一种磁控溅射制备氢化硅碳薄膜的方法转让专利

申请号 : CN200910024118.7

文献号 : CN101660132B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 马胜利张旭东

申请人 : 西安交通大学

摘要 :

本发明公开了一种磁控溅射制备氢化硅碳薄膜的方法,将基体预处理后放入磁控溅射镀膜设备中,以平面Si靶和C靶作为相应元素的来源,Si靶、C靶以对靶的方式安置在炉体内壁上,通过调整中频脉冲电源的功率控制靶的溅射率;采用高纯Ar作为离化气体,保证有效的辉光放电过程;采用高纯H2作为反应气体,使其离化并与Si、C元素结合,在基体表面沉积形成氢化硅碳薄膜,通过掺入C含量的变化,改变Si、C的化学计量比,进而改变薄膜的光电性能。本发明制备的氢化硅碳薄膜可在太阳能电池、薄膜晶体管、发光二极管、紫外图像传感器、微细超流涂层以及防腐抗氧化涂层等方面得到广泛应用。

权利要求 :

1.一种磁控溅射制备氢化硅碳薄膜的方法,其特征在于,包括下列步骤:

1)将基体预处理后放入磁控溅射镀膜设备真空室中的转架杆上,该转架杆随转架台转动,同时自转,保证镀膜过程的均匀性;

2)以平面Si靶、C靶作为相应元素的来源,平面Si靶和C靶以对靶的方式安置在炉体内壁上;

-4 -3

3)将真空室的气压抽至10 ~10 Pa,加热基体,使基体温度为200~250℃;

4)真空室通入Ar气并开负偏压对真空室和基体进行轰击清洗;

-4 -3

5)关闭Ar气,将真空室的气压再次抽至10 ~10 Pa,接着同时通入Ar气和H2气,H2气与Ar气流量比为1∶3~1∶6,当真空室气压上升至0.3~0.6Pa,调整负偏压到-100V,打开Si靶和C靶的控制电源,将Si靶的电源功率调至4kW,C靶的电源功率调至0.5~8kW,沉积时间为60~120min,得到氢化硅碳薄膜。

2.如权利要求1所述的磁控溅射制备氢化硅碳薄膜的方法,其特征在于,所述基体包括单晶Si片、石英片或高速钢片。

3.如权利要求2所述的磁控溅射制备氢化硅碳薄膜的方法,其特征在于,所述步骤5)结束后,将沉积有氢化硅碳薄膜的单晶硅片或石英片在真空炉内1000℃退火,退火时间为

30min。

4.如权利要求1所述的磁控溅射制备氢化硅碳薄膜的方法,其特征在于,所述步骤4)中,通入Ar气的流量为16~24sccm,当真空室气压达到4~8Pa时保持该气压,开负偏压至-800V~-1000V,对真空室和基体进行轰击清洗,持续20~40min。

说明书 :

一种磁控溅射制备氢化硅碳薄膜的方法

技术领域

[0001] 本发明涉及薄膜材料的制备,特别涉及一种在单晶Si片、石英片和高速钢基体上制备氢化硅碳薄膜的方法,该方法制备的薄膜能带间隙连续可变,可以有效改变薄膜的光电性能。

