高性能聚电解质-碳纳米管纳米复合物渗透汽化膜的制备方法转让专利

申请号 : CN200910153259.9

文献号 : CN101695632B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 安全福刘涛赵强钱锦文

申请人 : 浙江大学

摘要 :

本发明公开了一种聚电解质-碳纳米管纳米复合物分离膜的制备方法。先将阴离子聚电解质和阳离子聚电解质真空干燥后分别溶于水,再加入盐酸。将碳纳米管在搅拌和超声下分散于阳离子聚电解质溶液中。将分散有碳纳米管的阳离子聚电解质溶液在搅拌和超声下滴入阴离子聚电解质溶液得到一系列聚电解质-二氧化硅纳米复合物。将聚电解质-碳纳米管纳米复合物真空干燥后与氢氧化钠加入水中,搅拌,溶解,静置,脱泡后得到铸膜液。用刮膜刀将聚电解质-碳纳米管纳米复合物铸膜液均匀刮于聚丙烯腈多孔膜上,干燥得到聚电解质-碳纳米管纳米复合物分离膜。本发明原材料廉价易得,制备方法简单,并具有优良的力学和分离性能。

权利要求 :

1.一种聚电解质-碳纳米管纳米复合物分离膜的制备方法,其特征在于包括如下步骤:

1)将0.8~20质量份的阳离子聚电解质在50~80℃下真空干燥6~10h,阳离子聚电解质为:壳聚糖、聚烯丙基胺、聚二甲基烯丙基铵、聚乙烯亚胺、聚甲基丙烯酰氧乙基三甲基氯化铵、聚乙烯基吡啶烷基卤化铵或阳离子纤维素;

2)取0.4~10质量份上述干燥后的阳离子聚电解质溶解于200~10000质量份水中,加入0.08~2.5质量份盐酸;

3)将1~25质量份阴离子聚电解质在50~80℃下真空干燥6~10h,阴离子聚电解质为:羧甲基纤维素钠、聚丙烯酸钠、海藻酸钠、聚甲基丙烯酸钠、聚磷酸钠;

4)取0.5~10质量份上述干燥后的阴离子聚电解质溶于100~12500质量份水中,加入0.08~2.5质量份盐酸;

5)将0.04~2.5质量份碳纳米管超声下分散于阳离子聚电解质溶液中;将包含有碳纳米管的阳离子聚电解质溶液滴加入阴离子聚电解质溶液中,得到聚电解质-碳纳米管纳米复合物;

6)将聚电解质-碳纳米管纳米复合物用无水乙醇洗涤后,在60~80℃下干燥6~

10h;

7)将0.4~5质量份聚电解质-碳纳米管纳米复合物和0.06~1质量份的氢氧化钠加入到20~250质量份水中,溶解后得到铸膜液,将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。

2.根据权利要求1所述的一种聚电解质-碳纳米管纳米复合物分离膜的制备方法的制备方法,其特征在于所述的聚电解质-碳纳米管纳米复合物中的阳离子聚电解质的含量为

10~30%。

3.根据权利要求1所述的一种高性能聚电解质-碳纳米管纳米复合物复合渗透汽化膜的制备方法,其特征在于所述的聚电解质-碳纳米管纳米复合物中的碳纳米管的含量为

0.1~10%。

4.根据权利要求1所述的聚电解质-碳纳米管纳米复合物复合分离膜的制备方法,其特征在于所述的聚乙烯基吡啶烷基卤化铵的烷基为甲基、乙基、丙基或丁基,卤素为溴或氯。

说明书 :

