一种适合分布式使用的数据语音分离器转让专利

申请号 : CN200910041260.2

文献号 : CN101605285B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 韩向伟王明生

申请人 : 中山市汉仁电子有限公司

摘要 :

本发明公开了一种适合分布式使用的数据语音分离器,包括线路接入端、语音接口和网络接口,线路接入端和语音接口之间连接有低通滤波器,低通滤波器包括线路间串联的LRC电路和线路间并联的滤波电容,低通滤波器还设置有检测电路和开关电路,检测电路检测信号传输回路的电流大小并根据电流大小控制开关电路,开关电路的开关状态调节所述滤波电容的电容大小。一方面,本发明保证了正常的DSL服务和语音接口所接终端的信号质量不受影响,另一方面,与现有技术相比,本发明可提供多个语音端的并接使用,特别适合于多个语音端分布式应用。

权利要求 :

1.一种适合分布式使用的数据语音分离器,包括线路接入端(1)、语音接口(2)和网络接口(3),所述线路接入端(1)和语音接口(2)之间连接有低通滤波器(4),低通滤波器(4)包括线路间串联的LRC电路(7),和线路间并联的滤波电容(8),其特征在于所述低通滤波器(4)还设置有检测电路(5)和开关电路(6),检测电路(5)检测信号传输回路的电流大小并根据电流大小控制开关电路(6),开关电路(6)的开关状态调节所述滤波电容(8)的电容大小,检测电路(5)串接于信号传输回路中,滤波电容(8)包括电容C,所述开关电路(6)包括两组由PNP三极管、NPN三极管和驱动限流电阻组成的开关组合K1~K2,其中第一开关组合K1的PNP三极管Q2和第二开关组合K2的NPN三极管Q4的基极通过驱动限流电阻并接于检测电路(5)一侧,发射极并接后与检测电路(5)另一侧相连接,PNP三极管Q2的集电极与第一开关组合K1的NPN三极管Q1的基极相连,NPN三极管Q4的集电极与第二开关组合K2的PNP三极管Q3的基极相连,第一开关组合K1的NPN三极管Q1和第二开关组合K2的PNP三极管Q3的发射极并接后与滤波电容(8)一侧的串接有检测电路(5)的信号传输回路相连接,集电极并接后通过电容C与另一边的信号传输回路相连接。

2.根据权利要求1所述的适合分布式使用的数据语音分离器,其特征在于所述检测电路(5)包括一检测电阻RS和一双向二极管D,所述检测电阻RS和双向二极管D并联后串接于信号传输回路中。

3.根据权利要求1所述的适合分布式使用的数据语音分离器,其特征在于所述滤波电容(8)还包括电容C’,电容C’的一端与滤波电容(8)一侧的串接有检测电路(5)的信号传输回路相连接,另一端与NPN三极管Q1和PNP三极管Q3的并接集电极连接。

说明书 :

一种适合分布式使用的数据语音分离器

技术领域

[0001] 本发明涉及一种应用于xDSL宽带通信的装置,具体是一种数据语音分离器。

背景技术

[0002] xDSL技术是以传统电话铜线为传输介质的传输技术,其信号传输回路中既包含低频语音信号也包含高频数字信号,需要利用数据语音分离器对低频语音信号和高频数字信号进行有效分离,才能实现用户方通话和网络使用互不影响。一般数据语音分离器的电路原理图如图4所示,低通滤波器的信号传输回路并接有滤波电容,配合其他的LRC电路能够对高频信号和噪声进行滤除,从而确保低频语音信号的信号质量不受高频信号或噪声的影响。参照图3,当多个数据语音分离器需要同时在线路上并接使用时,根据电容的特性,滤波电容在会相应在线路中形成并联连接,线路中的工作电容因此将会随之大幅度增加,从而影响线路的阻抗匹配造成非常大的反射损耗,以及增加信号的衰减(尤其是高频信号),使源信号不能很好地传送到使用端,严重影响了数据信号的传输和语音的质量。因此,现有的数据语音分离器不适合于在线路上进行多个并接,不能满足分布式使用的要求。

