半导体器件转让专利

申请号 : CN200880020280.5

文献号 : CN101681859B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 森藤忠洋上田茂幸

申请人 : 罗姆股份有限公司

摘要 :

本发明公开了一种可防止可靠性降低的半导体器件。所述的半导体器件包括:电极焊盘部分(2),所述电极焊盘部分形成在半导体衬底(1)的上表面上;钝化层(3),所述钝化层被形成在半导体衬底(1)的上表面上以与电极焊盘部分(2)的一部分重叠,并具有第一开口部分(3a),在所述第一开口部分处,电极焊盘部分(2)的上表面被暴露;隔离金属层(5),所述隔离金属层形成在电极焊盘部分(2)上;以及焊料隆起焊盘(6),所述焊料隆起焊盘形成在隔离金属层(5)上。隔离金属层(5)被形成为当在平面图中观看时,其外周端(5b)位于钝化层(3)的第一开口部分(3a)内。

权利要求 :

1.一种半导体器件,包括:

电极焊盘部分,所述电极焊盘部分形成在衬底的表面上;

包括第一开口的第一保护层,通过所述第一开口,电极焊盘部分的顶面被暴露,所述第一保护层形成在衬底的所述表面上以与电极焊盘部分的一部分重叠;

隔离金属层,所述隔离金属层形成在电极焊盘部分上;和隆起电极,所述隆起电极形成在隔离金属层上;

第二保护层,所述第二保护层被形成以覆盖第一保护层上的预定区域和电极焊盘部分上的预定区域,其中,隔离金属层具有外周端部分,当从平面图观看时,所述外周端部分形成在第一保护层中的第一开口的内部,并且隔离金属层形成在电极焊盘部分上,且隔离金属层的周边部分位于第二保护层之上,在第二保护层内,形成第二开口,通过所述第二开口,电极焊盘部分的顶面被暴露,且第二开口的开口宽度小于第一开口的开口宽度;以及,其中,限定第二开口的第二保护层的边缘部分具有倾斜形状。

2.根据权利要求1所述的半导体器件,

其中,第二保护层由聚酰亚胺构成。

3.根据权利要求1或2所述的半导体器件,其中,电极焊盘部分由包含铝的材料构成,隔离金属层由包含钛的材料构成,以及隆起电极包括焊料隆起焊盘。

4.一种半导体器件,包括:

电极焊盘部分,所述电极焊盘部分形成在衬底的表面上;

包括第一开口的第一保护层,通过所述第一开口,电极焊盘部分的顶面被暴露,所述第一保护层形成在衬底的表面上以与电极焊盘部分的一部分重叠;

隔离金属层,所述隔离金属层形成在电极焊盘部分上并与第一保护层不直接接触;以及隆起电极,所述隆起电极形成在隔离金属层上;

第二保护层,所述第二保护层被形成以覆盖第一保护层上的预定区域和电极焊盘部分上的预定区域,其中,由于第一保护层与电极焊盘部分的一部分重叠的结果,第一保护层具有形成在其内的台阶部分;以及,其中,隔离金属层具有外周端部分,当在平面图中观察时,所述外周端部分形成在台阶部分的外部,并且隔离金属层形成在电极焊盘部分上,且隔离金属层的周边部分位于第二保护层之上。

5.根据权利要求4中所述的半导体器件,其中,在第二保护层内,形成第二开口,通过所述第二开口,电极焊盘部分的顶面被暴露,且第二开口的开口宽度小于第一开口的开口宽度;以及,其中,限定第二开口的第二保护层的边缘部分具有倾斜形状。

6.根据权利要求4或5所述的半导体器件,其中,第二保护层由聚酰亚胺构成。

7.根据权利要求4或5所述的半导体器件,其中,电极焊盘部分由包含铝的材料构成,隔离金属层由包含钛的材料构成,以及隆起电极包括焊料隆起焊盘。

说明书 :

半导体器件

技术领域

[0001] 本发明涉及一种半导体器件,在所述的半导体器件内半导体芯片按照倒装芯片法被结合。

背景技术

[0002] 在传统已知的半导体封装(半导体器件)中,半导体芯片通过倒装芯片结合被结合。将要安装在这样的半导体封装内的半导体芯片具有形成在其上的焊料隆起焊盘(solder bump)(隆起电极(bump electrode))以允许倒装芯片结合(例如,参见下列的专利文献1)。
[0003] 图29~31示出了专利文献1公开的传统半导体器件的结构的截面示意图。在传统的半导体器件内,如图29所示,电极焊盘(electrode pad)部分1002形成在半导体衬底1001的顶面上。可以理解,诸如IC或LSI的电路(未显示)被制造在半导体衬底1001的顶面上。而且,在半导体衬底的顶面上,用于保护半导体衬底1001的顶面的保护层1003被形成。保护层1003具有开口1003a,通过所述开口,电极焊盘部分1002上的预定区域被暴露。而且,保护层1003被形成以与电极焊盘部分1002的周边部分重叠,结果,保护层1003具有形成在其中的台阶部分1003b。
[0004] 而且,在电极焊盘部分1002上,通过隔离金属层1004,隆起电极1005被形成。隔离金属层1004形成在电极焊盘部分1002上,使得隔离金属层1004的周边部分1004a位于与电极焊盘部分1002重叠的保护层1003的区域上。即,隔离金属层1004的外周端部分1004b形成在与电极焊盘部分1002重叠的保护层1003的区域上。
[0005] 此外,如图30所示,半导体衬底1001面朝下被布置在印刷电路板1006之上,所述半导体衬底具有形成在其上的隆起电极1005,使得半导体衬底1001的顶面(电路面)面对着印刷电路板1006,并且半导体衬底1001按照倒装芯片法通过隆起电极1005与印刷电路板1006上的电极1007相连。
[0006] 专利文献1:JP-A-2007-13063。