高性能聚电解质-碳纳米管纳米复合物渗透汽化膜的制备

方法

技术领域

[0001] 本发明涉及聚电解质纳米材料的制备和膜分离领域,尤其涉及一种高性能聚电解质-碳纳米管纳米复合物渗透汽化膜的制备方法。

背景技术

[0002] 无机纳米材料与有机高分子材料复合,可以提高高分子材料的热力学稳定性和力学强度。无机纳米-高分子复合膜是膜分离领域研究的新方向。在众多高分子纳米杂化材料中,对于碳纳米管作为高分子纳米填料的研究经久不衰。由于碳纳米管奇特的物理、化学性质和潜在的应用前景日益受到人们的关注。目前,碳纳米管在高性能材料、能源利用、催化学等许多方面的应用都进行了深入的研究,并取得了很大进展。碳纳米管与高分子材料进行复合,改善膜分离性能的,是膜分离领域研究的新方向。
[0003] 渗透汽化(Pervaporation,简称PV)由Kober于1917年提出的,是一种重要的膜分离过程。PV是一种利用液体混合物中各组分在致密膜内溶解、扩散性能的不同而使之分离的膜过程。PV于90年代开始实现工业化。与传统的精馏、吸附、萃取等分离工艺相比,它具有分离效率高、设备简单、操作方便、能耗低等优点。PV在近沸点混合物、共沸物和温度敏感性高的混合体系的分离中更显示其独特的优势。
[0004] 有机物脱水普遍存在于化工领域中,如乙醇脱水、异丙醇脱水和丁醇脱水等体系。许多水溶或亲水性高分子被用于有机物脱水的PV膜研究,如PVA1、P4VP和PAM等。通过改性的方法使PVAL带有荷电性,然后共混,提高了PVAL膜的性能。
[0005] 聚电解质(天然或合成)是一类含有可离解结构单元的亲水或水溶性高分子材料,其种类繁多且广泛用于有机物脱水。由于单一的聚电解质水溶性好,膜的稳定性差;通过交联反应在一定程度上提高了膜的稳定性,但膜渗透性能降低。据国内外文献报道,用于有机物脱水的正-负聚电解质膜的制备方法有三种:(1)自组装方法,即相反电荷的两种聚电解质通过层层自组装(LbL)法制备的层层自组装膜;(2)共混法,即在酸性条件下,通过溶液共混法制备两种弱聚电解质的共混膜;(3)两次层层涂刮法,其制备工艺是,先在支撑底膜上刮上一种聚电解质铸膜液,待其微干后在其表面刮涂上第二种带相反电荷的聚电解质铸膜液,或将其浸入第二种聚电解质溶液中。在双层复合物膜的界面处,由正、负离子的静电作用,形成了离子交联结构,从而提高了双层复合物膜的分离性能,也改善其机械力学性能。聚电解质络合物通过大分子阴离子和阳离子库仑力作用产生了一定的物理交联,不易发生小分子反离子流失现象,因此分离性能稳定。

