内燃机的排气净化系统转让专利

申请号 : CN200880011127.6

文献号 : CN101652540B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 利冈俊祐小田富久伊藤和浩

申请人 : 丰田自动车株式会社

摘要 :

本发明提供一种内燃机的排气净化系统,其目的在于在内燃机的排气通路上设置有选择还原型NOx催化剂和微粒过滤器的情况下,抑制来自选择还原型NOx催化剂的氨的排出。在本发明的内燃机的排气净化系统中,当过滤器升温控制的执行条件成立时(S101),停止由尿素供给单元进行的向选择还原型NOx催化剂的尿素的供给(S102),并且从停止向选择还原型NOx催化剂的尿素的供给的时刻开始经过预定期间之后,由过滤器升温单元来执行过滤器升温控制(S103、S104)。

权利要求 :

1.一种内燃机的排气净化系统,其特征在于,具备:

选择还原型NOx催化剂,其设置于内燃机的排气通路,将氨作为还原剂来还原排气中的NOx;

尿素供给单元,其向该选择还原型NOx催化剂供给尿素;

微粒过滤器,其设置于所述排气通路,捕集排气中的粒子状物质;以及过滤器升温单元,其执行使该微粒过滤器升温的过滤器升温控制,在所述过滤器升温控制的执行条件成立时,停止由所述尿素供给单元进行的向所述选择还原型NOx催化剂的尿素的供给,并且从停止由所述尿素供给单元进行的向所述选择还原型NOx催化剂的尿素的供给的时刻开始经过预定期间之后,由所述过滤器升温单元来执行所述过滤器升温控制。

2.根据权利要求1所述的内燃机的排气净化系统,其特征在于,

还具备推定所述选择还原型NOx催化剂中的尿素的吸附量的尿素吸附量推定单元,在所述过滤器升温控制的执行条件成立时,由所述尿素吸附量推定单元推定的所述选择还原型NOx催化剂中的尿素的吸附量为第一预定吸附量以上的情况下,停止由所述尿素供给单元进行的向所述选择还原型NOx催化剂的尿素的供给。

3.根据权利要求2所述的内燃机的排气净化系统,其特征在于,

所述预定期间是直到由所述尿素吸附量推定单元推定的所述选择还原型NOx催化剂中的尿素的吸附量减少到比所述第一预定吸附量少的第二预定吸附量以下的期间。

4.根据权利要求2或3所述的内燃机的排气净化系统,其特征在于,

所述第一预定吸附量,是在所述选择还原型NOx催化剂中的尿素的吸附量为该第一预定吸附量以上时,可判断为如下情况的阈值,即伴随所述过滤器升温控制的执行而所述选择还原型NOx催化剂的温度上升时,就从所述选择还原型NOx催化剂排出过剩的量的氨。

5.根据权利要求3所述的内燃机的排气净化系统,其特征在于,

所述第二预定吸附量,是当所述选择还原型NOx催化剂中的尿素的吸附量为该第二预定吸附量以下时,可判断为如下情况的阈值,即即使伴随所述过滤器升温控制的执行而所述选择还原型NOx催化剂的温度上升,从所述选择还原型NOx催化剂排出的氨的量也处于容许范围内。

6.根据权利要求1~3的任一项所述的内燃机的排气净化系统,其特征在于,还具备:氨氧化催化剂,其设置于比所述选择还原型NOx催化剂更靠下游一侧的所述排气通路中,具有将氨氧化的功能;和NOx催化剂升温单元,其在所述预定期间中执行NOx催化剂升温控制,该NOx催化剂升温控制是以比伴随所述过滤器升温控制的执行而所述选择还原型NOx催化剂升温时的升温速度低的预定升温速度,使所述选择还原型NOx催化剂升温。

说明书 :