发明内容

[0007] 发明解决的问题
[0008] 在上述专利文献1公开的传统的半导体器件中,由于隔离金属层1004被配置为使得其周边部分1004a位于与电极焊盘部分1002重叠的保护层1003的部分上,如图30和31所示,不利的是:当由于半导体衬底1001与印刷电路板1006之间热膨胀系数不同所引起的热应力作用于隆起电极1005时,在位于隔离金属层1004的外周端部分1004b之下(对应于其的一个区域)的保护层1003的区域内易形成裂缝。这使得保护层1003易发生断裂,从而造成的不便是:当保护层1003断裂时,断裂将降低半导体器件的可靠性。
[0009] 本发明用于解决上述的问题,并且本发明的目的是提供一种可防止可靠性降低的半导体器件。
[0010] 解决问题的方法
[0011] 为实现上述目的,根据本发明的第一方面,半导体器件被设置有:电极焊盘部分,所述电极焊盘部分形成在衬底的表面上;包含第一开口的第一保护层,通过所述第一开口,电极焊盘部分的顶面被暴露,第一保护层形成在衬底的表面上以与电极焊盘部分的一部分重叠;隔离金属层,所述隔离金属层形成在电极焊盘部分上;以及隆起电极,所述隆起电极形成在隔离金属层上。这里,隔离金属层具有外周端部分,当从平面图中观看时,所述外周端部分形成在第一保护层中的第一开口的内部。
[0012] 如上所述,在根据第一方面的半导体器件内,隔离金属层被配置为使得当从平面图中观看时,其外周端部分形成在第一保护层中的第一开口的内部,这样,第一保护层不形成在隔离金属层的外周端部分的下方。因此,在将衬底以倒装芯片法结合在印刷电路板上期间,即使当由于衬底与印刷电路板之间热膨胀系数不同所引起的热应力作用于隆起电极时,也可防止在第一保护层内形成裂缝。因此,可防止第一保护层的断裂,从而可防止因第一保护层断裂所引起的半导体器件的可靠性降低。
[0013] 在根据第一方面的上述半导体器件中,优选地另外还设置:第二保护层,所述第二保护层被形成以覆盖第一保护层上的预定区域和电极焊盘部分上的预定区域。这里,隔离金属层形成在电极焊盘部分上,且隔离金属层的周边部分位于第二保护层之上。基于此配置,可容易地构成隔离金属层,使得当从平面图观看时其外周端部分位于第一保护层中的第一开口的内部。
[0014] 在这种情况下,优选地,第二开口形成在第二保护层中,通过所述第二开口,电极焊盘部分的顶面被暴露,并且第二开口的宽度小于第一开口的宽度,以及限定第二开口的第二保护层的边缘部分具有倾斜形状。基于此配置,即使当隔离金属层的周边部分形成在第二保护层之上时,也可防止隔离金属层的断裂。因此,可防止因第一保护层断裂所引起的半导体器件的可靠性的降低,此外,还可防止因隔离金属层断裂所引起的半导体器件的可靠性降低。因此,可更容易地防止半导体器件的可靠性降低。
[0015] 在形成第二保护层的上述配置中,第二保护层优选由聚酰亚胺构成。基于此配置,可更容易地防止第一保护层的断裂。
[0016] 在根据第一方面的上述的半导体器件中,电极焊盘部分可由包含铝的材料构成,隔离金属层可由包含钛的材料构成,并且隆起电极可包含焊料隆起焊盘。
[0017] 根据本发明的第二方面,半导体器件被设置有:电极焊盘部分,所述电极焊盘部分形成在衬底的表面上;包含第一开口的第一保护层,通过所述第一开口,电极焊盘部分的顶面被暴露,第一保护层形成在衬底的表面上以与电极焊盘部分的一部分重叠;隔离金属层,所述隔离金属层形成在电极焊盘部分上,且不与第一保护层直接接触;以及形成在隔离金属层上的隆起电极。这里,由于第一保护层与电极焊盘部分的一部分重叠,第一保护层具有形成在其内的台阶部分,并且隔离金属层具有外周端部分,当从平面图看时,所述外周端部分形成在台阶部分的外部。
[0018] 在根据第二方面的半导体器件中,如上所述,隔离金属层形成在电极焊盘部分上,不与第一保护层直接接触。因此,在将衬底以倒装芯片法结合在印刷电路板上期间,即使当由于衬底与印刷电路板之间热膨胀系数不同所引起的热应力作用于焊料隆起焊盘时,也可防止热应力作用在第一保护层上,从而可防止在第一保护层内形成裂缝。因此,可防止第一保护层的断裂,从而可防止因第一保护层断裂所引起的半导体器件的可靠性降低。
[0019] 而且,根据第二方面,隔离金属层被配置为当从平面图看时,其外周端部分形成在台阶部分的外部,这样允许隔离金属层被配置为台阶部分不位于外周端部分正下方。这里,在第一保护层的台阶部分中,由于第一保护层部分地较薄以及其它原因,此处要比第一保护层的其它部分更容易发生裂缝;然而,另一方面,由于上述配置,即使当由于衬底与印刷电路板之间热膨胀系数不同所引起的热应力作用于焊料隆起焊盘时,也可防止在第一保护层的台阶部分中形成裂缝。这也有助于防止因第一保护层断裂所引起的半导体器件的可靠性降低。
[0020] 在这种情况下,优选还设置第二保护层,所述第二保护层被形成以覆盖第一保护层上的预定区域和电极焊盘部分上的预定区域。这里,隔离金属层形成在电极焊盘部分上,且隔离金属层的周边部分位于第二保护层之上。基于此配置,当隔离金属层形成在电极焊盘部分之上时,可容易地构成隔离金属层,使得在平面图中看时,其与第一保护层不直接接触,并且其外周端部分位于台阶部分的外部。
[0021] 在这种情况下,优选第二开口形成在第二保护层内,通过所述第二开口,电极焊盘部分的顶面被暴露,并且第二开口的开口宽度小于第一开口,以及限定第二开口的第二保护层的边缘部分具有倾斜形状。基于此配置,即使当隔离金属层的周边部分形成在第二保护层之上时,也可防止隔离金属层的断裂。因此,可防止因第一保护层断裂所引起的半导体器件的可靠性降低,此外,还可防止因隔离金属层断裂所引起的半导体器件的可靠性降低。因此,可更容易地防止半导体器件的可靠性降低。
[0022] 在形成第二保护层的上述配置中,第二保护层优选由聚酰亚胺构成。基于此配置,可更容易地防止第一保护层的断裂。
[0023] 在根据第二方面的上述的半导体器件中,电极焊盘部分可由包含铝的材料构成,隔离金属层可由包含钛的材料构成,并且隆起电极可包括焊料隆起焊盘。
[0024] 本发明的优点
[0025] 如上所述,根据本发明,可容易地获得能够防止可靠性降低的半导体器件。