发明内容

[0006] 本发明的目的是克服现有技术的不足,提供一种高性能聚电解质-碳纳米管纳米复合物渗透汽化膜的制备方法。。
[0007] 聚电解质-碳纳米管纳米复合物分离膜的制备方法包括如下步骤:
[0008] 1)将0.8~20质量份的阳离子聚电解质在50~80℃下真空干燥6~10h,阳离子聚电解质为:壳聚糖、聚烯丙基胺、聚二甲基烯丙基铵、聚乙烯亚胺、聚甲基丙烯酰氧乙基三甲基氯化铵、聚乙烯基吡啶烷基卤化铵或阳离子纤维素;
[0009] 2)取0.4~10质量份上述干燥后的阳离子聚电解质溶解于200~10000质量份水中,加入0.08~2.5质量份盐酸;
[0010] 3)将1~25质量份阴离子聚电解质在50~80℃下真空干燥6~10h,阴离子聚电解质为:羧甲基纤维素钠、聚丙烯酸钠、海藻酸钠、聚甲基丙烯酸钠、聚磷酸钠;
[0011] 4)取0.5~10质量份上述干燥后的阴离子聚电解质溶于100~12500质量份水中,加入0.08~2.5质量份盐酸;
[0012] 5)将0.04~2.5质量份碳纳米管超声下分散于阳离子聚电解质溶液中;将包含有碳纳米管的阳离子聚电解质溶液滴加入阴离子聚电解质溶液中,得到聚电解质-碳纳米管纳米复合物;
[0013] 6)将聚电解质-碳纳米管纳米复合物用无水乙醇洗涤后,在60~80℃下干燥6~10h;
[0014] 7)将0.4~5质量份聚电解质-碳纳米管纳米复合物和0.06~1质量份的氢氧化钠加入到20~250质量份水中,溶解后得到铸膜液,将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。
[0015] 所述的聚电解质-碳纳米管纳米复合物中的阳离子聚电解质的含量为10~30%。所述的聚电解质-碳纳米管纳米复合物中的碳纳米管的含量为0.1~15%。所述的聚乙烯基吡啶烷基卤化铵的烷基为甲基、乙基、丙基或丁基中,卤素为溴或氯中。
[0016] 其特征在于所述的聚电解质-碳纳米管纳米复合物中的阳离子聚电解质的含量为10~50%,碳纳米管的含量0.1~10%;碳纳米管的粒径大小在10~100之间,所述的聚乙烯基吡啶烷基卤化铵的烷基为甲基、乙基、丙基或丁基,卤素为溴或氯。
[0017] 本发明把聚电解质复合物高分离性能与碳纳米管的优点相结合,制备出了聚电解质和碳纳米管的组成可控,膜的结构均一,具有高分离因子和通量,以及良好的稳定性和优异的力学性能渗透汽化膜。