发明内容

[0003] 为解决上述问题,本发明提供一种能够进行多个并接、适合分布式使用的数据语音分离器。
[0004] 本发明为解决其问题所采用的技术方案是:
[0005] 一种适合分布式使用的数据语音分离器,包括线路接入端、语音接口和网络接口,所述线路接入端和语音接口之间连接有低通滤波器,低通滤波器包括线路中串联的LRC电路和线路中并联的滤波电容,所述低通滤波器还设置有检测电路和开关电路,检测电路检测信号传输回路的电流大小并根据电流大小控制开关电路,开关电路的开关状态控制所述滤波电容的容值大小。
[0006] 由于语音接口所接终端处于正常使用状态时信号传输回路中的电流与处于挂机状态时相差数倍甚至数十倍,通过增加的检测电路对线路中的传输电流大小进行检测能够判断终端的工作状态,同时增加的开关电路根据不同的工作状态调整滤波电容的容值大小:当终端处于正常使用状态时调整滤波电容为正常连接,使线路工作电容回复到正常所需电容值;当终端处于挂机状态时调整滤波电容为另一种连接方式,使滤波电容非常小于正常值。利用上述的滤波电容接入大小的控制方案,一方面,本发明保证了正常的DSL服务和语音接口所接终端的信号质量不受影响,另一方面,与现有技术相比,本发明可提供多个语音端的并接使用,特别适合于多个语音端分布式应用。

附图说明

[0007] 下面结合附图和实施例对本发明作进一步说明:
[0008] 图1为本发明的电路方框图;
[0009] 图2为检测电路和开关电路的电路原理图;
[0010] 图3为数据语音分离器分布式使用的典型应用图;
[0011] 图4为现有通用的数据语音分离器电路原理图;
[0012] 图5为本发明的一实施例的低通滤波器原理图;
[0013] 图6为本发明的另一实施例的低通滤波器原理图。

