发光二极管封装结构转让专利

申请号 : CN200910137864.7

文献号 : CN101577304B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 邱文智余振华陈鼎元

申请人 : 台湾积体电路制造股份有限公司

摘要 :

一种发光二极管(LED)的封装结构与制造方法。在发光二极管封装结构的优选实施例中,多个散热孔穿过封装基材,以有效将热从发光二极管(LED)散出,且优选伴随形成穿过封装基材的导电孔。这些散热孔的形状优选为圆形或矩形,且也可以是实心或可以环绕或包围封装基材的一部分。本发明的优选实施例的优点在于,由LED产生的热能快速且有效地借由此封装结构散出。此LED封装结构能产生较少的热衰减且因此增加LED的生命周期。

权利要求 :

1.一种发光二极管封装结构,包括:

一基材,具有一第一侧边与一第二侧边;

一保护层,形成于该基材的第一侧边与第二侧边上;

一第一接触垫与一第二接触垫,位于该基材的第一侧边的保护层上,以及一第三接触垫与一第四接触垫,位于该基材的第二侧边的保护层上,其中该第一接触垫借由一第一导电孔连接至该第三接触垫,而该第二接触垫借由一第二导电孔连接至该第四接触垫;

一发光二极管,电性连接至该第一接触垫与该第二接触垫;以及一反射零件,位于该基材的第一侧边;以及一个或多个散热孔,位于该发光二极管下方的基材中,上述散热孔从该基材的第一侧边延伸至第二侧边。

2.如权利要求1所述的发光二极管封装结构,其中上述散热孔包括多个散热孔以网格阵列排列。

3.如权利要求1所述的发光二极管封装结构,其中上述散热孔的形状为矩形。

4.如权利要求1所述的发光二极管封装结构,其中上述散热孔为单一圆柱孔。

5.如权利要求1所述的发光二极管封装结构,其中上述散热孔的形状为环状。

6.如权利要求1所述的发光二极管封装结构,其中上述散热孔包括一包围部分该基材的矩形。

7.如权利要求1所述的发光二极管封装结构,其中上述散热孔延伸介于该第一接触垫与该第三接触垫之间。

8.如权利要求1所述的发光二极管封装结构,其中所述反射零件位于部分该第一接触垫与部分该第二接触垫之上,且该反射零件具有20°~70°倾斜角度以引导入射光向上。

9.如权利要求1所述的发光二极管封装结构,尚包括一第五接触垫,位于该基材的第二侧边,其中所述散热孔延伸介于该第一接触垫与该第五接触垫之间。

10.一种发光二极管封装结构,包括:

一发光二极管,具有一第一接点与一第二接点;

一基材,具有一第一侧边与一第二侧边;

一保护层,形成于该基材的第一侧边与第二侧边上;

一第一接触垫与一第二接触垫,位于该基材的第一侧边的保护层上,以及一第三接触垫与一第四接触垫,位于该基材的第二侧边的保护层上;

该第一接触垫电性连接至该第一接点与该第二接触垫电性连接至该第二接点;

一第一导电孔,连接该第一接触垫至该第三接触垫,以及一第二导电孔,连接该第二接触垫至该第四接触垫,其中该第三接触垫与该第四接触垫位于该基材的第二侧边,与该发光二极管为相反侧;以及一反射零件,与该发光二极管为相同侧;以及一个或多个散热孔,从该第一接触垫延伸穿过该基材。

11.如权利要求10所述的发光二极管封装结构,其中上述散热孔从该第一接触垫延伸至该第三接触垫。

12.如权利要求10所述的发光二极管封装结构,尚包括一第五接触垫,位于该基材的一侧边,与该发光二极管为相反侧,其中上述散热孔从该第一接触垫延伸至该第五接触垫。

13.如权利要求10所述的发光二极管封装结构,其中上述散热孔是圆形且排列成网格图案。

14.如权利要求10所述的发光二极管封装结构,其中上述散热孔包括线型散热孔。

15.如权利要求10所述的发光二极管封装结构,其中上述每一散热孔各包括一外部部分包围该基材的一部分。

说明书 :

