式粗粉碎时,优选在进行干式粗粉碎的步骤中添加表面活性剂,而不是在湿式粉碎时添加。在湿式粉碎之前进行干式粗粉碎的情况下,如果在干式粗粉碎时添加表面活性剂,则能够以表面活性剂附着在粗粉碎过的粒子表面的状态开始湿式粉碎。因此,在湿式粉碎时,表面活性剂容易介于而不是遍布在磁性粒子之间,从而可以提高取向度。
[0056] 需要说明的是,在分多次添加表面活性剂的情况下,可以设定各次的添加量并使其总添加量为上述优选的范围,优选在多次湿式粉碎中的最终的湿式粉碎时添加表面活性剂。作为粉碎步骤的最终结果物而得到的磁粉分散在用于湿式粉碎的溶剂中,因此,粉末粒子的凝聚被解开,介于粒子之间的溶剂将表面活性剂导入到磁粉之间。因此,即使干燥后的磁粉再次凝聚,在磁粉粒子之间也会夹有表面活性剂。其结果,再次凝聚的颗粒(磁粉粒子的集合体)在后续步骤(混炼、成型)中会对分解成磁粉粒子作出贡献,并且可以使取向度提高。
[0057] 湿式粉碎后,使磁粉干燥。干燥温度优选为80~150℃,更优选为100~120℃。另外,干燥时间优选为60~600分钟,更优选为300~600分钟。
[0058] 干燥后的磁粉的平均粒径优选为0.03~0.7μm的范围内,更优选为0.1~0.5μm的范围内。干燥后的磁粉上附着有表面活性剂。可以通过热重分析法/差示热解重量分析法(TG-DTA)确认表面活性剂附着在干燥后的磁粉上。
[0059] 将该干燥后的磁粉与粘合剂树脂、蜡类、润滑剂、增塑剂、升华性化合物等一起进行混炼,用造粒机等成型为颗粒。混炼可利用例如捏合机等进行。作为造粒机,可使用例如双螺杆挤出机、单螺杆挤出机。
[0060] 作为粘合剂树脂,可使用热塑性树脂等高分子化合物,作为热塑性树脂,可使用例如聚乙烯、聚丙烯、乙烯-醋酸乙烯酯共聚物、无规立构聚丙烯、丙烯酸类聚合物、聚苯乙烯、聚缩醛等。
[0061] 作为蜡类,除了巴西棕榈蜡、褐煤蜡、蜜蜡等天然蜡以外,还可以使用石蜡、氨基甲酸酯化蜡(urethanated wax)、聚乙烯醇等合成蜡。
[0062] 作为润滑剂,可使用例如脂肪酸酯等,作为增塑剂,可使用酞酸酯。
[0063] 相对于100重量份磁粉,粘合剂树脂的添加量优选为5~20重量份;蜡的添加量优选为5~20重量份;润滑剂的添加量优选为0.1~5重量份。相对于100重量份粘合剂树脂,增塑剂的添加量优选为0.1~5重量份。
[0064] 将至少含有磁粉和粘合剂树脂的本实施方式的颗粒切断,并观察其切断面的SEM照片,此时,确认了磁粉均匀地分散在粘合剂树脂的基质中。
[0065] 在本实施方式中,使用图1所示的磁场注塑成型装置2,将上述颗粒10在金属铸模8中进行注塑成型。在注射到金属铸模8中之前,合上金属铸模8,在内部形成模腔12,对金属铸模8施加磁场。需要说明的是,颗粒10在挤出机6的内部被加热到例如160~230℃而熔融,并利用螺杆注射到金属铸模8的模腔12中。金属铸模8的温度为20~80℃。对金属铸模8施加的磁场可以为5~15kOe左右。
[0066] 在大气中或者在氮气中以300~600℃的温度对磁场注塑成型步骤之后的预成型体进行热处理,进行脱粘合剂处理。接着,在烧结步骤中,将成型体在例如大气中、优选在1100~1250℃、更优选在1160~1220℃的温度下烧结0.2~3小时左右,得到各向异性的铁氧体磁石。
[0067] 需要说明的是,可以使用破碎机等对利用本发明的方法制作的成型体进行粉碎,并利用筛子等分级成平均粒径为100~700μm左右,得到磁场取向颗粒,将该磁场取向颗粒进行干式磁场成型,然后通过烧结而得到烧结磁石。
[0068] 按照本实施方式的烧结磁石的制造方法,由于表面活性剂介于磁粉的粒子和粘合剂树脂之间,粘合剂树脂确实地进入到磁粉的粒子之间。因此,即使将磁粉与粘合剂树脂一起加热混炼而进行颗粒化,也可以使磁粉的分散状态保持良好。