内燃机的排气净化系统

技术领域

[0001] 本发明涉及具备将氨作为还原剂来还原排气中的NOx的选择还原型NOx催化剂和捕集排气中的粒子状物质的微粒过滤器的内燃机的排气净化系统。

背景技术

[0002] 作为内燃机的排气净化系统,已知具备设置在内燃机的排气通路上的、将氨作为还原剂来还原排气中的NOx的选择还原型NOx催化剂的排气净化系统。在这样的排气净化系统中,向选择还原型NOx催化剂供给尿素。供给的尿素暂时吸附到选择还原型NOx催化剂上,所吸附的尿素发生水解,由此生成氨。该氨成为还原剂来还原排气中的NOx。
[0003] 另外,有时在内燃机的排气通路上设置捕集排气中的粒子状物质(Particulate Matter:以下称为PM)的微粒过滤器。在该情况下,存在为除去过滤器捕集的PM而使该过滤器升温的情况。
[0004] 在特开2004-270565号公报中,公开了如下结构:在排气通路上从上游开始依次配置有氧化催化剂、过滤器、向排气中喷射尿素类液体的液体喷射喷嘴、选择还原型NOx催化剂、防止氨逃逸催化剂。在该特开2004-270565号公报所公开的结构中,还设置有EGR管和EGR阀。并且,根据内燃机的运行状态来控制液体喷射喷嘴和EGR阀。