附图说明

[0026] 图1为根据本发明的第一实施例的半导体器件的结构的截面视图;
[0027] 图2为根据本发明的第一实施例的图1中所示的半导体器件内半导体芯片的电极部分的结构的截面视图;
[0028] 图3为根据本发明的第一实施例的图1中所示的半导体器件内无焊料隆起焊盘的半导体芯片的电极部分的结构的截面视图;
[0029] 图4为根据本发明的第一实施例的图1中所示的半导体器件内无焊料隆起焊盘的半导体芯片的电极部分的结构的平面图;
[0030] 图5为安装在印刷电路板上的半导体芯片的截面视图;
[0031] 图6为根据本发明的第一实施例的截面视图,所述截面视图用于描述在半导体器件内形成半导体芯片的电极部分的过程;
[0032] 图7的截面视图用于描述根据本发明的第一实施例的在半导体器件内形成半导体芯片的电极部分的过程;
[0033] 图8的截面视图用于描述根据本发明的第一实施例的在半导体器件内形成半导体芯片的电极部分的过程;
[0034] 图9的截面视图用于描述根据本发明的第一实施例的在半导体器件内形成半导体芯片的电极部分的过程;
[0035] 图10的截面视图用于描述根据本发明的第一实施例的在半导体器件内形成半导体芯片的电极部分的过程;
[0036] 图11的截面视图用于描述根据本发明的第一实施例的在半导体器件内形成半导体芯片的电极部分的过程;
[0037] 图12的截面视图用于描述根据本发明的第一实施例的在半导体器件内形成半导体芯片的电极部分的过程;
[0038] 图13为根据第一实施例的第一修改示例的半导体芯片的电极部分的结构的截面视图;
[0039] 图14为根据第一实施例的第二修改示例的半导体芯片的电极部分的结构的截面视图;
[0040] 图15为根据第一实施例的第三修改示例的半导体芯片的电极部分的结构的截面视图;
[0041] 图16为根据本发明的第二实施例的半导体器件的结构的截面视图;
[0042] 图17为根据本发明的第二实施例的图16中所示的半导体器件内半导体芯片的电极部分的结构的截面视图;
[0043] 图18为根据本发明的第二实施例的图16中所示的半导体器件内无焊料隆起焊盘的半导体芯片的电极部分的结构的截面视图;
[0044] 图19为根据本发明的第二实施例的图16中所示的半导体器件内无焊料隆起焊盘的半导体芯片的电极部分的结构的平面图;
[0045] 图20为安装在印刷电路板上的半导体芯片的截面视图;
[0046] 图21为根据本发明的第二实施例的截面视图,所述截面视图用于描述在半导体器件内形成半导体芯片的电极部分的过程;
[0047] 图22的截面视图用于描述根据本发明的第二实施例的在半导体器件内形成半导体芯片的电极部分的过程;
[0048] 图23为根据本发明的第二实施例的截面视图,所述截面视图用于描述在半导体器件内形成半导体芯片的电极部分的过程;
[0049] 图24的截面视图用于描述根据本发明的第二实施例的在半导体器件内形成半导体芯片的电极部分的过程;
[0050] 图25的截面视图用于描述根据本发明的第二实施例的在半导体器件内形成半导体芯片的电极部分的过程;
[0051] 图26的截面视图用于描述根据本发明的第二实施例的在半导体器件内形成半导体芯片的电极部分的过程;
[0052] 图27的截面视图用于描述根据本发明的第二实施例的在半导体器件内形成半导体芯片的电极部分的过程;
[0053] 图28为根据第二实施例的修改示例的半导体芯片的电极部分的结构的截面视图;
[0054] 图29为专利文献1中公开的传统半导体器件的结构的截面示意图;
[0055] 图30为专利文献1中公开的传统半导体器件的结构的截面示意图;
[0056] 图31为图30中部件A的放大的截面视图。
[0057] 附图标记列表
[0058] 1,401 半导体衬底(衬底)
[0059] 2,402 电极焊盘部分
[0060] 3,403 钝化层(第一保护层)
[0061] 3a,403a 第一开口
[0062] 3b,403b 台阶部分
[0063] 4,404 绝缘保护层(第二保护层)
[0064] 4a,404a 第二开口
[0065] 4b,404b 边缘部分
[0066] 5,405 隔离金属层
[0067] 5a,405a 周边部分
[0068] 5b,405b 外周端部分
[0069] 6,406 焊料隆起焊盘(隆起电极)
[0070] 10,110,210,
[0071] 310,410,510 半导体芯片
[0072] 20,420 印刷电路板
[0073] 21,421 连接焊盘部分
[0074] 22,422 电极终端
[0075] 30,430 树脂密封层
[0076] 40,440 树脂部件