具体实施方式

[0018] 实施例1
[0019] 将1质量份羧甲基纤维素钠在50℃下真空干燥10h,300rpm磁力搅拌速度下将0.5质量份干燥后的羧甲基纤维素钠溶于200质量份水中,配成羧甲基纤维素钠溶液,加入
0.08质量份盐酸。将0.8质量份壳聚糖在50℃下真空干燥10h,300rpm磁力搅拌速度下将
0.4质量份干燥后的壳聚糖溶于200质量份水中,配成壳聚糖溶液,加入0.08质量份盐酸。
将0.04质量份碳纳米管超声下(100W功率)分散于壳聚糖溶液中;800rpm搅拌速度下将包含有碳纳米管的壳聚糖溶液滴加入羧甲基纤维素钠溶液中,得到壳聚糖/羧甲基纤维素钠-碳纳米管纳米复合物,用无水乙醇洗涤后,60℃下干燥10h。将0.4质量份壳聚糖/羧甲基纤维素钠-碳纳米管纳米复合物和0.06质量份氢氧化钠加入到20质量份水中,溶解后得到铸膜液。将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。该分离膜60℃下对90wt%异丙醇-混
2
合体系渗透汽化脱水性能为:渗透通量为1720.7g/mh,透过液中水的浓度为99.34wt%.[0020] 实施例2
[0021] 将25质量份羧甲基纤维素钠在80℃下真空干燥6h,300rpm磁力搅拌速度下将10质量份干燥后的羧甲基纤维素钠溶于10000质量份水中,配成羧甲基纤维素钠溶液,加入2.5质量份盐酸。将20质量份壳聚糖在80℃下真空干燥6h,300rpm磁力搅拌速度下将
10质量份干燥后的壳聚糖溶于10000质量份水中,配成壳聚糖溶液,加入2.5质量份盐酸。
将2.5质量份碳纳米管超声下(100W功率)分散于壳聚糖溶液中;800rpm搅拌速度下将包含有碳纳米管的壳聚糖溶液滴加入羧甲基纤维素钠溶液中,得到壳聚糖/羧甲基纤维素钠-碳纳米管纳米复合物,用无水乙醇洗涤后,80℃下干燥6h。将5质量份壳聚糖/羧甲基纤维素钠-碳纳米管纳米复合物和1质量份氢氧化钠加入到250质量份水中,溶解后得到铸膜液。将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。该分离膜60℃下对90wt%异丙醇-混合体系
2
渗透汽化脱水性能为:渗透通量为1699.4g/mh,透过液中水的浓度为99.19wt%.[0022] 实施例3
[0023] 将1质量份聚丙烯酸钠在60℃下真空干燥8h,300rpm磁力搅拌速度下将0.5质量份干燥后的聚丙烯酸钠溶于200质量份水中,配成聚丙烯酸钠溶液,加入0.08质量份盐酸。将0.8质量份聚烯丙基胺在60℃下真空干燥8h,300rpm磁力搅拌速度下将0.4质量份干燥后的聚烯丙基胺溶于200质量份水中,配成聚烯丙基胺溶液,加入0.08质量份盐酸。将
0.04质量份碳纳米管超声下(100W功率)分散于聚烯丙基胺溶液中;800rpm搅拌速度下将包含有碳纳米管的聚烯丙基胺溶液滴加入聚丙烯酸钠溶液中,得到聚烯丙基胺/聚丙烯酸钠-碳纳米管纳米复合物,用无水乙醇洗涤后,70℃下干燥8h。将0.4质量份聚烯丙基胺/聚丙烯酸钠-碳纳米管纳米复合物和0.06质量份氢氧化钠加入到20质量份水中,溶解后得到铸膜液。将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。该分离膜60℃下对90wt%异丙醇-混合
2
体系渗透汽化脱水性能为:渗透通量为1655.8g/mh,透过液中水的浓度为99.14wt%.[0024] 实施例4
[0025] 将25质量份羧甲基纤维素钠在60℃下真空干燥8h,300rpm磁力搅拌速度下将10质量份干燥后的羧甲基纤维素钠溶于5000质量份水中,配成羧甲基纤维素钠溶液,加入