发明内容

[0005] 在内燃机的排气通路上设置选择还原型NOx催化剂和过滤器的情况下,当使过滤器升温时,存在选择还原型NOx催化剂的温度也上升的情况。当选择还原型NOx催化剂的温度急剧上升时,吸附在该选择还原型NOx催化剂上的尿素的水解被急剧促进,氨的生成量急增。其结果,NOx的还原中未被消耗而从选择还原型NOx催化剂排出的氨有可能增加。
[0006] 本发明是鉴于上述问题而完成的发明,其目的在于提供一种技术,能够在内燃机的排气通路上设置有选择还原型NOx催化剂和过滤器的情况下,抑制来自选择还原型NOx催化剂的氨的排出。
[0007] 本发明在执行过滤器的升温的条件成立的情况下,停止向选择还原型NOx催化剂供给尿素,并且在停止尿素的供给后经过预定期间之后,执行过滤器的升温。
[0008] 即,本发明的内燃机的排气净化系统的特征在于,具备:
[0009] 选择还原型NOx催化剂,其设置于内燃机的排气通路,将氨作为还原剂来还原排气中的NOx;
[0010] 尿素供给单元,其向该选择还原型NOx催化剂供给尿素;
[0011] 微粒过滤器,其设置于所述排气通路,捕集排气中的粒子状物质;以及[0012] 过滤器升温单元,其执行使该微粒过滤器升温的过滤器升温控制,[0013] 在所述过滤器升温控制的执行条件成立时,停止由所述尿素供给单元进行的向所述选择还原型NOx催化剂的尿素的供给,并且从停止由所述尿素供给单元进行的向所述选择还原型NOx催化剂的尿素的供给的时刻开始经过预定期间之后,由所述过滤器升温单元来执行所述过滤器升温控制。
[0014] 在本发明中,当过滤器升温控制的执行条件成立时,停止向选择还原型NOx催化剂的尿素的供给。并且,从停止向选择还原型NOx催化剂的尿素的供给的时刻开始经过预定期间之后,执行过滤器升温控制。
[0015] 由此,在过滤器升温控制的执行条件成立之前的期间中吸附在选择还原型NOx催化剂上的尿素,在预定期间中变成氨,在NOx的还原中被消耗。并且,在选择还原型NOx催化剂中的尿素的吸附量减少之后执行过滤器升温控制。因此,能够抑制伴随过滤器升温的执行而选择还原型NOx催化剂的温度上升时的来自该选择还原型NOx催化剂的氨的排出。
[0016] 在本发明中,还可以具备推定选择还原型NOx催化剂中的尿素的吸附量的尿素吸附量推定单元。该情况下,当过滤器升温控制的执行条件成立时,在选择还原型NOx催化剂中的尿素的吸附量为第一预定吸附量以上在情况下,可以停止由尿素供给单元进行的向选择还原型NOx催化剂的尿素的供给。
[0017] 在此,第一预定吸附量,可以是当选择还原型NOx催化剂中的尿素的吸附量为该第一预定吸附量以上时,可判断为如下情况的阈值,即伴随过滤器升温控制的执行而选择还原型NOx催化剂的温度上升时,就从选择还原型NOx催化剂中排出过剩的量的氨。
[0018] 根据上述内容,也能够抑制伴随过滤器升温控制的执行而选择还原型NOx催化剂的温度上升时的来自该选择还原型NOx催化剂的氨的排出。
[0019] 另外,上述情况下,预定期间可以是直到选择还原型NOx催化剂中的尿素的吸附量减少到比第一预定吸附量少的第二预定吸附量以下的期间。
[0020] 在此,第二预定吸附量,可以是当选择还原型NOx催化剂中的尿素的吸附量为该第二预定吸附量以下时,可判断为如下情况的阈值,即即使伴随过滤器升温控制的执行而选择还原型NOx催化剂的温度上升,从选择还原型NOx催化剂排出的氨的量也处于容许范围内。
[0021] 由此,能够在选择还原型NOx催化剂中的尿素的吸附量已充分减少的状态下执行过滤器升温控制。
[0022] 另外,在本发明中,还可以具备:氨氧化催化剂,其设置于比选择还原型NOx催化剂更靠下游一侧的排气通路中,具有将氨氧化的功能;和NOx催化剂升温单元,其在预定期间中执行使选择还原型NOx催化剂升温的NOx催化剂升温控制。该情况下,在NOx催化剂升温控制中,以比伴随过滤器升温控制的执行而选择还原型NOx催化剂升温时的升温速度低的预定升温速度,使选择还原型NOx催化剂升温。
[0023] 由NOx催化剂升温单元来使选择还原型NOx催化剂升温的情况下,选择还原型NOx催化剂中的尿素的水解也被促进,从该选择还原型NOx催化剂排出的氨增加。但是,预定升温速度,是比伴随过滤器升温控制的执行而所述选择还原型NOx催化剂升温时的升温速度低的速度。因此,通过执行NOx催化剂升温控制来使选择还原型NOx催化剂升温时的氨的排出量,比伴随过滤器升温控制的执行而选择还原型NOx催化剂升温时的氨的排出量少。
[0024] 另外,预定升温速度,可以是能够判断为从选择还原型NOx催化剂排出的氨的量处于能够通过氨氧化催化剂充分氧化的范围内的值。该情况下,当选择还原型NOx催化剂以预定升温速度升温时,从选择还原型NOx催化剂排出的氨被氨氧化催化剂充分氧化。因此,能够抑制向比氨氧化催化剂更靠下游的一侧流出氨。
[0025] 因此,根据上述内容,能够在预定期间中,抑制向比氨氧化催化剂更靠下游的一侧流出氨,并更快速地减少选择还原型NOx催化剂中的尿素的吸附量。因此,在预定期间为某一定的期间的情况下,能够在该预定期间中使选择还原型NOx催化剂中的尿素的吸附量进一步减少。其结果,能够进一步抑制经过预定期间之后执行过滤器升温控制时的来自选择还原型NOx催化剂的氨的排出量。另外,在预定期间是直到选择还原型NOx催化剂中的尿素的吸附量从第一预定吸附量以上减少到第二预定吸附量以下的期间的情况下,能够尽可能地缩短该预定期间。其结果,能够更早地执行过滤器升温控制。

附图说明

[0026] 图1是表示实施例1的内燃机及其进排气系统的概略结构的图。
[0027] 图2是表示实施例1的过滤器再生控制程序的流程图。
[0028] 图3是表示实施例1的变形例的内燃机及其进排气系统的概略结构的图。
[0029] 图4是表示实施例2的过滤器再生控制程序的流程图。
[0030] 图5是表示实施例3的过滤器再生控制程序的流程图。