发光二极管封装结构

技术领域

[0001] 本发明涉及一种发光二极管(LED)的结构与制造方法,且特别是有关于一种封装LED的结构与制造方法。

背景技术

[0002] 过去数年来对于LED的需求日益增加,特别是高亮度且高功率的LED。然而,高亮度且高功率的LED虽能产生大量的光,却也会产生大量的热,这些热会造成LED的性能衰减且降低LED的生命周期。因此,必须尽可能快速且有效地将热从LED散出。
[0003] 最近在LED封装的技术领域上,已发展出使用含有硅基材的封装结构。硅基材一般具有优异的加工性(processability)且相对不错的导热性。这些硅基材的封装结构借由硅基材本身传导热,或者是利用形成于硅基材中的散热元件(例如内埋的金属区域)帮助热的传导。不幸地,这些元件尚未能有效地解决LED热衰减的问题。因此,业界亟需要一种改良的元件与借由LED封装结构帮助散热的方法,让热从LED封装结构中散出。

发明内容

[0004] 为克服上述缺陷,本发明提供一种LED封装结构,包括:一基材具有一第一侧边与一第二侧边;一第一接触垫与一第二接触垫位于该基材的第一侧边,且一第三接触垫与一第四接触垫位于基材的第二侧边,其中该第一接触垫借由一第一导电孔连接至该第三接触垫,而该第二接触垫借由一第二导电孔连接至该第四接触垫;一发光二极管(LED)电性连接至该第一接触垫与该第二接触垫;以及一个或多个散热孔位于该发光二极管(LED)下方的基材中,上述散热孔从该基材的第一侧边延伸至第二侧边。
[0005] 本发明另提供一种封装结构,包括:一LED具有一第一接点与一第二接点;一基材具有一第一接触垫电性连接至该第一接点与一第二接触垫电性连接至该第二接点;一第一导电孔连接该第一接触垫至一第三接触垫,与一第二导电孔连接该第二接触垫至一第四接触垫,其中该第三接触垫与该第四接触垫位于该基材的一侧边,与该发光二极管(LED)为相反侧;以及一个或多个散热孔延伸从该第一接触延伸穿过该基材。
[0006] 本发明又提供一种发光元件,包括:一基材具有一第一侧边与相对于该第一侧边的一第二侧边;一第一导电孔与一第二导电孔,其中该第一导电孔与该第二导电孔延伸穿过该基材;一个或多个散热孔延伸穿过该基材;一第一接触垫位于该基材的第一侧边,与位于该第一导电孔与至少一个或多个散热孔之上;以及一发光二极管(LED)电性连接至该第一接触垫与该第二接触垫。
[0007] 本发明的优选实施例的优点在于,由LED产生的热能快速且有效地借由此封装结构散出。此LED封装结构能产生较少的热衰减且因此增加LED的生命周期,当使用相对较简单且不昂贵的工艺技术下,可使本发明的实施例易于实施。
[0008] 为让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举出优选实施例,并配合附图,作详细说明如下。

附图说明

[0009] 图1~图3为一系列剖面图,用以说明本发明一实施例的制作LED封装结构的流程。
[0010] 图4A~图4E为一系列平面图,用以说明本发明LED封装结构中的散热孔。
[0011] 图5~图8为一系列剖面图,用以说明本发明一实施例的制作LED封装结构的流程。
[0012] 图9为一剖面图,用以说明本发明另一实施例的LED封装结构。
[0013] 并且,上述附图中的附图标记说明如下:
[0014] 100~封装结构
[0015] 101~基材
[0016] 103~接触开口
[0017] 105~热开口
[0018] 107~基材的第一侧边
[0019] 109~绝缘层
[0020] 201~导电材料
[0021] 301~接触硅穿孔
[0022] 305~散热孔
[0023] 307~基材的第二侧边
[0024] 401~插栓
[0025] 403~狭缝
[0026] 501~保护层
[0027] 503~第一上电极
[0028] 505~第二上电极
[0029] 507~第一下电极
[0030] 509~第二下电极
[0031] 601~LED
[0032] 603~第一LED接点
[0033] 605~第二LED接点
[0034] 701~反射零件
[0035] 801~封装材料
[0036] 803~外盖
[0037] 901~第三下电极
[0038] 903~第四下电极
[0039] α~角度