具体实施方式

[0077] 以下,作为本发明如何实现的具体示例,本发明的实施例将参考附图被描述。下述的实施例论述了示例,在所述示例中,本发明用于BGA(球状栅格陈列)封装的半导体器件,在所述封装中,半导体芯片通过倒装芯片结合被结合。
[0078] (第一实施例)
[0079] 图1为根据本发明的第一实施例的半导体器件的结构的截面视图。图2为根据本发明的第一实施例的图1中所示的半导体器件内半导体芯片的电极部分的结构的截面视图。图3~图5为根据本发明的第一实施例的半导体器件的结构的示图。首先,参考图1~图5,根据本发明的第一实施例的半导体器件的结构将被描述。
[0080] 如图1所示,根据第一实施例的半导体器件被设置有半导体芯片10、印刷电路板20和树脂密封层30,在所述印刷电路板20上半导体芯片10被安装,所述树脂密封层对半导体芯片10进行密封。树脂密封层30由热固性树脂构成,如环氧树脂。
[0081] 半导体芯片10包括半导体衬底1,如硅衬底,并且在半导体衬底1的顶面,诸如IC或LSI的电路(未显示)被制造。可以理解,半导体衬底1是根据本发明的衬底的一个示例。
[0082] 而且,如图2和3所示,在半导体衬底1的顶面上,铝或铝合金的电极焊盘部分2被形成。此外,在半导体衬底1的顶面上,氮化硅的钝化层3被形成。在钝化层3内,第一开口3a被形成,通过所述第一开口,电极焊盘部分2的预定区域被暴露。如图4所示,第一开口3a在平面图中大致为圆形,且形成的开口宽度D1为约85um~约95um。还有,钝化层3形成在半导体衬底1的顶面,这样可与电极焊盘部分2的周边部分重叠。可以理解,钝化层3是根据本发明的第一保护层的一个示例。
[0083] 而且,在钝化层3上的预定区域和电极焊盘部分2上的预定区域之上,聚酰亚胺的绝缘保护层4被形成。如图3和4所示,在绝缘保护层4内,第二开口4a被提供,所述第二开口具有的开口宽度D2(约55um~约65um)小于钝化层3内第一开口3a的开口宽度D1(约85um~约95um)。如图4所示,第二开口4a在平面图中大致为圆形,且与第一开口3a基本上同心。此外,限定第二开口4a的绝缘保护层4的边缘部分4b被形成为倾斜形状。可以理解,绝缘保护层4是根据本发明的第二保护层的一个示例。
[0084] 此外,如图2和3所示,在电极焊盘部分2上,厚度约为10um的钛(Ti)制的隔离金属层5被形成,且隔离金属层5的周边部分5a位于绝缘保护层4上的边缘部分4b附近的区域内。如图4所示,隔离金属层5在平面图中大致为圆形,且基本上与第一开口3a和第二开口4a同心。
[0085] 这里,在第一实施例中,隔离金属层5被形成以使得当从平面图看时,隔离金属层5的外周端部分5b位于钝化层3中的第一开口3a的内部。即,如图3或4所示,隔离金属层5被配置为使其宽度D3(约70um~um 80um)小于钝化层3内第一开口3a的宽度D1。
[0086] 此外,如图2所示,在隔离金属层5上,高度(厚度)约70um~约100um且为球形的焊料隆起焊盘6被形成。通过隔离金属层5,焊料隆起焊盘6与电极焊盘部分2电连接。而且,焊料隆起焊盘6形成在隔离金属层5上,使得焊料隆起焊盘6不仅与隔离金属层5的顶面相接触,还与隔离金属层5的外周端部分5b相接触。即,焊料隆起焊盘6结合到隔离金属层5,以覆盖隔离金属层5的外周端部分5b。这种情况下造成的结合面积大于焊料隆起焊盘6仅结合到顶面的情况,从而使焊料隆起焊盘6与隔离金属层5之间的结合强度增加。可以理解,焊料隆起焊盘6是根据本发明的隆起电极的一个示例。
[0087] 图1所示的印刷电路板20由玻璃纤维环氧树脂(glass epoxy)或类似物制成,在多层结构中具有导体层(未显示)。在印刷电路板20的顶面上,多个连接焊盘部分21(如图5所示)被形成以与半导体芯片10上的焊料隆起焊盘6电连接。在印刷电路板20的底面,多个电极终端22(未显示)被形成以与连接焊盘部分21电连接。电极终端22为球形的焊料隆起焊盘6,并且以网格的形式排列在印刷电路板20的底面上。
[0088] 如图1和5所示,半导体芯片10面朝下被安装在印刷电路板20上,在所述半导体芯片上形成有焊料隆起焊盘6。具体地,如图5所示,半导体芯片10被布置以使其顶面(电路面)朝着印刷电路板20,并且半导体芯片10上的焊料隆起焊盘6通过倒装芯片结合法与印刷电路板20上的连接焊盘部分21结合。这样将焊料隆起焊盘6与连接焊盘部分21电连接在一起。