具体实施方式

[0031] 以下,参照附图对本发明的内燃机的排气净化系统的具体实施方式进行说明。
[0032] (实施例1)
[0033] (内燃机及其进排气系统的概略结构)
[0034] 图1是表示本实施例的内燃机及其进排气系统的概略结构的图。内燃机1是具有4个汽缸2的车辆驱动用的柴油发动机(diesel engine)。在各汽缸2上分别设置有向该汽缸2内直接喷射燃料的燃料喷射阀3。
[0035] 在 内 燃 机1 上 连 接 有 进 气 歧 管 (intake manifold)5和 排 气 歧 管(exhaustmanifold)7。在进气歧管5上连接有进气通路4的一端。在排气歧管7上连接有排气通路6的一端。在本实施例中,排气通路6连接在排气歧管7的4号汽缸附近的位置上。
[0036] 在进气通路4上设置有涡轮增压器8的压缩机壳体8a。在排气通路6上设置有涡轮增压器8的涡轮机壳体8b。在进气通路4的比压缩机壳体8a更靠上游的一侧设置有空气流量计15。
[0037] 在排气歧管7上设置有向排气中添加燃料的燃料添加阀9。在排气通路6的比涡轮机壳体8b更靠下游的一侧,从上游开始依次串联设置有氧化催化剂11和过滤器12、选择还原型NOx催化剂13、氨氧化催化剂14。选择还原型NOx催化剂13是将氨作为还原剂来还原排气中的NOx的催化剂。另外,可以在过滤器12上担载氧化催化剂等具有氧化功能的催化剂。
[0038] 在排气通路6中的过滤器12和选择还原型NOx催化剂13之间设置有温度传感器16和尿素添加阀10。温度传感器16是检测排气的温度的传感器。尿素添加阀10是向排气中添加尿素水溶液的阀。从蓄积有尿素水溶液的尿素水溶液箱(省略示图)向尿素添加阀10供给尿素水溶液。在本实施例中,尿素添加阀10相当于本发明的尿素供给单元。
[0039] 当选择还原型NOx催化剂13处于活性状态时,从尿素添加阀10添加尿素水溶液,并且向选择还原型NOx催化剂13供给该尿素水溶液。向选择还原型NOx催化剂13供给的尿素水溶液中的尿素暂时吸附在选择还原型NOx催化剂13上,所吸附的尿素发生水解,由此来生成氨。该氨成为还原剂来还原排气中的NOx。
[0040] 在内燃机1上同时设置有电子控制单元(ECU)20。该ECU20是控制内燃机1的运行状态的单元。ECU20上电连接空气流量计15和温度传感器16。并且,这些部件的输出信号被输入到ECU20。
[0041] 另外,在ECU20上电连接燃料喷射阀3、燃料添加阀9以及尿素添加阀10。并且,通过ECU20来对这些阀进行控制。
[0042] (过滤器再生控制)
[0043] 在本实施例中,进行用于除去过滤器12捕集的PM的过滤器再生控制。过滤器再生控制通过从燃料添加阀9添加燃料来进行。从燃料添加阀9添加的燃料被供给至氧化催化剂11,在该氧化催化剂11中被氧化。利用此时产生的氧化热来使过滤器12升温。在过滤器再生控制中,使过滤器12的温度上升到能够实现PM的氧化的目标温度。由此,PM被氧化而被从过滤器12中除去。在本实施例中,过滤器再生控制相当于本发明的过滤器升温控制。
[0044] 当执行过滤器再生控制时,伴随着氧化催化剂11和过滤器12的升温,选择还原型NOx催化剂13的温度也上升。但是,当选择还原型NOx催化剂13的温度急剧上升时,吸附在选择还原型NOx催化剂13上的尿素的水解被急剧促进,由此,从选择还原型NOx催化剂13排出的氨有可能增加。
[0045] (过滤器再生控制程序)
[0046] 因此,在实施例中,在执行过滤器再生控制之前,停止来自尿素添加阀10的尿素水溶液的添加。以下,基于图2所示的流程图对本实施例的过滤器再生控制程序进行说明。本程序预先存储在ECU20中,在内燃机1的运行中,被以预定的间隔重复执行。