具体实施方式

[0040] 本发明的优选实施例详述如下。然而,本领域普通技术人员应可知本发明所提供的许多发明概念,其可以最广地变化据以实施,此外,本文所述的特殊实施例仅用于举例说明,并非用以限定本发明所保护的范围。
[0041] 本发明所叙述的优选实施例为LED的封装结构,但本发明也可以应用于其他不同元件的封装结构上。
[0042] 请参见图1,此图显示一封装结构100的剖面图,其包含一基材101与形成于基材101之中的接触开口103与热开口105。基材101可包括块状硅、掺杂或未掺杂的基材,或绝缘层上覆硅(SOI)基材的有源层。一般而言,一绝缘层上覆硅(SOI)基材包括一层半导体材料,例如硅、锗、硅化锗、SOI、绝缘层上覆硅化锗或上述的组合。此外,也可以使用其他基材,例如多层结构基材、梯度基材(gradient substrate)或复合相位基材(hybrid orientation substrate)。
[0043] 接触开口103与热开口105优选的形成方法,借由形成一合适的光致抗蚀剂(图中未显示)于基材101的第一侧边107并将之显影,接着蚀穿过基材101的至少一部分。优选地,形成的接触开口103与热开口105能延伸进入基材101中,其深度至少深于基材
101最终所需的厚度。因此,从基材101的第一侧边107开始计算的接触开口103与热开口
105的深度,会随着整体封装结构100的设计而变,深度优选为约150~750μm,更佳为约
300μm。
[0044] 优选地,当接触开口103与热开口105形成之后,沿着接触开口103与热开口105的侧壁形成一绝缘层109,用以隔离接触开口103、热开口105与周围的基材101。绝缘层109可能包括一介电层的材料,例如四乙氧基硅烷(tetraethylorthosilicate,TEOS)或氮化硅,借由例如等离子体辅助化学气相沉积法(plasma enhanced chemical vapor deposition,PECVD)工艺完成,也可使用其他适合的材料或工艺。绝缘层19也可包括一阻障层材料,例如氮化钛、氮化钽或钛,借由CVD或者是PECVD工艺完成,同样地,也可使用其他适合的材料或工艺。
[0045] 绝缘层109优选能顺应性地覆盖基材101的第一侧边107,接触开口103与热开口105的侧壁,以及接触开口103与热开口105的底部。借由形成于基材101的第一侧边107的绝缘层,与形成于接触开口103与热开口105的绝缘层,皆可保护基材101免受后续材料(例如铜)的沉积影响(如图2所示)。另外地,形成绝缘层109之后,可借由异向性蚀刻(anisotropically etched)移除绝缘层109表面的水平表面部分,只留下沿着接触开口103与热开口105的侧壁的绝缘层109。
[0046] 图2显示填充一导电材料201于接触开口103与热开口105。导电材料201优选包括铜,虽然其他导电材料(例如钨)也可以替代使用。优选地,形成一晶种层(图中未显示)于绝缘层109之上,接着利用电沉积工艺将导电材料201填充和填满接触开口103与热开口105,虽然也可使用其他适合的方法,例如无电极电镀、电镀或CVD。填满接触开口103与热开口105之后,位于接触开口103与热开口之外的过量的导电材料201和部分绝缘层109优选两者利用一工艺移除,例如化学机械研磨(CMP)、蚀刻或上述的组合或类似的方法,用以隔离残余于接触开口103与热开口105的导电材料201。另外地,也可移除过量的导电材料201,而大体上不移除绝缘层109,因此留下一部分的绝缘层109于基材101的第一侧边107上。
[0047] 图3显示由接触开口103与热开口105分别形成接触硅穿孔(TSVs)301与散热孔305。为了形成接触硅穿孔301与散热孔305,基材101的第二侧边307的一部分被移除,以暴露位于接触开口103与热开口105之中的导电材料201。优选的移除方法为研磨工艺,例如化学机械研磨,虽然也可使用其他适合的工艺,例如蚀刻。