[0089] 如图1所示,半导体芯片10与印刷电路板20之间的间隙填充有硅树脂、环氧树脂、丙烯酸树脂等树脂部件40。
[0090] 如上所述,在第一实施例中,隔离金属构件5被配置以使得在平面图中其外周端部分5b形成在钝化层3内第一开口3a的内部。这样,钝化层3不形成在隔离金属层5的外周端部分5b的下方。因此,在将半导体芯片10(半导体衬底1)以倒装芯片法结合在印刷电路板20上期间,即使当由于半导体芯片10与印刷电路板20之间热膨胀系数不同所引起的热应力作用于焊料隆起焊盘6时,可防止在钝化层3内生成裂缝。因此,可防止钝化层3的断裂,从而防止因钝化层3的断裂所导致的半导体器件的可靠性降低。
[0091] 在隔离金属层3的外周端部分5b的下方,绝缘保护层4被形成。由于绝缘保护层4是由软于氮化硅的聚酰亚胺构成,所述氮化硅构成钝化层3,即使当隔离金属层5的周边部分5a形成在绝缘保护层4之上时,绝缘保护层4的断裂可被防止。
[0092] 而且,在第一实施例中,绝缘保护层4形成在钝化层3的预定区域和电极焊盘部分2的预定区域之上,以及隔离金属层5形成在电极焊盘部分2之上,其周边部分5a位于绝缘保护层4之上。因此,在随后被描述的电极部分的形成过程中,隔离金属层5可容易地被形成,使得在平面图观看时其外周端部分5b位于钝化层3内第一开口3a的内部。
[0093] 此外,在第一实施例中,限定第二开口4a的绝缘保护层4的边缘部分4b被形成为倾斜形状。因此,即使当隔离金属层5的周边部分5a形成在绝缘保护层4之上时,隔离金属层5不容易发生断裂。因此,可防止因钝化层3的断裂所导致的半导体器件的可靠性降低,此外,可防止因隔离金属层5的断裂所导致的半导体器件的可靠性降低。因此,可很容易地防止半导体器件的可靠性降低。
[0094] 图6~12为根据第一实施例的截面视图,所述视图描述了半导体器件内半导体芯片的电极部分的形成过程。接下来,参考图1~4和图6~12,半导体芯片10的电极部分的形成过程将被描述。
[0095] 首先,如图6所示,在具有形成在其上的电极焊盘部分2的半导体衬底1的顶面的整个表面上,氮化硅的钝化层3由等离子CVD等方法形成。接下来,如图7所示,抗蚀剂50通过光刻法等方法形成在钝化层3上的预定区域上。然后,抗蚀剂50用作掩模,钝化层3的预定区域通过蚀刻被去除。这样在钝化层3内形成第一开口3a,通过所述第一开口电极焊盘部分2上的预定区域被暴露。这里,第一开口3a被形成为具有开口宽度为D1(约85um~约95um,见图3和图4)。然后,抗蚀剂50被去除。
[0096] 随后,如图8所示,在整个表面上,聚酰亚胺制的绝缘保护层14通过旋转涂布等方法被形成。然后,绝缘保护层14的预定区域通过光刻和蚀刻被去除。之后,通过热处理使绝缘保护层14流动。因此,图9所示的绝缘保护层4被获得。具体地,在绝缘保护层14(见图8)内,第二开口4a被形成,所述第二开口的开口宽度D2(约55um~约65um)小于钝化层3内第一开口3a的开口宽度D1(约85um~约95um),并且限定第二开口4a的边缘部分4b被形成为倾斜形状。
[0097] 接下来,如图10所示,在整个表面上,厚度约为10um的钛(Ti)制的隔离金属层15通过真空镀膜等方法被形成。然后,如图11所示,抗蚀剂60通过光刻和蚀刻形成在隔离金属层15上的预定区域内。这里,抗蚀剂60被构图以使其具有在对应于钝化层3中的第一开口3a的内侧的区域内的开口。然后,抗蚀剂60被用作掩膜,焊料层(solder layer)16通过镀层等方法被形成在隔离金属层15上。
[0098] 之后,如图12所示,抗蚀剂60(见图11)被去除,并且焊料层16周围的隔离金属层15通过蚀刻被去除。因此,隔离金属层5形成在电极焊盘部分2上,当在平面图中看时,如图4所示,所述隔离金属层的外周端部分5b形成在钝化层3内第一开口3a的内部。而且,如图2和图3所示,形成在电极焊盘部分2上的隔离金属层5被配置以使得其周边部分5a位于绝缘保护层4之上。
[0099] 如图12所示,应该指出,形成上述的绝缘保护层4可获得使电极焊盘部分2的顶面不被暴露的配置。因此,即使当隔离金属层15被蚀刻以使外周端部分5b形成在钝化层3中的第一开口3a的内部时,也可防止蚀刻进行到电极焊盘部分2处。因此,可容易地形成隔离金属层5,使得在平面图中看时其外周端部分5b位于钝化层3中的第一开口3a的内部。
[0100] 最后,通过在重熔炉内加热,焊料层16被熔化一段时间,以形成图2所示的球形焊料隆起焊盘6。这样在隔离金属层6上形成焊料隆起焊盘6(见图2)。在这种方式下,根据本发明的第一实施例,半导体器件内的半导体芯片10的电极部分被形成。
