蚀刻超薄膜的方法及蚀刻液转让专利

申请号 : CN200810168351.8

文献号 : CN101604615B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 刘家助陈桂顺张尚文叶志扬

申请人 : 台湾积体电路制造股份有限公司

摘要 :

本发明涉及一种蚀刻超薄膜的方法,其步骤为提供衬底,其上有超薄膜;形成光敏层在超薄膜上;图形化光敏层;依照光敏层的图形蚀刻超薄膜;以及移除图形化的光敏层。蚀刻工艺中利用具有抗扩散性质的蚀刻液,以防止蚀刻液中的蚀刻剂扩散至光敏层下面的区域而蚀刻光敏层下面的部分超薄膜。

权利要求 :

1.一种超薄膜的蚀刻方法,其特征在于,包含:

提供一衬底,其上具有厚度小于100埃的一超薄膜;

形成一光敏层在该超薄膜之上;

图形化该光敏层;

依照该光敏层的图形蚀刻该超薄膜,以图形化该超薄膜,其中蚀刻该超薄膜的方法包含利用具有抗扩散性质的一蚀刻液,该蚀刻液包含一抗扩散剂,该抗扩散剂增加该蚀刻液的粘度,以防止该蚀刻液中的蚀刻剂扩散至位于该光敏层下的超薄膜,其中该蚀刻剂为具有立体障碍的有机酸或有机碱,该抗扩散剂为甘油或大分子化合物或高分子化合物;以及移除该光敏层。

2.根据权利要求1所述的方法,其特征在于,该有机酸为羧酸或磺酸。

3.根据权利要求1所述的方法,其特征在于,该有机碱包含氢氧化四甲铵。

4.一种超薄膜的蚀刻方法,其特征在于,包含:

提供一半导体衬底,其上有厚度小于100埃的一超薄膜;

形成图形化的一光刻胶层在该超薄膜上,该图形化的光刻胶层有一开口以暴露该超薄膜的一部分;以及以一化学蚀刻液蚀刻该超薄膜暴露的部分,其中该化学蚀刻液具有一蚀刻剂与一抗扩散剂,该抗扩散剂增加该蚀刻液的粘度,以防止该化学蚀刻液中的该蚀刻剂扩散至该光刻胶层下面区域而蚀刻该超薄膜的未暴露部分,其中该蚀刻剂为具有立体障碍的有机酸或有机碱,该抗扩散剂为甘油或大分子化合物或高分子化合物。

5.根据权利要求4所述的蚀刻方法,其特征在于,该有机酸为羧酸或磺酸。

6.根据权利要求4所述的蚀刻方法,其特征在于,该有机碱包含氢氧化四甲铵。

说明书 :

蚀刻超薄膜的方法及蚀刻液

技术领域

[0001] 本发明揭露一种关于半导体的制造方法,且特别是有关于一种在半导体工艺中超薄膜的蚀刻方法。

背景技术

[0002] 集成电路的形成是利用半导体工艺在半导体衬底上产生一个或多个元件(如电路元件)。自从几十年前发表该种元件之后,因为工艺与材料的改进,使得半导体元件几何尺寸持续降低。例如,现今工艺为利用45纳米或更小的工艺技术生产半导体元件。然而,减少元件几何尺寸时常引出需要克服的新挑战。
[0003] 因为半导体元件尺寸的缩小,各种厚度小于100埃的超薄膜已经被使用。例如,超薄二氧化硅栅氧化层可被用于半导体元件,如金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistors,MOSFETs)与互补型金属氧化物半导体晶体管(complementary metal-oxide-semiconductor,CMOS)元件。然而,目前用于图形化超薄膜的技术并无法满足所有需求层面。特别是如何在不造成位于光刻胶层下面的两侧超薄膜被蚀刻的情形下,控制超薄膜蚀刻的困难度增加。因此,形成在超薄膜上的图形可能改变且扭曲,导致各种问题,如差的元件表现或低产率。
[0004] 所以,需要存在一种简单且具备成本效率的方法以蚀刻半导体元件中的超薄膜。