背景技术

[0002] 目前已商业化的太阳能电池主要是晶体硅太阳能电池、硅薄膜太阳能电池等硅系列太阳能电池和化合物太阳能电池。但晶体硅太阳能电池和化合物太阳能电池的成本很高,限制了其广泛应用,硅薄膜电池在很大程度上解决了太阳能电池的成本问题。
[0003] 硅薄膜太阳能电池材料主要分为非晶硅(a-Si:H)、微晶硅(μc-Si:H)、多晶硅(poly-Si:H),以及纳米硅薄膜(nc-Si:H)等,其中,非晶硅是直接带隙材料,对阳光的吸收系数较高,只需要1μm厚的薄膜就可以吸收80%的阳光,目前非晶硅薄膜电池的转化效率已超过10%。进一步提高非晶硅薄膜的光电性能可以通过光学能隙宽化的方式,在含氢的非晶硅薄膜制备中掺入碳,可形成非晶的氢化硅碳薄膜(a-SiCx:H)。
[0004] a-SiCx:H薄膜是一种硅基宽带隙半导体,其光学能隙可以通过改变薄膜中的碳含量来调整,其具有特殊的电子结构和化学键。这种薄膜已经初步用于太阳能电池、薄膜晶体管、发光二极管、紫外图像传感器、微细超流涂层以及防腐抗氧化涂层等方面。但由于a-SiCx:H薄膜的迁移率偏低,电阻值高,掺杂效率也不够理想,使其应用受到了很大的限制。而纳米晶材料的电导率远高于非晶材料,因此可以通过在非晶网络中引入纳米晶粒来改善材料的电导率等性能,而且可以提高薄膜的掺杂效率。
[0005] 制备氢化硅碳薄膜的方法主要有等离子体增强化学气相沉积(PECVD)、激光脉冲沉积法(PLD)、分子束外延法(MBE)、金属有机物化学气相沉积(MOCVD)、热丝化学气相沉积(HFCVD)以及磁控溅射沉积(MS)等,其中,PECVD可以降低等离子体功率密度,减少等离子体中高能粒子对衬底和生成薄膜表面的直接轰击,从而降低生成薄膜的缺陷,而且它属于低温干法制备技术,特别适合大规模生产,不过生产效率还不够高。此外,PECVD与MOCVD方法一样存在大面积沉积薄膜的均匀性不好,易出现鱼鳞状彩色条纹的问题。PLD及MBE可以制备高质量的薄膜,但是薄膜生长速率比PECVD低。
[0006] 磁控溅射(MS)的特点是沉积速率快,衬底温度低,容易实现大面积成膜等。采用+MS制备氢化硅碳薄膜的基本过程是将H2按一定比例混入Ar中,被Ar 从Si靶和C靶上溅射出来的Si原子和C原子,与等离子体中的H或H2通过化学反应生成活性基团,这些基团进一步反应后在基体表面沉积成氢化硅碳薄膜(SiCx:H)。与PECVD方法相比,等离子体气氛中的氢含量更容易调控。影响SiCx:H薄膜特性的主要工艺参数有:衬底温度、Si靶与C靶的溅射功率、通入气体分压比、衬底与靶材的间距、靶的偏压等。
[0007] 目前,随着科学技术的发展,SiCx:H薄膜以其优良的热稳定性和化学稳定性、较大热导率、高电子迁移率、高电子饱和漂移速度、高击穿场强、低介电常数等优点,在航空、航天、石油勘探、核能、通信等领域具有广泛的应用前景。但现今国内外通过磁控溅射制备SiCx:H薄膜的方法大多采用SiC合金靶,其制备的薄膜中Si、C化学计量比基本为1∶1,只能通过制备温度的改变来调节薄膜的光电性能,而且范围较小。因此如何寻找一种C含量可变的制备方式对其进一步拓展应用领域显得尤为重要。

发明内容

[0008] 本发明的任务在于提供一种Si、C化学计量比可变的氢化硅碳合金薄膜的制备方法。该方法制备的氢化硅碳薄膜通过改变薄膜中C的含量来调控薄膜的能隙,进而拓展SiCx:H材料的应用领域。
[0009] 为达到以上目的,本发明是采取如下技术方案予以实现的:
[0010] 一种磁控溅射制备氢化硅碳薄膜的方法,其特征在于,包括下列步骤:
[0011] 1)将基体预处理后放入磁控溅射镀膜设备真空室中的转架杆上,该转架杆随转架台转动,同时自转,保证镀膜过程的均匀性;
[0012] 2)以平面Si靶、C靶作为相应元素的来源,平面Si靶和C靶以对靶的方式安置在炉体内壁上;
[0013] 3)将真空室的气压抽至10-4~10-3Pa,加热基体,使基体温度为200~250℃;
[0014] 4)真空室通入Ar气并开负偏压对真空室和基体进行轰击清洗;
[0015] 5)关闭Ar气,将真空室的气压再次抽至10-4~10-3Pa,接着同时通入Ar气和H2气,H2气与Ar气流量比为1∶3~1∶6,当真空室气压上升至0.3~0.6Pa,调整负偏压到-100V,打开Si靶和C靶的控制电源,将Si靶的电源功率调至4kW,C靶的电源功率调至0.5~8kW,沉积时间为60~120min,得到氢化硅碳薄膜。
[0016] 上述方案中,所述基体包括单晶Si片、石英片和高速钢片。
[0017] 所述在单晶硅片和石英片上所沉积的氢化硅碳薄膜可以在真空炉内1000℃退火,退火时间为30min。
[0018] 所述步骤4)中,通入Ar气的流量为16~24sccm,当真空室气压达到4~8Pa并保持该气压,开负偏压至-800V~-1000V,对真空室和基体进行轰击清洗,持续20~40min。
[0019] 本发明与现有技术相比具有以下特点:
[0020] 1、磁控溅射方法制备的SiCx:H薄膜沉积在单晶Si片、石英片和高速钢上,可用于有源矩阵液晶显示器的电子器件、太阳能电池、光敏晶体管、发光二极管和传感器等。
[0021] 2、薄膜沉积效率比较高,当C(石墨)靶材功率在0.5~8KW之间,薄膜的生长速率约在8~18nm/min。薄膜表面平整,致密度较高。
[0022] 3、通过调节C靶的功率可以调节SiCx中Si、C的化学计量比x在0.15~2.45之间变化,薄膜中组分易于控制。
[0023] 4、采用磁控溅射方法制备的SiCx:H薄膜均匀性好,通过C含量的变化,使得光学带隙在2.0~2.8eV之间连续可变,且电导率比较高。