[0048] 本领域普通技术人员应能了解,上述提及形成接触硅穿孔301和散热孔305的工艺,包括形成接触开口103与热开口105,沉积导电材料201,以及后续薄化基材101的第二侧边307,这些步骤中仅是形成接触硅穿孔301和散热孔305其中的一种方法。于其他方法中,接触硅穿孔301和散热孔305的形成可借由部分地穿过基材101的蚀刻孔洞方法,与沉积一介电材料于孔洞中。于一实施例中,当基材101的第二侧边307被薄化之后,接着移除孔洞中的介电材料,之后再度沉积导电材料201于孔洞中。此方法与其他适合形成接触硅穿孔301和散热孔305的方法,皆可替代的使用且皆包含在本发明所保护的范围中。
[0049] 图4A-图4E显示本发明各种实施例的平面图,有关于基材101上的散热孔305的形状与布局。一般而言,散热孔305所需的数目与可以是任意数目,优选的数目为1~25,且更佳为9。此外,散热孔的形状优选为圆形或矩形,虽然也可以是其他形状。
[0050] 图4A显示散热孔305的优选布局,其以网格图形排列。这些散热孔305是圆形且直径优选为约50~300μm,更佳为约80μm。网格图形中的散热孔305之间的间距优选为约100~500μm,更佳为约160μm。然而,图中所显示的网格图形与散热孔305的数目,并非用以限定本发明,其他图形和散热孔305的数目(例如交错排列的孔洞)也包含在本发明所保护的范围中。
[0051] 图4B显示散热孔305的另一实施例,其为彼此相邻的矩形线,且该些散热孔305并未重叠。于此实施例中,散热孔305的长度优选为约100~1200μm,更佳为约600μm,以及宽度优选为约50~300μm,更佳为约80μm。此外,该些散热孔305彼此排列的间距优选为约50~500μm,更佳为约80μm。此外,该些散热孔305也可排列成彼此互相偏移的矩形。
[0052] 图4C显示另一实施例,其利用单一散热孔305。于此实施例中,散热孔305优选为圆形,类似上述的图4A。然而,于此实施例中,其中形成的单一的、圆形的散热孔305优选具有直径大于图4A散热孔305的直径,其直径优选为约100~800μm,更佳为约300μm。
[0053] 图4D显示图4C的单一的、圆形的散热孔305的一种变形。此实施例中,散热孔305呈现环状且包围一由基材101所形成的插栓401。插栓401的直径优选为约50~500μm,更佳为约120μm。此实施例的额外优点在于,能释放介于散热孔305与周围基材101之间的一些应力。
[0054] 图4E显示本发明的又另一实施例,其中该散热孔305优选为矩形形状,且额外包括一沿着散热孔305中心由基材101形成的狭缝403。此狭缝403的宽度(与散热孔305的宽度同一方向)优选为约50~300μm,其长度(与散热孔305的长度同一方向)优选为约100~1000μm,更佳为约500μm。于此实施例中,散热孔305优选彼此对准,但也可以彼此互相偏移。此实施例类似图4D所述,也同样能释放介于散热孔305与周围基材101之间的一些应力。
[0055] 图5显示形成一保护层501和电极于基材101暴露的第一侧边107与第二侧边307。此外,于一实施例中,由于绝缘层109仍然残留于基材101的第一侧边107上,因此当基材101的第一侧边107已被保护时,保护层只形成于基材101的第二侧边307。保护层
501优选包括二氧化硅,借由暴露基材101于一氧化环境中所形成,例如氧气和水气中,虽然也可使用其他工艺,例如CVD工艺之后进行一光刻蚀刻。当留在接触硅穿孔301与散热孔305中的导电材料201暴露时,保护层501优选保护基材101的表面。