发明内容

[0005] 本发明所要解决的技术问题在于提供一种简单且具备成本效率的超薄膜蚀刻方法及蚀刻液。
[0006] 为了实现上述目的,本发明一实施例中提出一种超薄膜的蚀刻方法,其步骤为提供衬底,其上具有超薄膜;形成光敏层在超薄膜之上;图形化超薄膜上的光敏层;依照光敏层的图形蚀刻超薄膜;以及移除光敏层。蚀刻工艺中利用具有抗扩散性质的蚀刻液,以防止蚀刻液中的蚀刻剂扩散至光敏层下的区域而蚀刻光敏层下方的部分超薄膜。
[0007] 为了实现上述目的,本发明另一实施例中提出一种超薄膜的蚀刻方法,其步骤为提供半导体衬底,其上有厚度小于100埃的超薄膜;在超薄膜上形成图形化的光刻胶层,图形化的光刻胶层具有开口以暴露部分的超薄膜;以及利用具有抗扩散剂的化学蚀刻液蚀刻超薄膜暴露的部分,以防止蚀刻液中的蚀刻剂扩散至光刻胶层下方的区域而蚀刻未暴露的超薄膜。
[0008] 为了实现上述目的,本发明的又一实施例中提出一种蚀刻液,包含化学蚀刻剂,选自无机酸、有机酸、无机碱、有机碱与上述任意组合所组成的族群;以及抗扩散剂。
[0009] 本发明实施例中提供了简单且具备成本效率的方法来控制各种用于半导体元件中的超薄膜的蚀刻工艺。因此,可改进超薄膜上图形形成的均一性,且增强元件表现与可信度。再者,在此揭露的方法与蚀刻材料可以轻易地插入半导体工艺中,也可应用于以32纳米或更小线宽的图形化技术制造下一代元件。

附图说明

[0010] 为使本发明的上述和其它目的、特征、优点与实施例能更明显易懂,所附附图的详细说明如下:
[0011] 图1A及图1B是具有超薄膜的衬底进行传统蚀刻工艺的剖面图;
[0012] 图2是具有超薄膜的衬底进行传统蚀刻工艺的方法流程图;
[0013] 图3A及图3B是具有超薄膜的衬底以本发明一较佳实施例的方法进行工艺的剖面图;
[0014] 图3C是具有超薄膜的衬底以本发明另一较佳实施例的方法进行工艺的剖面图。
[0015] 【主要组件符号说明】
[0016] 100:衬底 102:超薄膜
[0017] 104:光刻胶层 106:化学蚀刻液
[0018] 108:区域 200:方法
[0019] 202:步骤 204:步骤
[0020] 206:步骤 208:步骤
[0021] 300:衬底 302:超薄膜
[0022] 304:光敏层 306:蚀刻液
[0023] 310:化学蚀刻剂 314:抗扩散剂
[0024] 320:区域