[0069] 使用这样的颗粒进行磁场注塑成型时,如图2(A)到图2(B)所示,磁粉20在金属铸模内对应于磁场而均匀地分散并流动,良好地进行沿着磁场方向X的磁场取向。即,就本实施方式的方法而言,其与湿式成型法不同,由于扰乱磁场取向的压力不起作用,因此可提高取向度。
[0070] 因此,最终得到的烧结磁石的取向度得到提高。需要说明的是,所谓磁石的取向度,是指残留磁化(Ir)与饱和磁化(Is)之比(Ir/Is)。磁石的取向度与图2(B)所示的磁场注塑成型后的预成型体中的磁粉20的磁场取向程度成比例。
[0071] 另外,在本发明的方法中,由于粘合剂树脂以介于磁粉粒子之间的状态变成预成型体,因此可以得到磁粉20均匀分散的预成型体,将该预成型体烧成而得到的烧结磁石的磁特性变均匀。
[0072] 另外,在本实施方式的方法中,由于在注塑成型时熔融的粘合剂树脂作为输送介质,可防止磁粉粒子之间的凝聚,同时可防止粒子对输送路径接触面的附着,并可以将磁粉输送到金属铸模的内部。
[0073] 并且,在图1所示的金属铸模8内磁粉因磁场而发生取向时,不必除去输送介质。因此,在本实施方式的方法中,能够使磁粉均匀地填充到狭小的模腔12中,并且一次注料所需要的时间短,生产性优异。并且,在本实施方式的方法中,在用于除去输送介质的流路中不会产生堵塞,并且不会产生脱气处理等问题。其结果,能够以高生产性制造出比较薄型的烧结磁石。
[0074] 此外,在本实施方式的方法中,作为粉碎步骤的最终结果物而得到的磁粉分散在用于湿式粉碎的溶剂中,因此,粉末粒子的凝聚被解开而使溶剂介于粒子之间。由于在该状态下表面活性剂附着在磁粉上,即使干燥后的磁粉再次凝聚,在磁粉粒子之间也会夹有表面活性剂。因此,再次凝聚的颗粒(磁粉粒子的集合体)在后续步骤(混炼、成型)中容易分解成磁粉粒子。
[0075] 此外,本实施方式的方法特别是在制作薄型的烧结磁石时是有效的。为了制造薄型的烧结磁石,可以制作薄型的预成型体,如果使预成型体成为薄型,则脱粘合剂处理变得容易,并且采用注塑成型的成型形状的自由度增加。
[0076] 需要说明的是,本发明并不限定于上述的实施方式,可以在本发明的范围内进行各种改变。
[0077] 实施例
[0078] 下面,通过实施例更详细地说明本发明。
[0079] 实施例1
[0080] 以La0.4Ca0.2Sr0.4Co0.3Fe11.3O19作为目标组成,并使用下述物质作为起始原料。准备Fe2O3粉末(含有作为杂质的Mn、Cr、Si、Cl);SrCO3粉末(含有作为杂质的Ba、Ca);La(OH)3粉末、CaCO3粉末、Co3O4粉末并使其达到目标组成。利用湿式磨碎机将上述起始原料和添加物粉碎后,干燥并制粒,并将其在空气中于1230℃烧成3小时,得到颗粒状的预烧体。
[0081] 通过振动磨对该预烧体进行干式粗粉碎。接着,使用水作为分散介质、并使用山梨糖醇作为分散剂,再添加相对于100重量份预烧体粒子为0.5重量份的山梨糖醇、0.6重量份的SiO2、1.4重量份的CaCO3,然后将它们与上述预烧体粒子混合,制备粉碎用浆料。使用2
该粉碎用浆料,在球磨机中进行40小时的湿式粉碎。湿式粉碎后的比表面积为8.5m/g(平均粒径为0.5μm)。
[0082] 湿式粉碎后,在100℃下使预烧体粒子(磁粉)干燥10小时。通过SEM检测到的干燥后的预烧体粒子的平均粒径为0.3μm。
[0083] 将该干燥后的磁粉与粘合剂树脂、蜡类、润滑剂、增塑剂、升华性化合物等一起在捏合机中进行混炼,用造粒机等成型为颗粒。混炼在150℃和2小时的条件下进行。
[0084] 使用POM(聚缩醛)作为粘合剂树脂、使用石蜡作为蜡类、使用脂肪酸酯作为润滑剂、使用酞酸酯作为增塑剂。