[0056] 第一上电极503优选形成于基材101的第一侧边107的保护层501上。形成的第一上电极503电性连接至至少一个接触硅穿孔301与至少一个散热孔305。第一上电极503优选提供一个或多个接触硅穿孔301和一LED 601(如图6所示)之间的电性连接。
[0057] 第二上电极505优选形成于基材101的第一侧边107的保护层501上,且其电性连接至至少一个接触硅穿孔301,但不连接至第一上电极503。第二上电极505优选提供对于LED 601的第二接点。视需要地,第二上电极505也可与一个或多个散热孔305接触,虽然这样会分离第一上电极503的散热孔305。
[0058] 第一下电极507优选形成于基材101的第二侧边307的保护层501上。与第一上电极503相同,第一下电极507优选连接至少一个接触硅穿孔301,且也可接触一个或多个散热孔305。第一下电极507,接触硅穿孔301和第一上电极503共同提供介于基材101的第一侧边107与第二侧边307的电性途径,同时使散热孔305与接触硅穿孔301有相同的电位。于一实施例中,当电位是接地时,散热孔305与接触硅穿孔301优选位于相同的电位,将会额外提供比其他实施例优选的接地品质。
[0059] 第二下电极509优选形成于基材101的第二侧边307的保护层501上,且与第一下电极507分离。与第二上电极505相同,第二下电极507优选连接至少一个接触硅穿孔301,且也可与一个或多个与第一上电极503连接的散热孔305。
[0060] 第一上电极503,第二上电极505,第一下电极507与第二下电极509优选由两层(图中未各别显示)所组成:一第一导电层和一无电极电镀镍金层(Electroless Nickle Gold,ENIG)。第一导电层优选包括铝,优选借由溅镀沉积工艺而形成。然而,也可替代使用其他材料(例如镍或铜),或其他形成工艺(例如电镀或无电极电镀)。第一导电层的形成的厚度优选为约1~3μm,更佳为约2μm。
[0061] 第一导电层形成后优选进行一无电极电镀镍金工艺以形成一ENIG层。ENIG工艺提供一平坦、均匀的金属光滑表面以作为与接触硅穿孔301与散热孔305的接触。ENIG工艺优选包括清洁第一导电层,浸泡基材101至一锌酸盐活性溶液中,无电极电镀镍于第一导电层上,以及无电极电镀金于镍之上。ENIG层优选的形成厚度为约2~8μm,更佳为约3μm。一旦形成之后,优选借由一适合的光刻工艺以图案化第一导电层与ENIG层,以及经由一适合的蚀刻工艺以移除不想要的材料,最后将第一导电层与ENIG层分离成第一上电极503,第二上电极505,第一下电极507与第二下电极509。
[0062] 虽然前述的第一上电极503,第二上电极505,第一下电极507与第二下电极509是由相同材料所形成,熟知本领域普通技术人员应得知,此实施例仅用以举例说明,其他不同的材料与工艺也可用于每一电极上。其他适合的材料与工艺(例如于ENIG工艺之前图案化第一导电层)也可替代用于形成第一上电极503,第二上电极505,第一下电极507与第二下电极509,且完全包含在本发明所保护的范围中。
[0063] 于一实施例中,LED具有水平接触,如图6显示LED 601的位置电性连接至第一上电极503与第二上电极505。LED 601优选包括至少一含有n型III-V族化合物的第一接触层,一含有p型III-V族化合物的第二接触层,与介于第一接触层与第二接触层之间且含有多重量子阱的活化层。视需要地,LED 601可以包括额外层,例如缓冲层与布拉格反射层以增进操作功能。这些层彼此互相排列,所以当电流通过由第一接触层与第二接触层组成的二极管时,活化层会放射电磁波,例如可见光,紫外光,红外光或类似的波。