具体实施方式

[0025] 本发明是有关于半导体的制造方法,尤其是一种在半导体工艺中蚀刻超薄膜的方法。然而,提供作为例子的特定的实施例是为了宣扬更宽广的发明概念,且任何熟悉本领域的技术人员可轻易使用本发明至其它方法与元件。此外,在此揭露讨论的方法及元件中会包含一些传统结构与/或工艺。由于这些结构与工艺在此技术范畴中已是已知,将仅概略在此讨论。
[0026] 再者,为了便利及方便举例,参考数字会重复出现在整篇说明书的图示中,但该种重复并不暗示任何所需的特征或步骤组合。此外,在下所述的第一特征的形成可为横跨、紧邻或连接于第二特征,或可形成在第二特征的上方或旁边,即第一与第二特征为直接接触的实施例;也可能第一及第二特征为非直接接触,即具有额外特征形成在第一及第二特征间的实施例。同样地,形成特征在衬底上的实施例可为形成特征在衬底表面之上,直接在衬底表面上,与/或延伸至衬底表面下(例如切割)的实施例,例如蚀刻衬底。
[0027] 请参照图1A及图1B,示出了具有超薄膜102的衬底100进行传统蚀刻工艺的剖面图。在图1A中,衬底100可为半导体衬底,例如单晶硅衬底。衬底100上可形成一层或多层材料层,例如掺杂材料层、绝缘材料层、外延(epitaxial)材料层、包含多晶硅(polysilicon)材料层的传导材料层、介电材料层、与/或其它适用于半导体的材料层。
[0028] 超薄膜102可用多种目前已知的技术形成在衬底100上。超薄膜102厚度小于100埃。超薄膜102可为介电材料或导电材料。光刻胶层104可形成在超薄膜102上,且可利用光刻技术或其它已知适用的工艺来图形化光刻胶层。在图1B中,利用光刻胶层104的图形蚀刻超薄膜102。蚀刻工艺可为利用化学蚀刻液106的湿法蚀刻工艺,而化学蚀刻液中的蚀刻剂的选择,例如酸或碱,是由被蚀刻的材料类型及其它因素而定,如蚀刻选择性和蚀刻速率。然而,化学蚀刻液106中的蚀刻剂小分子因毛细作用可能腐蚀位于光刻胶层104下方的超薄膜102。换句话说,化学蚀刻液106中的蚀刻剂小分子可能会流向并扩散到位于光刻胶层下的区域108,并蚀刻两侧超薄膜102的一部分。因此使得蚀刻速率很难被控制,导致超薄膜102的图形可能会被扭曲而引起各种问题,如不良的元件表现。当使用小于32纳米的技术来图形化结构特征时,上述的无法控制的横向蚀刻可能会被持续放大。
[0029] 参照图2,是超薄膜的蚀刻方法200的流程图。请同时参照图3A与图3B。蚀刻方法200首先开始于步骤202,为提供衬底300,其上具有超薄膜302。在图3A中,衬底300可能为单晶硅结构。在另一实施例中,衬底300可选择性的为其它基本的半导体如锗,或可为合成的半导体如碳化硅、砷化镓、砷化铟或磷化铟。此外,衬底300可能为硅覆盖绝缘层(silicon on insulator(SOI))衬底、高分子覆盖硅层(polymer-on-silicon)衬底、或具有薄绝缘层的“SON”(silicon on nothing)衬底。薄绝缘层为空气与/或其它气体的组成。衬底300可进一步具有一层或多层材料层在其上。材料层可为掺杂材料层、绝缘材料层、晶膜材料层、含有多晶硅材料层的传导材料层、介电材料层、与/或其它适用于半导体的材料层。
[0030] 超薄膜302可利用各种技术形成在衬底300上。例如,超薄膜302可为氧化硅,由四乙氧基硅烷(TEOS)与臭氧(O3)或硅烷与氧经过低压化学气相沉积(LPCVD)或等离子体增强型化学气相沉积(PECVD)工艺沉积而得。或者,超薄膜302可由物理气相沉积(PVD或溅射沉积)、化学气相沉积(CVD)、常压化学气相沉积(APCVD)、高密度等离子体化学气相沉积(HDCVD)、原子层化学气相沉积(ALCVD)、与/或其它已知工艺形成。更佳为超薄膜302形成的厚度小于100埃。或者,超薄膜302可为其它材料如氮化硅、氮氧化硅、金属氧化物(如氧化锌(ZnO)、氧化镍(NiO))、有机材料、金属(如铝、铬、铜、铁、铅、镍、锡、铂、钛、锌等)、与低介电系数介电质材料(如掺氟硅玻璃(fluorinated silica glass,FSG)、含碳氧化硅(carbon-doped silicon oxide,如Black )。