2.5质量份盐酸。将20质量份聚二甲基烯丙基铵在60℃下真空干燥8h,300rpm磁力搅拌速度下将10质量份干燥后的聚二甲基烯丙基铵溶于5000质量份水中,配成聚二甲基烯丙基铵溶液,加入2.5质量份盐酸。将2质量份碳纳米管超声下(100W功率)分散于聚二甲基烯丙基铵溶液中;800rpm搅拌速度下将包含有碳纳米管的聚二甲基烯丙基铵溶液滴加入羧甲基纤维素钠溶液中,得到聚二甲基烯丙基铵/羧甲基纤维素钠-碳纳米管纳米复合物,用无水乙醇洗涤后,70℃下干燥8h。将2.5质量份聚二甲基烯丙基铵/羧甲基纤维素钠-碳纳米管纳米复合物和0.5质量份氢氧化钠加入到125质量份水中,溶解后得到铸膜液。将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。该分离膜60℃下对90wt%异丙醇-混合体系渗透
2
汽化脱水性能为:渗透通量为1899.7g/mh,透过液中水的浓度为99.38wt%.[0026] 实施例5
[0027] 将2质量份海藻酸钠在50℃下真空干燥10h,300rpm磁力搅拌速度下将1质量份干燥后的海藻酸钠溶于400质量份水中,配成海藻酸钠溶液,加入0.1质量份盐酸。将2质量份聚乙烯亚胺在50℃下真空干燥10h,300rpm磁力搅拌速度下将1质量份干燥后的聚乙烯亚胺溶于400质量份水中,配成聚乙烯亚胺溶液,加入0.1质量份盐酸。将0.04质量份碳纳米管超声下(100W功率)分散于聚乙烯亚胺溶液中;800rpm搅拌速度下将包含有碳纳米管的聚乙烯亚胺溶液滴加入海藻酸钠溶液中,得到聚乙烯亚胺/海藻酸钠-碳纳米管纳米复合物,用无水乙醇洗涤后,80℃下干燥6h。将0.5质量份聚乙烯亚胺/海藻酸钠-碳纳米管纳米复合物和0.08质量份氢氧化钠加入到20质量份水中,溶解后得到铸膜液。将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。该分离膜60℃下对90wt%异丙醇-混合体系渗透汽化脱水2
性能为:渗透通量为1126.8g/mh,透过液中水的浓度为98.14wt%.
[0028] 实施例6
[0029] 将10质量份羧甲基纤维素钠在70℃下真空干燥8h,300rpm磁力搅拌速度下将4质量份干燥后的羧甲基纤维素钠溶于2000质量份水中,配成羧甲基纤维素钠溶液,加入
2.5质量份盐酸。将8质量份聚甲基丙烯酰氧乙基三甲基氯化铵在70℃下真空干燥8h,
300rpm磁力搅拌速度下将4质量份干燥后的聚甲基丙烯酰氧乙基三甲基氯化铵溶于2000质量份水中,配成聚甲基丙烯酰氧乙基三甲基氯化铵溶液,加入2.5质量份盐酸。将2.5质量份碳纳米管超声下(100W功率)分散于聚甲基丙烯酰氧乙基三甲基氯化铵溶液中;
800rpm搅拌速度下将包含有碳纳米管的聚甲基丙烯酰氧乙基三甲基氯化铵溶液滴加入羧甲基纤维素钠溶液中,得到聚甲基丙烯酰氧乙基三甲基氯化铵/羧甲基纤维素钠-碳纳米管纳米复合物,用无水乙醇洗涤后,80℃下干燥6h。将1质量份聚甲基丙烯酰氧乙基三甲基氯化铵/羧甲基纤维素钠-碳纳米管纳米复合物和0.2质量份氢氧化钠加入到50质量份水中,溶解后得到铸膜液。将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。该分离膜60℃下对90wt%
2
异丙醇-混合体系渗透汽化脱水性能为:渗透通量为2033.7g/mh,透过液中水的浓度为
99.25wt%.
[0030] 实施例7
[0031] 将1质量份聚甲基丙烯酸钠在60℃下真空干燥9h,300rpm磁力搅拌速度下将0.5质量份干燥后的聚甲基丙烯酸钠溶于200质量份水中,配成聚甲基丙烯酸钠溶液,加入0.1质量份盐酸。将1质量份聚乙烯基吡啶甲基氯化铵在50℃下真空干燥9h,300rpm磁力搅拌速度下将0.4质量份干燥后的聚乙烯基吡啶甲基氯化铵溶于200质量份水中,配成聚乙烯基吡啶甲基氯化铵溶液,加入0.05质量份盐酸。将0.04质量份碳纳米管超声下(100W功率)分散于聚乙烯基吡啶甲基氯化铵溶液中;800rpm搅拌速度下将包含有碳纳米管的聚乙烯基吡啶甲基氯化铵溶液滴加入聚甲基丙烯酸钠溶液中,得到聚乙烯基吡啶甲基氯化铵/聚甲基丙烯酸钠-碳纳米管纳米复合物,用无水乙醇洗涤后,80℃下干燥6h。将0.4质量份聚乙烯基吡啶甲基氯化铵/聚甲基丙烯酸钠-碳纳米管纳米复合物和0.06质量份氢氧化钠加入到20质量份水中,溶解后得到铸膜液。将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。该分2