[0085] 相对于100重量份磁粉,粘合剂树脂的添加量为7.5重量份、蜡类的添加量为7.5重量份、润滑剂的添加量优选为0.5重量份。相对于100重量份粘合剂树脂,增塑剂的添加量优选为1重量份。
[0086] 将至少含有磁粉和粘合剂树脂的本发明的颗粒切断,并观察其切断面的SEM照片,此时,确认了磁粉均匀地分散在粘合剂树脂的基质中。采用本发明的方法得到的磁场注塑成型前的颗粒截面的SEM照片如图3所示。图3所示的白色对照部分为磁粉,确认了其均匀地分散。
[0087] 接着,使用图1所示的磁场注塑成型装置2,将颗粒10在金属铸模8中进行注塑成型。在注射到金属铸模8中之前,合上金属铸模8,在内部形成模腔12,对金属铸模8施加磁场。需要说明的是,颗粒10在挤出机6的内部在例如160下加热熔融,利用螺杆注射到金属铸模8的模腔12中。金属铸模8的温度为40℃。磁场注塑成型步骤后的预成型体的厚度为2mm,并成型为圆弧形状的平板。
[0088] 由于成型体的磁取向度(Ir/Is)还受成型体的密度影响,因此无法进行正确评价。因此,对于平坦的金属铸模面,利用X射线衍射进行成型体的测定,由出现的峰的面指数和强度求出成型体的结晶学上的取向度(X射线取向度)。
[0089] 成型体的X射线取向度想当程度地支配烧结体的磁取向度。需要说明的是,在本说明书中,作为X射线取向度,使用∑I(00L)/∑I(hkL)。(00L)表示(004)和(006)等c面的统称,∑I(00L)是所有(00L)面的总的峰强度。另外,(hkL)表示检测出的所有的峰,∑I(hkL)是这些峰的总强度。因此,∑I(00L)/∑I(hkL)表示c面取向的程度。在本实施例中,∑I(00L)/∑I(hkL)为0.58。
[0090] 接着,在大气中、500℃的温度下对该磁场注塑成型步骤之后的预成型体进行48小时的热处理,进行脱粘合剂处理。接着,在烧结步骤中,例如在大气中、1160℃的温度下对成型体进行0.4小时烧结,得到烧结铁氧体磁石。
[0091] 测定得到的烧结铁氧体磁石的残留磁通密度Br、保磁力HcJ、取向度Ir/Is、矩形比Hk/HcJ以及烧结密度。需要说明的是,Hk是在磁滞回线的第2象限中磁通密度达到残留磁通密度的90%时的外部磁场强度。如果Hk很低,则不能得到高的能积。Hk/HcJ是磁石性能的指标,表示在磁滞回线的第2象限中的方形度的程度。
[0092] 得到的烧结铁氧体磁石的残留磁通密度Br为4600G、保磁力HcJ为4900Oe、取向3
度Ir/Is为97.2%、矩形比Hk/HcJ为93.0%、烧结密度为5.1g/cm。
[0093] 实施例2
[0094] 除了使用甘露糖醇来代替山梨糖醇作为表面活性剂以外,与实施例1同样地成型预成型体,制作烧结铁氧体磁石。得到的预成型体的X射线取向度∑I(00L)/∑I(hkL)为0.57。
[0095] 另外,得到的烧结铁氧体磁石的残留磁通密度Br为4590G、保磁力HcJ为4900Oe、3
取向度Ir/Is为97.1%、矩形比Hk/HcJ为92.8%、烧结密度为5.1g/cm。
[0096] 实施例3
[0097] 除了如下述表1所示变更表面活性剂的添加量以外,与实施例1同样地成型预成型体,制作烧结铁氧体磁石。
[0098] 得到的预成型体的X射线取向度∑I(00L)/∑I(hkL)、烧结铁氧体磁石的残留磁通密度Br、保磁力HcJ、取向度Ir/Is、矩形比Hk/HcJ、烧结密度以及裂纹发生率如表1所示。
[0099] 如表1所示,相对于100重量份磁粉,通过在0.03~5重量份、更优选在0.03~3重量份的范围内添加表面活性剂,可以确认裂纹少、磁特性得到提高。需要说明的是,裂纹发生率通过如下方法计算:准备5个在相同条件下制作的试样,通过肉眼观察裂纹,并将观察到裂纹的试样的个数除以全部试样的个数。
[0100]