[0101] 尽管上述第一实施例论述了示例,在所述示例中聚酰亚胺制的绝缘保护层被提供,但本发明并不局限于此。相反,根据第一实施例的第一修改示例,可在半导体芯片10内采用无绝缘保护层的配置,如图13所示。在这种情况下,不使用聚酰亚胺制的绝缘保护层,使用抗蚀剂以形成类似于上述实施例的电极结构。然后,抗蚀剂被去除以获得无绝缘保护层的配置。还有,在通过如图1所示在半导体芯片110与印刷电路板之间的空隙中填充树脂部件40以去除抗蚀剂的情况下,可防止倒装芯片结合的可靠性降低。
[0102] 作为替代,根据第一实施例的第二修改示例,如在图14中示出的半导体芯片210内,隔离金属层205也可在电极焊盘部分2的通过钝化层3内的第一开口3a被暴露的区域的整个表面上被形成。在这种情况下,通过使隔离金属层205的厚度大于钝化层3的厚度,可形成焊料隆起焊盘6,使其覆盖隔离金属层205的外周端部分205a。
[0103] 代为替代,根据本发明的第三修改示例,如在图15中示出的半导体芯片310内,隔离金属层305的外周端部分305a也可形成在距钝化层3内第一开口3a预定距离的区域内。
[0104] (第二实施例)
[0105] 图16为根据本发明的第二实施例的半导体器件的结构的截面视图。图17为根据本发明的第二实施例的图16中所示的半导体器件内半导体芯片的电极部分的结构的截面视图。图18~图20为根据本发明的第二实施例的半导体器件的结构示意图。首先,参考图16~图20,根据本发明的第二实施例的半导体器件的结构将被描述。
[0106] 如图16所示,根据第二实施例的半导体器件设置有:半导体芯片410、印刷电路板420和树脂密封层430,半导体芯片410安装在所述印刷电路板上,所述树脂密封层将半导体芯片410密封在其内。树脂密封层430由热固性树脂构成,如环氧树脂。
[0107] 半导体芯片410包括半导体衬底401,如硅衬底,并且在半导体衬底401的顶面上,诸如IC或LSI的电路(未显示)被制造。可以理解,半导体衬底401是根据本发明的衬底的一个示例。
[0108] 而且,如图17和18所示,在半导体衬底401的顶面上,铝或铝合金的电极焊盘部分402被形成。如图19所示,电极焊盘部分402在平面图中形成为矩形形状。此外,如图17和图18所示,在半导体衬底401的顶面上,氮化硅的钝化层403被形成。在钝化层403内,第一开口403a被形成,通过所述第一开口,电极焊盘部分402的预定区域被暴露。如图
19所示,第一开口403a在平面图中大致为圆形,形成的开口宽度D1为约85um~约95um。
而且,钝化层403形成在半导体衬底401的顶面上以与半导体焊盘部分402的周边部分相重叠。这样,钝化层403具有形成在其内的台阶部分403b。可以理解,钝化层403是根据本发明的第一保护层的一个示例。
[0109] 在钝化层403上的预定区域和电极焊盘部分402上的预定区域之上,聚酰亚胺制的绝缘保护层404被形成。如图18和图19所示,在绝缘保护层404内,第二开口404a被提供,其开口宽度D2(约55um~约65um)小于钝化层403内第一开口403a的开口宽度D1(约85um~约95um)。如图19所示,第二开口404a在平面图中大致为圆形,且与第一开口403a基本上同心。而且,限定第二开口404a的绝缘保护层404的边缘部分404b形成为倾斜形状。应当理解,绝缘保护层404是根据本发明的第二保护层的一个示例。
[0110] 而且,如图17和18所示,在电极焊盘部分402上,厚度约为10um的钛(Ti)制的隔离金属层405被形成,且隔离金属层405的周边部分405a位于绝缘保护层404上的边缘部分404b附近的区域内。即,隔离金属层405形成在电极焊盘部分402上,不与钝化层403直接接触。如图19所示,隔离金属层405在平面图中大致为圆形,且基本上与第一开口
403a和第二开口404a同心。
[0111] 这里,在第二实施例中,隔离金属层405被形成,使得当在平面图中观看时隔离金属层405的外周端部分405b位于钝化层403的台阶部分403b的外部。即,形成的隔离金属层405的宽度D4(约110um~约120um)足够大以覆盖钝化层403的台阶部分403b。