[0031] 继续进行蚀刻方法200的步骤204,在超薄膜302上形成图形化的光敏层304。光敏层304可为光刻胶,例如化学增幅型光刻胶(chemicalamplification resist,CAR)。光敏层304可利用旋转涂布工艺、沉积工艺、与/或其它适合的工艺形成。并可利用光刻技术工艺、浸没式光刻技术工艺、或其它光刻技术工艺图形化光敏层304。再利用图形化的光敏层304形成一个或多个特征结构在超薄膜302上,特征结构例如可为栅极、内连线或超薄膜302中的过孔或接触孔。
[0032] 继续进行蚀刻方法200的步骤206,利用已图形化的光敏层蚀刻超薄膜302。请参照图3B,蚀刻工艺可为利用具有高度蚀刻选择性的化学蚀刻剂310的湿法蚀刻工艺。且利用种种方式来减少化学蚀刻剂310的化学扩散速率。如此一来,化学蚀刻剂310在扩散时可被控制在区域320内,以防止其扩散至光敏层304之下,而蚀刻到位在光敏层下的超薄膜302。因此,可对利用化学蚀刻剂310蚀刻超薄膜的蚀刻工艺与蚀刻速率具有较佳的控制效果。而化学蚀刻剂310可为酸、碱、氧化剂或其组合。
[0033] 减缓化学蚀刻剂310扩散速率的方法可为增加现有蚀刻液中无机酸或无机碱的立体障碍结构,将其改为具有较大立体障碍的有机酸或有机碱,以减少化学蚀刻剂310的扩散速率。例如,化学蚀刻剂310可为羧酸(R1-COOH)或磺酸(R2-SO3H),其具有分子结构较大的R1与R2。羧酸如草酸(HOOC-COOH)、月桂酸((CH2)10CH3COOH)、己二酸(HOOC(CH2)4COOH)与苯甲酸(C6H5COOH)。磺酸如甲磺酸(CH3SO3H)与苯磺酸(C6H5SO3H)。同样地,化学蚀刻剂310也可为大分子的有机碱,例如氢氧化四甲铵(tetramethyl ammonium hydroxide;TMAH)。
[0034] 此外,请参照图3C。依据本发明另一较佳实施例,减缓化学蚀刻剂310的扩散速率也可利用加入抗扩散剂314来增加蚀刻液306的粘度来达成之。所以,可利用抗扩散剂314搭配现有的化学蚀刻剂310,如无机酸、无机碱或氧化剂,亦或是搭配前述具有较大立体结构的有机酸或有机碱,以减缓化学蚀刻剂310的扩散速率。现有无机酸的化学蚀刻剂可为硝酸(HNO3)、硫酸(H2SO4)或盐酸(HCl)等无机酸。现有无机碱的化学蚀刻剂可为氢氧化钠(NaOH)、氢氧化钾(KOH)或氢氧化铵(NH4OH)等无机碱。现有氧化剂的化学蚀刻剂可为过氧化氢(H2O2)。抗扩散剂314可为与水完全互溶的高粘度的甘油(C3H5(OH)3),或可为在加入水中后形成胶体水溶液的大分子化合物或高分子化合物,如全氟辛烷磺酸(PFOS,C8F17SO3H)或分子量50~1000的聚乙二醇(polyethylene glycol,PEG)。蚀刻液的选择取决于超薄膜302的材料而定,例如当超薄膜302的材料为氮化钛时,其适用的化学蚀刻液可由过氧化氢、氢氧化铵与全氟辛烷磺酸水溶液组成,其中过氧化氢与氢氧化铵的体积比为1:0.1至1:50
[0035] 接下来为进行蚀刻方法200的步骤208,利用已知工艺移除光敏层304,且衬底300可更进一步进行制造成为半导体元件。
[0036] 上述实施例与其它实施例中提供了简单且具备成本效率的方法来控制各种用于半导体元件中的超薄膜的蚀刻工艺。因此,可改进超薄膜上图形形成的均一性,且增强元件表现与可信度。再者,在此揭露的方法与蚀刻材料可以轻易地插入半导体工艺中,也可应用于以32纳米或更小线宽的图形化技术制造下一代元件。
[0037] 当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。