具体实施方式

[0014] 参照图1,本发明的一种适合分布式使用的数据语音分离器,包括线路接入端1、语音接口2和网络接口3,线路接入端1和语音接口2之间连接有低通滤波器4,低频语音信号经过滤波后进入语音接口2,低通滤波器4包括LRC电路7,LRC电路7可以由电感L或者电阻R组成,也可以由电感L、电阻R和电容C中的某两种组成,或者由电感L、电容C和电阻R共同组成,低通滤波器4的信号传输回路中并接有滤波电容8,数据语音分离器根据需要在线路接入端1和网络接口3之间的信号传输回路之中还可以串接有隔直电容或多节高通滤波作为高通滤波器9,高频数字信号经过高通滤波器9后进入网络接口3所接设备,本发明的数据语音分离器的低通滤波器4还设置有检测电路5和开关电路6,检测电路5检测信号传输回路的电流大小并根据电流大小控制开关电路6,开关电路6的开关状态控制所述滤波电容8的接入线路中的电容容值的大小。通常的低通滤波器4靠近线路接入端1和靠近语音接口2的信号传输回路之间都跨接有滤波电容8,因此需要设置两组检测电路5和开关电路6分别控制其接入状态,同时,两组检测电路5和开关电路6设置于不同的信号传输线中,以避免信号回路对地平衡受到影响。
[0015] 参照图2,检测电路5包括一检测电阻RS和一双向二极管D,检测电阻RS和双向二极管D并联后串接于信号传输回路中。此时,检测电阻RS两端的电压大小与信号传输回路的电流大小成正比,此电压信号能够方便地用作开关电路6的控制信号,另外,为了避免检测电阻RS两端压降过高造成信号传输回路在检测电阻RS上损耗过大,检测电阻RS两侧并接有双向二极管D,当检测电阻RS上的压降达到双向二极管D的导通电压(一般为0.7V)后,双向二极管D导通,分流RS上的电流,限定线路在RS的损耗。
[0016] 开关电路6包括两组由PNP三极管、NPN三极管和驱动限流电阻组成的开关组合K1~K2,其中第一开关组合K1的PNP三极管Q2和第二开关组合K2的NPN三极管Q4的基极分别通过驱动限流电阻并接于检测电路5一侧,发射极并接后与检测电路5另一侧相连接,集电极分别与第一开关组合K1的NPN三极管Q1和第二开关组合K2的PNP三极管Q3的基极相连,第一开关组合K1的NPN三极管Q1和第二开关组合K2的PNP三极管Q3的发射极并接后与滤波电容(8)一侧的信号传输回路相连接,集电极并接后与滤波电容(8)中的C与C’的公共端相连,其中C’也可根据需要去掉。
[0017] 检测电路5和开关电路6的工作原理如下:
[0018] 由于线路回路中的信号是由正弦波的信号和直流信号组成,流过检测电阻RS的电流包括正弦波电流和直流,因此检测电阻RS上的压降达到一定值后,双向二极管D导通,检测电阻RS上的电压压降限定为0.7V左右。当Q1和Q3的Vce为负压,同时检测电路的压降为0.7V时,第二开关组合K2的NPN三极管Q4的基极和发射极之间存在0.7V左右的电压差,使Q4导通,Q4导通后使PNP三极管Q3的基极处于低电位,Q3导通,Q1断开,开关电路6两连接端导通,开关电路处于闭合状态,由发射极到集电极的信号电流经Q3通过;当Q1和Q3的Vce为正压,同时检测电路的压降为0.7V时,此时,第一开关组合K1的PNP三极管Q2的基极和发射极之间存在-0.7V左右的电压差,使Q2导通,Q2导通后使NPN三极管Q1的基极处于高电位,Q1导通,Q3断开,开关电路6两连接端导通,开关电路处于闭合状态,由集电极到发射极的信号电流经Q1通过。因此,开关组合K1~K2能够根据检测电阻RS的正反向压降情况,控制Q1,Q3的导通状况,从而使正反向的电流在检测电流中的压降在0.7V时都能通过滤波电容8,也即开关电路6处于闭合状态,此时滤波电容8处于最大值。但当检测电流中的压降小于0.7V时,根据上面的推理,Q1,Q3都不能导通,从而使开关电路6处于开路状态,此时滤波电容8处于最小值。
[0019] 本发明的语音接口2所接终端处于正常使用和挂机两种不同状态时,线路接入端1和语音接口2之间的信号传输回路的工作电流会相差数倍甚至数十倍,正常使用状态时信号传输回路中的电流在20mA~110mA之间,挂机时信号传输回路中的电流小于3mA,因此通过增加上述检测电路5和开关电路6能够方便地检测终端的工作状态并根据工作状态改变滤波电容8接入的容值,从而改变数据语音分离器的工作电容值。
[0020] 图5为本发明一种实施例的低通滤波器电路原理图,两端的滤波电容8由单独的电容C组成,检测电阻RS1、RS2选用阻值为100欧姆的电阻,电容C选用20nF左右的电容值作为滤波电容8,当语音接口2所接终端处于挂机状态时,信号传输回路中的电流小于3mA,检测电阻RS1、RS2上的压降小于0.3V,开关电路6中的Q1、Q3、Q5、Q7都不能导通,开关电路6处于断开状态,滤波电容8处于最小值,此时从线路接入端1测试到的工作电容为极小值,通常为几百皮法;当终端处于正常使用状态时,信号传输回路中的电流在20mA以上,检测电阻RS1、RS2上的正向或反向压由于D1、D2的限压处于0.7V时,开关电路6处于闭合状态,电容C接入信号传输回路中,低通滤波器4的滤波电容8处于最大值,起正常的滤波效果。
[0021] 图6为本发明的另一种实施例的低通滤波器电路原理图,两端的滤波电容8包括串联的电容C和C’,开关电路6的一连接端与电容C’一侧的信号传输回路相连接,另一连接端与C、C’的公共端相连,与前实施例相比滤波电容8能够承受更高的电压冲击。检测电阻RS1、RS2和滤波电容8中的C可选用与前实施例中相同的值,电容C’选用小容量的电容,譬如10nF,当开关电路6断开时,C与C’串接后跨接信号传输回路之间,根据电容的特性,C与C’串接后的等效电容小于7nF,此时滤波电容8处于最小值,从线路接入端1测试到的工作电容约为8nF左右;当开关电路6闭合时,电容C’被短接,滤波电容8中的电容C直接接入信号传输回路,滤波电容8处于最大值,低通滤波器4起正常的滤波效果。
[0022] 综上,本发明保证了正常的DSL服务和语音接口所接终端的信号质量不受影响,并且与原来相比,当终端处于挂机时,本发明的工作电容比传统的数据语音分离器大大减小,由于多个数据语音分离器并接时一般只有一个分离器的语音接口所接终端处于摘机状态而其他终端都处于挂机状态,或者全部终端都处于挂机状态,因此正常使用时一般只有一个分离器的工作电容为正常值而其他都为低电容值,或者全部为低电容值,使得本发明可提供多个语音端的并接使用,特别适合于多个语音端分布式应用,同时对DSL中的数据信号不会造成影响。