附图说明

[0024] 以下结合附图及具体实施方式对本发明作进一步的详细说明。
[0025] 图1为本发明磁控溅射镀膜设备结构示意图。图中:1、真空室;2、转台架;3、偏压;4、转架杆;5、平面Si靶和平面C靶;6、永磁体;7、加热器;8、抽真空泵组。
[0026] 图2为实施例1的氢化硅碳薄膜表面形貌。
[0027] 图3为实施例1的氢化硅碳薄膜纵截面的扫描电镜微观结构形貌。

具体实施方式

[0028] 本发明采用磁控溅射技术制备氢化硅碳薄膜,包括下述步骤:
[0029] (1)对高速钢基体样品经消磁处理、表面除油、抛光后浸入丙酮中超声波清洗,酒精脱水;对单晶Si片、石英片浸入丙酮中超声波清洗,酒精脱水。然后把所有样品烘干;
[0030] (2)将预处理好的样品作为基体材料放入磁控溅射镀膜设备的真空室1中。样品置于转架杆4上,转架杆4可以随转台架2转动,也可以自转,这样就避免了薄膜只能单面镀以及镀膜不均的问题,保证了镀膜过程的均匀性;
[0031] (3)靶材采用尺寸为435×95×10mm的平面Si靶和435×95×10mm的平面C靶作为相应元素的来源,如图1所示,采用平面对靶的方式将平面Si靶和C靶5安置在炉体内壁上,并通过调整中频脉冲电源的功率控制上述平面Si靶和C靶的溅射率;采用高纯Ar作为主要离化气体,保证有效的辉光放电过程;采用高纯H2作为反应气体,使其离化并与各靶中的Si、C元素结合,在基体表面沉积形成SiCx:H薄膜。
[0032] 实施例1
[0033] 将真空室的气压抽至6×10-3Pa,加热单晶Si片,使其温度为250℃;镀膜前,通入20sccm的Ar到炉内真空室1,当真空室气压达到6Pa并保持气压稳定于6Pa时,开偏压3至-1000V对真空室和基体进行轰击清洗,持续30min;
[0034] 基板清洗后,关闭Ar,将反应室真空再次抽至6×10-3Pa,通入20sccm的Ar,同时通入H2气,调节H2∶Ar流量比为1∶4,真空室气压调至0.4Pa,调整偏压到-100V,打开Si靶和C靶的控制电源,将Si靶的电源功率调至4kW;把C靶的功率设定在4KW,沉积时间120min;将生长的薄膜放置在真空炉中1000℃退火,退火时间为30min。通过此方法可以提高薄膜中SiCx的晶化率,进而提高薄膜的光电性能。
[0035] 实施例2
[0036] 将真空室的气压抽至8×10-4Pa,加热石英片,使其温度为240℃;镀膜前,通入16sccm的Ar到炉内真空室1,当真空室气压达到4Pa并保持气压稳定于4Pa时,开偏压3至-800V对真空室和基体进行轰击清洗,持续40min;
[0037] 基板清洗后,关闭Ar,将反应室真空再次抽至8×10-4Pa,通入16sccm的Ar,同时通入H2气,调节H2∶Ar流量比为1∶3,真空室气压调至0.3Pa,调整偏压到-100V,打开Si靶和C靶的控制电源,将Si靶的电源功率调至4kW;把C靶的功率设定在8KW,沉积时间60min;将生长的薄膜放置在真空炉中1000℃退火,退火时间为30min。
[0038] 实施例3
[0039] 将真空室的气压抽至5×10-3Pa,加热高速钢片,使其温度为200℃;镀膜前,通入24sccm的Ar到炉内真空室1,当真空室气压达到8Pa并保持气压稳定于8Pa时,开偏压3至-900V对真空室和基体进行轰击清洗,持续20min;
[0040] 基板清洗后,关闭Ar,将反应室真空再次抽至5×10-3Pa,通入24sccm的Ar,同时通入H2气,调节H2∶Ar流量比为1∶6,真空室气压调至0.6Pa,调整偏压到-100V,打开Si靶和C靶的控制电源,将Si靶的电源功率调至4kW;把C靶的功率设定在0.5KW,沉积时间90min。
[0041] 如图2所示,按照实施例1制备的氢化硅碳薄膜表面为团簇形式,薄膜均匀,且致密性很好。
[0042] 如图3所示,上方为硅基体,中间为硅碳薄膜。经过测量,薄膜厚度为1.34μm,说明按照实施例1制备的薄膜沉积速率约为11nm/min。
[0043] 采用本发明方法,可获得具有纳米晶和非晶复合结构的氢化硅碳薄膜。当C靶功率为0.5KW时,x=0.15,当C靶功率为8KW时,x=2.45,C靶功率在0.5~8KW之间变化时,x在0.15~2.45之间变化。光学能隙在2.0~2.8eV之间连续可变。