离膜60℃下对90wt%异丙醇-混合体系渗透汽化脱水性能为:渗透通量为1399.1g/mh,透过液中水的浓度为99.11wt%.
[0032] 实施例8
[0033] 将15质量份羧甲基纤维素钠在80℃下真空干燥6h,300rpm磁力搅拌速度下将6质量份干燥后的羧甲基纤维素钠溶于5000质量份水中,配成羧甲基纤维素钠溶液,加入
2.5质量份盐酸。将15质量份阳离子纤维素在50℃下真空干燥9h,300rpm磁力搅拌速度下将8质量份干燥后的阳离子纤维素溶于5000质量份水中,配成阳离子纤维素溶液,加入
2.5质量份盐酸。将2质量份碳纳米管超声下(100W功率)分散于阳离子纤维素溶液中;
800rpm搅拌速度下将包含有碳纳米管的阳离子纤维素溶液滴加入羧甲基纤维素钠溶液中,得到阳离子纤维素/羧甲基纤维素钠-碳纳米管纳米复合物,用无水乙醇洗涤后,80℃下干燥6h。将1质量份阳离子纤维素/羧甲基纤维素钠-碳纳米管纳米复合物和0.2质量份氢氧化钠加入到50质量份水中,溶解后得到铸膜液。将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。该
2
分离膜60℃下对90wt%异丙醇-混合体系渗透汽化脱水性能为:渗透通量为1514.6g/mh,透过液中水的浓度为99.22wt%.
[0034] 实施例9
[0035] 将1质量份羧甲基纤维素钠在50℃下真空干燥10h,300rpm磁力搅拌速度下将0.5质量份干燥后的羧甲基纤维素钠溶于300质量份水中,配成羧甲基纤维素钠溶液,加入
0.05质量份盐酸。将1质量份聚乙烯基吡啶烷基氯化铵在50℃下真空干燥10h,300rpm磁力搅拌速度下将0.4质量份干燥后的聚乙烯基吡啶烷基氯化铵溶于300质量份水中,配成聚乙烯基吡啶烷基氯化铵溶液,加入0.1质量份盐酸。将0.04质量份碳纳米管超声下(100W功率)分散于聚乙烯基吡啶烷基氯化铵溶液中;800rpm搅拌速度下将包含有碳纳米管的聚乙烯基吡啶烷基氯化铵溶液滴加入羧甲基纤维素钠溶液中,得到聚乙烯基吡啶烷基氯化铵/羧甲基纤维素钠-碳纳米管纳米复合物,用无水乙醇洗涤后,60℃下干燥8h。将0.6质量份聚乙烯基吡啶烷基氯化铵/羧甲基纤维素钠-碳纳米管纳米复合物和0.06质量份氢氧化钠加入到20质量份水中,溶解后得到铸膜液。将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。该分
2
离膜60℃下对90wt%异丙醇-混合体系渗透汽化脱水性能为:渗透通量为1711.3g/mh,透过液中水的浓度为99.42wt%.
[0036] 实施例10
[0037] 将1质量份聚丙烯酸钠在70℃下真空干燥8h,300rpm磁力搅拌速度下将0.5质量份干燥后的聚丙烯酸钠溶于400质量份水中,配成聚丙烯酸钠溶液,加入0.08质量份盐酸。将1质量份聚二甲基烯丙基铵在70℃下真空干燥8h,300rpm磁力搅拌速度下将0.5质量份干燥后的聚二甲基烯丙基铵溶于400质量份水中,配成聚二甲基烯丙基铵溶液,加入0.08质量份盐酸。将0.04质量份碳纳米管超声下(100W功率)分散于聚二甲基烯丙基铵溶液中;800rpm搅拌速度下将包含有碳纳米管的聚二甲基烯丙基铵溶液滴加入聚丙烯酸钠溶液中,得到聚二甲基烯丙基铵/聚丙烯酸钠-碳纳米管纳米复合物,用无水乙醇洗涤后,