[0112] 而且,如图17所示,在隔离金属层405上,高度(厚度)约70um~约100um的球形焊料隆起焊盘406被形成。焊料隆起焊盘406通过隔离金属层405与电极焊盘部分402电连接。还有,焊料隆起焊盘406形成在隔离金属层405上,使得焊料隆起焊盘6不仅与隔离金属层405的顶面接触,还与隔离金属层405的外周端部分405b接触。即,焊料隆起焊盘406结合到隔离金属层405,以覆盖隔离金属层405的外周端部分405b。这种情况下造成的结合面积大于焊料隆起焊盘406仅结合到顶面的情况,从而使焊料隆起焊盘406与隔离金属层405之间的结合强度增加。可以理解,焊料隆起焊盘406是根据本发明的隆起电极的一个示例。
[0113] 图16中所示的印刷电路板420由玻璃纤维环氧树脂等制成,在多层的结构中具有导体层(未显示)。在印刷电路板420的顶面,多个连接焊盘部分421(见图20)被形成以与半导体芯片410上的焊料隆起焊盘406电连接。在印刷电路板420的底面,多个电极终端422被形成以与连接焊盘部分421电连接。电极终端422为球形的焊料隆起焊盘406,并且以网格的形式排列在印刷电路板420的底面上。
[0114] 如图16和图20所示,具有形成在其上的焊料隆起焊盘406的半导体芯片410面朝下被安装在印刷电路板420上。具体地,如图20所示,半导体芯片410被布置,使其顶面(电路面)朝着印刷电路板420,并且半导体芯片410上的焊料隆起焊盘406通过倒状芯片结合被结合到印刷电路板420上的连接焊盘部分421。这将焊料隆起焊盘406和连接焊盘部分421电连接在一起。
[0115] 如图16所示,在半导体芯片410与印刷电路板420之间的间隙填充有硅树脂、环氧树脂、丙烯酸树脂等树脂部件440。
[0116] 在第二实施例中,如上所述,隔离金属层405形成在电极焊盘部分402上,不与钝化层403直接接触。这样,在将半导体芯片410(半导体衬底401)以倒装芯片法结合在印刷电路板420上期间,即使当由于半导体芯片410与印刷电路板420之间热膨胀系数不同所引起的热应力作用于隆起电极406时,也可抑制热应力作用在钝化层403上,因而可防止在钝化层403内生成裂缝。因此,可防止钝化层403的破裂,以及可防止因钝化层403的断裂而导致半导体器件的可靠性降低。
[0117] 而且,在第二实施例中,隔离金属层405被配置为使得当从平面图观看时其外周端部分405b形成在台阶部分403b的外部,从而允许隔离金属层405被配置以使台阶部分403b不位于外周端部分405b的正下方。这里,在钝化层403的台阶部分403b中,由于钝化层403部分地较薄和其它的原因,相对于钝化层403的其它部分,更容易生成裂缝。但是,另一方面,由于上述的配置,即使当由于半导体芯片410(半导体衬底401)与印刷电路板420之间热膨胀系数不同所引起的热应力作用于焊料隆起焊盘406时,也可抑制在钝化层403的台阶部分403b中产生裂缝。这也有助于防止因钝化层403的断裂而导致半导体器件的可靠性降低。
[0118] 还有,在第二实施例中,绝缘保护层404形成在钝化层403上的预定区域和电极焊盘部分402上的预定区域之上,并且隔离金属层405形成在电极焊盘部分402上,且其周边部分405a位于绝缘保护层404之上。因此,当隔离金属层405形成在电极焊盘部分402上时,隔离金属层405可容易地被形成,使得隔离金属层与钝化层403不直接接触,且在平面图中其外周端部分405b位于台阶部分403b的外部。
[0119] 此外,在第二实施例中,限定第二开口404a的绝缘保护层404的边缘部分404b形成为倾斜形状。这样,即使当隔离金属层405的周边部分405a形成在绝缘保护层404之上时,也可使隔离金属层405不易断裂,从而可防止因钝化层403的断裂而导致半导体器件的可靠性降低,以及可防止因隔离金属层405的断裂而导致半导体器件的可靠性降低。因此,可更容易地防止半导体器件的可靠性降低。
[0120] 图21~图27为根据第二实施例的截面视图,所述截面视图描述了在半导体器件内形成半导体芯片的电极部分的过程。接下来,参考图16~图4和图21~图27,半导体芯片410的电极部分的形成过程将被描述。
[0121] 首先,如图21所示,在具有形成在其上的电极焊盘部分402的半导体衬底401的顶面的整个表面上,通过等离子CVD等方法,氮化硅制的钝化层403被形成。然后,如图22所示,抗蚀剂(光刻胶)450通过光刻等方法形成在钝化层403上的预定区域内。之后,抗蚀剂450用作掩模,钝化层403的预定区域通过蚀刻被去除。这样在钝化层403内形成第一开口403a,通过所述第一开口电极焊盘部分402上的预定区域被暴露。这里,开口宽度为D1(约85um~约95um,见图18和图19)的第一开口403a被形成。然后,抗蚀剂450被去除。