[0047] 在本程序中,ECU20首先在S101中,判别过滤器再生控制的执行条件是否成立。作为过滤器再生控制的执行条件,能够例示出过滤器12中的PM的捕集量的推定值变成预定量以上时等。在本实施例中,过滤器再生控制的执行条件相当于本发明的过滤器升温控制的执行条件。在S101中,作出了肯定判定的情况下,ECU20进入S102,作出了否定判定的情况下,ECU20暂时终止本程序的执行。
[0048] 在S102中,ECU20停止来自尿素添加阀10的尿素水溶液的添加。
[0049] 接着,ECU20进入S103,判别从停止了来自尿素添加阀10的尿素水溶液的添加的时刻开始是否经过了预定期间Δts。本实施例的预定期间Δts是预先确定的一定的期间。在S103中,作出了肯定判定的情况下,ECU20进入S104,作出了否定判定的情况下,ECU20重复S103。
[0050] 进入到S104的ECU20,开始来自燃料添加阀9的燃料添加,执行过滤器再生控制。之后,ECU20暂时终止本程序的执行。在本实施例中,执行S104的ECU20相当于本发明的过滤器升温单元。
[0051] 根据以上说明的程序,当过滤器再生控制的执行条件成立时,停止来自尿素添加阀10的尿素水溶液的添加。即,停止向选择还原型NOx催化剂13供给尿素水溶液。并且,从停止向选择还原型NOx催化剂13供给尿素水溶液的时刻开始经过预定期间Δts之后,执行过滤器再生控制。
[0052] 由此,在直到过滤器再生控制的执行条件成立的期间吸附在选择还原型NOx催化剂13上的尿素,在预定期间Δts的经过中变成氨,在NOx的还原中被消耗。并且,在选择还原型NOx催化剂13中的尿素的吸附量减少之后,执行过滤器再生控制。因此,能够抑制伴随着过滤器再生控制的执行而选择还原型NOx催化剂13的温度上升时的来自该选择还原型NOx催化剂13的氨的排出。
[0053] (变形例)
[0054] 图3是表示本实施例的变形例的内燃机及其进排气系统的概略结构的图。在本变形例中,在排气通路6的比涡轮机壳体8b更靠下游的一侧,从上游开始依次配置有氧化催化剂17、选择还原型NOx催化剂13、氧化催化剂11、过滤器12。并且,在排气通路6中的氧化催化剂17和选择还原型NOx催化剂13之间设置有尿素添加阀10。另外,在排气通路6中的选择还原型NOx催化剂13和氧化催化剂11之间设置有温度传感器16。其他的结构与图1所示的概略结构相同。
[0055] 本实施例这样的结构的情况下,过滤器再生控制也能通过从燃料添加阀9添加燃料来进行。从燃料添加阀9添加的燃料在氧化催化剂17和氧化催化剂11中被氧化,利用此时产生的氧化热来使过滤器12升温。
[0056] 并且,在这样的情况下,也利用通过氧化催化剂17中燃料发生氧化而产生的氧化热,使选择还原型NOx催化剂13升温。即,当执行过滤器再生控制时,选择还原型NOx催化剂13的温度也上升。因此,在本变形例的过滤器再生控制中,也适用图2所示那样的程序。由此,能够得到与图1所示那样的概略结构的情况相同的效果。
[0057] (实施例2)
[0058] 本实施例的内燃机及其进排气系统的概略结构与实施例1相同。另外,在本实施例中,也进行与实施例1相同的过滤器再生控制。
[0059] (过滤器再生控制程序)
[0060] 在此,基于图4所示的流程图对本实施例的过滤器再生控制程序进行说明。本程序预先存储在ECU20中,在内燃机1的运行中,被以预定的间隔重复执行。
[0061] 在本程序中,ECU20首先在S201中,判别过滤器再生控制的执行条件是否成立。过滤器再生控制的执行条件与实施例1相同。在S201中,作出了肯定判定的情况下,ECU20进入S202,作出了否定判定的情况下,ECU20暂时终止本程序的执行。
[0062] 在S202中,ECU20算出当前时刻的选择还原型NOx催化剂13中的尿素的吸附量Qu。选择还原型NOx催化剂13中的尿素的吸附量Qu,能够根据内燃机1的运行状态以及流入选择还原型NOx催化剂13的排气的温度的经历、来自尿素添加阀10的尿素水溶液的添加量的累计值等来算出。