60℃下干燥8h。将0.8质量份聚二甲基烯丙基铵/聚丙烯酸钠-碳纳米管纳米复合物和
0.06质量份氢氧化钠加入到30质量份水中,溶解后得到铸膜液。将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。该分离膜60℃下对90wt%异丙醇-混合体系渗透汽化脱水性能为:渗透通量为
2
1499.6g/mh,透过液中水的浓度为99.25wt%.
[0038] 实施例11
[0039] 将2质量份聚甲基丙烯酸钠在50℃下真空干燥8h,300rpm磁力搅拌速度下将1质量份干燥后的聚甲基丙烯酸钠溶于600质量份水中,配成聚甲基丙烯酸钠溶液,加入0.24质量份盐酸。将2质量份聚甲基丙烯酰氧乙基三甲基氯化铵在50℃下真空干燥8h,300rpm磁力搅拌速度下将1质量份干燥后的聚甲基丙烯酰氧乙基三甲基氯化铵溶于600质量份水中,配成聚甲基丙烯酰氧乙基三甲基氯化铵溶液,加入0.24质量份盐酸。将0.08质量份碳纳米管超声下(100W功率)分散于聚甲基丙烯酰氧乙基三甲基氯化铵溶液中;800rpm搅拌速度下将包含有碳纳米管的聚甲基丙烯酰氧乙基三甲基氯化铵溶液滴加入聚甲基丙烯酸钠溶液中,得到聚甲基丙烯酰氧乙基三甲基氯化铵/聚甲基丙烯酸钠-碳纳米管纳米复合物,用无水乙醇洗涤后,60℃下干燥8h。将0.6质量份聚甲基丙烯酰氧乙基三甲基氯化铵/聚甲基丙烯酸钠-碳纳米管纳米复合物和0.08质量份氢氧化钠加入到30质量份水中,溶解后得到铸膜液。将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。该分离膜60℃下对90wt%异丙醇-混2
合体系渗透汽化脱水性能为:渗透通量为1633.7g/mh,透过液中水的浓度为99.28wt%.[0040] 实施例12
[0041] 将1质量份聚甲基丙烯酸钠在50℃下真空干燥9h,300rpm磁力搅拌速度下将0.5质量份干燥后的聚甲基丙烯酸钠溶于200质量份水中,配成聚甲基丙烯酸钠溶液,加入0.1质量份盐酸。将0.8质量份聚乙烯基吡啶乙基溴化铵在50℃下真空干燥9h,300rpm磁力搅拌速度下将0.4质量份干燥后的聚乙烯基吡啶乙基溴化铵溶于200质量份水中,配成聚乙烯基吡啶乙基溴化铵溶液,加入0.1质量份盐酸。将0.04质量份碳纳米管超声下(100W功率)分散于聚乙烯基吡啶乙基溴化铵溶液中;800rpm搅拌速度下将包含有碳纳米管的聚乙烯基吡啶乙基溴化铵溶液滴加入聚甲基丙烯酸钠溶液中,得到聚乙烯基吡啶乙基溴化铵/聚甲基丙烯酸钠-碳纳米管纳米复合物,用无水乙醇洗涤后,60℃下干燥6h。将0.8质量份聚乙烯基吡啶乙基溴化铵/聚甲基丙烯酸钠-碳纳米管纳米复合物和0.06质量份氢氧化钠加入到30质量份水中,溶解后得到铸膜液。将该铸膜液经过滤除杂,静置脱泡后均匀涂刮于聚丙烯腈微孔底膜上,得到皮层为聚电解质-碳纳米管纳米复合物的分离膜。该分2
离膜60℃下对90wt%异丙醇-混合体系渗透汽化脱水性能为:渗透通量为1679.3g/mh,透过液中水的浓度为99.27wt%.
[0042] 实施例13
[0043] 将1质量份聚磷酸钠在80℃下真空干燥6h,300rpm磁力搅拌速度下将0.5质量份干燥后的聚磷酸钠溶于200质量份水中,配成聚磷酸钠溶液,加入0.1质量份盐酸。将0.8质量份聚乙烯基吡啶丙基氯化铵在80℃下真空干燥6h,300rpm磁力搅拌速度下将0.4质量份干燥后的聚乙烯基吡啶丙基氯化铵溶于200质量份水中,配成聚乙烯基吡啶丙基氯化铵溶液,加入0.1质量份盐酸。将0.04质量份碳纳米管超声下(100W功率)分散于聚乙烯基吡啶丙基氯化铵溶液中;800rpm搅拌速度下将包含有碳纳米管的聚乙烯基吡啶丙基氯化铵溶液滴加入聚磷酸钠溶液中,得到聚乙烯基吡啶丙基氯化铵/聚磷酸钠-碳纳米管纳米复合物,用无水乙醇洗涤后,70℃下干燥8h。将0.4质量份聚乙烯基吡啶丙基氯化铵/聚磷