[0064] 于一实施例中,LED 601是一水平的LED,LED 601优选以倒装芯片(flip-chip)方式接合至第一上电极503与第二上电极505。此种接合的LED 601优选具有一第一LED接点603(优选电性连接至p型第二接触层)与一第二LED接点605(优选电性连接至n型第一接触层),两者形成于LED 601相同的表面上或表面中。接着,LED 601被反转,所以第一LED接点603与第二LED接点605分别接触第一上电极503与第二上电极605。介于LED 601和第一上电极503与第二上电极505之间的空隙优选填满环氧树脂,以使LED601接合至封装结构100。
[0065] 本领域普通技术人员应了解,上述提及的倒装芯片接合LED601至封装结构100的方法,并不是唯一接合LED601至封装结构100的方法。另外地,焊锡也可用于连接LED 601至第一上电极503与第二上电极505;铅线也可用于连接LED 601至第一上电极503与第二上电极505,或者是,于一实施例中,LED 601是一种垂直的LED,其中第一LED接点603与第二LED接点605位于LED 601的相对两侧,也可以使用倒装芯片与铅线的结合方式。其他适合的接合方法也可用于连接LED 601与封装结构100,且其他合适的方法也包含在本发明所保护的范围中。
[0066] 图7显示形成反射零件701,用以引导从LED 601向上放出的光,因此能增加LED封装结构100的效率。反射零件701优选包含一材料,例如硅、金属或陶瓷,且优选具有一α角度的倾斜以引导入射光向上。α角度优选为约20°~70°,更佳为约55°。
[0067] 反射零件701优选附着于封装结构100,位于部分第一上电极503与第二上电极505之上,但不接触到LED601。此外,为了增加反射零件701的反射性,反射零件701优选涂布具有高反射性的材料,例如银或镍。
[0068] 图8显示一封装且覆盖LED 601的结构。封装材料801优选包括能穿透LED辐射(例如可见光)的材料,例如环氧树脂,玻璃填充环氧树脂,或高分子材料(如硅胶)。视需要地,封装材料801可包括一磷光材料,其能修饰LED601放射光的波长。封装材料801优选覆盖于LED 601,且填充反射零件701所造成的空洞,以保护LED 601免受环境的危害。封装材料801优选以液态沉积,接着被固化使封装材料801变硬。
[0069] 一旦形成封装材料801,外盖(cover)803优选置于封装的LED 601之上。外盖803优选包括透镜,用以增进LED的光输出,且进一步能保护LED 601免受环境危害。外盖803优选包括一能穿透LED 601辐射光的材料(例如可见光)且能保护LED 601,例如聚碳酸酯(polycarbonate)或类似的硬塑胶,且优选对准且接合(利用封装剂,如环氧树脂)至反射零件701。
[0070] 借由在LED 601下方形成穿过基材101的散热孔305,且从第一接触电极503或第二接触电极505延伸,使得LED 601到封装结构100外部的散热效率能大幅提升。此结构使得散热较快,可降低或减少热衰减并因此增加LED的生命周期。
[0071] 图9显示本发明的另一实施例,其中第一下电极507(如图4-图8中所述)被两个分离的电极所取代:第三下电极901与第四下电极903。当第三下电极901与第四下电极903优选的形成方法类似于第一下电极(其形成方法如图4所述),其中第一导电层与ENIG层被图案化,以致于第三下电极901电性连接至接触硅穿孔301,而第四下电极903电性连接至散热孔305。借由如上所述的方法分离第三下电极901与第四下电极903,能额外地降低或消除来自散热片(heat sink)所产生的噪音。
[0072] 虽然本发明已以数个优选实施例揭示如上,然其并非用以限定本发明,任何本领域普通技术人员,在不脱离本发明的精神和范围内,当可作任意的更动与润饰,因此本发明的保护范围当视所述的权利要求所界定的范围为准。