[0063] 接着,ECU20进入S203,判别S202中算出的选择还原型NOx催化剂13中的尿素的吸附量Qu是否为第一预定吸附量Q1以上。在此,第一预定吸附量Q1是,当选择还原型NOx催化剂13中的尿素的吸附量Qu为该第一预定吸附量Q1以上时,可判断为如下情况的阈值,即该情况为伴随过滤器升温控制的执行而选择还原型NOx催化剂13的温度上升时,就从选择还原型NOx催化剂13排出过剩的量的氨。在S203中,作出了肯定判定的情况下,ECU20进入S204,作出了否定判定的情况下,ECU20进入S208。
[0064] 在S204中,ECU20停止来自尿素添加阀10的尿素水溶液的添加。由此,停止向选择还原型NOx催化剂13供给尿素水溶液。其结果,如上述那样,选择还原型NOx催化剂13中的尿素吸附量开始减少。
[0065] 接着,ECU20进入S205,算出停止来自尿素添加阀10的尿素水溶液的添加之后的选择还原型NOx催化剂13中的尿素的吸附量的减少量ΔQu。该减少量ΔQu,能够根据停止来自尿素添加阀10的尿素水溶液的添加后的内燃机1的运行状态以及流入选择还原型NOx催化剂13的排气的温度的经历等来算出。
[0066] 接着,ECU20进入S206,从S202中算出的选择还原型NOx催化剂13中的尿素的吸附量Qu减去S205中算出的尿素的吸附量的减少量ΔQu,由此算出当前时刻的选择还原型NOx催化剂13中的尿素的吸附量Qu’。在本实施例中,执行S202和S206的ECU20,相当于本发明的尿素吸附量推定单元。
[0067] 接着,ECU20进入S207,判别S206中算出的选择还原型NOx催化剂13中的尿素的吸附量Qu’是否处于第二预定吸附量Q2以下。在此,第二预定吸附量Q2是,当选择还原型NOx催化剂13中的尿素的吸附量Qu’为该第二预定吸附量Q2以下时,可判断为如下情况的阈值,即该情况为即使伴随过滤器升温控制的执行而选择还原型NOx催化剂13的温度上升,从选择还原型NOx催化剂13排出的氨的量也处于容许范围内。在S207中,作出了肯定判定的情况下,ECU20进入S208,作出了否定判定的情况下,ECU20返回S205。
[0068] 在S208中,ECU20开始来自燃料添加阀9的燃料添加,执行过滤器再生控制。之后,ECU20暂时终止本程序的执行。在本实施例中,执行S208的ECU20,相当于本发明的过滤器升温单元。
[0069] 根据以上说明的程序,在选择还原型NOx催化剂13中的尿素的吸附量为第一预定吸附量以上时,过滤器再生控制的执行条件成立的情况下,选择还原型NOx催化剂中的尿素的吸附量减少到第二预定吸附量以下之后,执行过滤器再生控制。即,能够在选择还原型NOx催化剂13中的尿素的吸附量已充分减少的状态下,执行过滤器再生控制。因此,能够抑制伴随过滤器再生控制的执行而选择还原型NOx催化剂13的温度上升时的来自该选择还原型NOx催化剂13的氨的排出。
[0070] 在本实施例中,直到选择还原型NOx催化剂13中的尿素的吸附量从第一预定吸附量以上减少到第二预定吸附量以下的期间,相当于本发明的预定期间。
[0071] 另外,将本实施例的内燃机及其进排气系统的概略结构取为上述实施例1的变形例那样的结构的情况下,在过滤器再生控制中,也可以应用图4所示那样的程序。该情况下,也可以得到与图1所示那样的概略结构的情况相同的效果。
[0072] (实施例3)
[0073] 本实施例的内燃机及其给排气系统的概略结构与实施例1相同。另外,在本实施例中,也进行与实施例1相同的过滤器再生控制。
[0074] (过滤器再生控制程序)
[0075] 在此,基于图5所示的流程图来说明本实施例的过滤器再生控制程序。本程序预先存储在ECU20中,在内燃机1的运行中,被以预定的间隔重复执行。需说明的是,图5所示的流程图是在图4所示的流程图中增加了S305的流程图。因此,仅对S305进行说明,省略其他步骤的说明。