[0122] 随后,如图23所示,在整个表面上,聚酰亚胺制的绝缘保护层414通过旋转涂布等方法被形成。然后,绝缘保护层414的预定区域通过光刻和蚀刻被去除。之后,通过热处理使绝缘保护层414流动。因此,图24所示的绝缘保护层404被获得。具体地,在绝缘保护层414(见图23)内,第二开口404a被形成,所述第二开口的开口宽度D2(约55um~约65um)小于钝化层403内第一开口403a的开口宽度D1(约85um~约95um),并且限定第二开口404a的边缘部分404b被形成为倾斜形状。
[0123] 接下来,如图25所示,在整个表面上,厚度约为10um的钛(Ti)制的隔离金属层415通过蒸汽镀膜等方法被形成。然后,如图26所示,抗蚀剂460通过光刻和蚀刻形成在隔离金属层415上的预定区域内。然后,抗蚀剂460用作掩模,焊料层416通过镀层等方法形成在隔离金属层415上。
[0124] 之后,如图27所示,抗蚀剂460(见图26)被去除,并且焊料层416周围的隔离金属层415通过蚀刻被去除。因此,隔离金属层405形成在电极焊盘部分402上,所述隔离金属层的外周端部分405b形成在钝化层403的台阶部分403b的外部,如图19中的平面图所示。而且,如图17和图18所示,形成在电极焊盘部分402上的隔离金属层405被配置为使得其周边部分405a位于绝缘保护层404之上。
[0125] 如图27所示,应该指出,形成上述的绝缘保护层404可使隔离金属层405形成在电极焊盘部分402上,且与钝化层403不直接接触。
[0126] 最后,通过在重熔炉内加热,焊料层416被熔化一段时间,以形成图17所示的球形焊料隆起焊盘406。这样在隔离金属层405上形成焊料隆起焊盘406(见图17)。在这种方式下,根据本发明的第二实施例,半导体器件内的半导体芯片410的电极部分被形成。
[0127] 尽管上述第二实施例论述了示例,在所述示例中聚酰亚胺制的绝缘保护层被提供,但本发明并不局限于此。相反,根据第二实施例的修改示例,可在半导体芯片510内采用无绝缘保护层的配置,如图28所示。在这种情况下,不使用聚酰亚胺制的绝缘保护层,使用抗蚀剂以形成类似于上述实施例的电极结构。然后,抗蚀剂被去除以获得无绝缘保护层的配置。还有,在通过如图16所示在半导体芯片与印刷电路板之间填充树脂部件440去除抗蚀剂的情况下,可防止倒装芯片结合的可靠性降低。
[0128] 可以理解,这里所公开的所有实施例的每一个方面都是示例性的,而不是限制性的。本发明的范围不受上述实施例的描述的限制,而是仅由权利要求书限制,并且包括在等同于权利要求书的精神和范围内的任何修改和改变。
[0129] 例如,尽管上述第一和第二实施例论述了本发明用于BGA封装的半导体器件的示例,但本发明并不局限于此。本发明可适用于不同于BGA封装的半导体器件。
[0130] 再如,尽管上述第一和第二实施例论述了绝缘保护层由聚酰亚胺构成的示例,但本发明并不局限于此。绝缘保护层可由不同于聚酰亚胺的任何有机材料构成,例如,BCB(苯并环丁烯(benzocyclobutene))或氟树脂。
[0131] 再如,尽管上述第一和第二实施例论述了钝化层由氮化硅构成的示例,但本发明并不局限于此。钝化层可由不同于氮化硅的任何无机材料构成。例如,钝化层可由SiON、SiO2等构成。
[0132] 再如,尽管上述第一和第二实施例论述了电极焊盘部分由铝或铝合金构成的示例,但本发明并不局限于此。电极焊盘部分可由不同于铝或铝合金的任何金属材料构成,例如,金(Au)或AlCu合金。
[0133] 再如,尽管上述第一和第二实施例论述了隔离金属层由钛构成的示例,但本发明并不局限于此。隔离金属层可由不同于钛的任何材料构成。不同于钛的材料包括,例如,TiN和Ta。隔离金属层可为由多个金属层相互叠加的多层结构。
[0134] 再如,尽管上述第一和第二实施例论述了包括焊料隆起焊盘的隆起电极形成在电极焊盘上的示例,但本发明并不局限于此。相反,包括不同于焊料隆起焊盘的金属凸起(例如,Au或Cu凸起)的隆起电极可形成在电极焊盘上。
[0135] 再如,尽管上述第一和第二实施例论述了在半导体芯片与印刷电路板之间的间隙填充树脂部件的示例,但本发明并不局限于此。半导体芯片与印刷电路板之间的间隙可不填充树脂部件。