[0076] 在本程序中,ECU20在S204之后进入S305。在S305中,ECU20执行使选择还原型NOx催化剂13升温的NOx催化剂升温控制。
[0077] 本实施例的NOx催化剂升温控制是,以比伴随过滤器再生控制的执行而选择还原型NOx催化剂13升温时的升温速度低的预定升温速度来使选择还原型NOx催化剂13升温的控制。另外,预定升温速度是,从选择还原型NOx催化剂13排出的氨的量处于可由氨氧化催化剂14充分氧化的范围内的值。该升温速度通过实验等预先确定。
[0078] 具体而言,NOx催化剂升温控制,通过从燃料添加阀9添加量比过滤器再生控制的执行时的量少的燃料来进行。从燃料添加阀9添加的燃料,与过滤器再生控制的情况同样地,被供给至氧化催化剂11,在该氧化催化剂11中被氧化。利用此时产生的氧化热,使选择还原型NOx催化剂13升温。通过控制来自燃料添加阀9的燃料添加量来将选择还原型NOx催化剂13的升温速度控制成预定升温速度。
[0079] 在本实施例中,执行S305的ECU20,相当于本发明的NOx催化剂升温单元。S305之后,ECU20进入S205。
[0080] 根据以上说明的程序,在过滤器再生控制的执行条件成立时选择还原型NOx催化剂13中的尿素的吸附量为第一预定量以上的情况下,停止来自尿素添加阀10的尿素水溶液的添加的同时,执行NOx催化剂升温控制。
[0081] 执行NOx催化剂升温控制的情况,也与伴随过滤器再生控制的执行而选择还原型NOx催化剂13的温度上升的情况相同地,促进选择还原型NOx催化剂13中的尿素的水解,从该选择还原型NOx催化剂13排出的氨增加。但是,在NOx催化剂升温控制中,选择还原型NOx催化剂13以预定升温速度进行升温。因此,从选择还原型NOx催化剂13排出的氨的量,比伴随过滤器升温控制的执行而选择还原型NOx催化剂13升温时排出的量少,该氨被氨氧化催化剂14充分氧化。因此,能够抑制向比氨氧化催化剂14更靠下游的一侧流出氨。
[0082] 因此,通过执行NOx催化剂升温控制,能够抑制向比氨氧化催化剂14更靠下游的一侧流出氨,并且能够更快地使选择还原型NOx催化剂13中的尿素的吸附量减少到第二预定吸附量以下。其结果,能够更早地执行过滤升温控制。
[0083] 在本实施例的NOx催化剂升温控制中,可以代替来自燃料添加阀9的燃料添加,而通过使从内燃机1排出的排气升温来使选择还原型NOx催化剂13升温。
[0084] 另外,将本实施例的内燃机及其进排气系统的概略结构取为上述实施例1的变形例那样的结构的情况下,在过滤器再生控制中,也可以应用图5所示那样的程序。该情况下,也能够得到与图1所示那样的概略结构的情况相同的效果。
[0085] 如实施例1那样,在从停止来自尿素添加阀10的尿素水溶液的添加的时刻开始经过了某一定期间、即预定期间Δts之后执行过滤器再生控制的情况下,也可以在预定期间Δts的经过中执行实施例3的NOx催化剂升温控制。该情况下,能够在预定期间Δts的经过中,抑制向比氨氧化催化剂14更靠下游的一侧流出氨,并且进一步使选择还原型NOx催化剂13中的尿素的吸附量减少。其结果,能够进一步抑制执行过滤器再生控制时的来自选择还原型NOx催化剂13的氨的排出量。
[0086] 在上述各实施例的过滤器再生控制中,可以代替来自燃料添加阀9的燃料添加,而通过使从内燃机1排出的排气升温来使过滤器12升温。另外,可以代替来自燃料添加阀9的燃料添加,而在内燃机1中在主燃料喷射之后的期间执行副燃料喷射,从而向氧化催化剂11(以及氧化催化剂17)供给燃料。
[0087] 工业上的实用性
[0088] 根据本发明,能够抑制内燃机的排气通路上设置有选择还原型NOx催化剂和过滤器的情况下的来自选择还原型NOx催化剂的氨的排出。