背照式碲镉汞长波光导型红外面阵探测器转让专利

申请号 : CN200910226302.X

文献号 : CN101728403B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 赵水平朱龙源李向阳刘诗嘉兰添翼王妮丽蔡子健贾嘉

申请人 : 中国科学院上海技术物理研究所

摘要 :

本专利公开了一种背照式碲镉汞长波光导型红外面阵探测器,其特征在于,包括:一硒化锌衬底;一通过环氧胶固定在衬底上的碲镉汞薄片;与衬底接触的碲镉汞薄片面带有阳极氧化层与ZnS增透层,通过光刻在碲镉汞薄片表面的双层钝化面上形成光敏元面阵,及分别位于光敏元二端的信号引出电极区和公共电极区。信号引出电极区与公共电极区,均从采光面的背面引出,在规定的区域生长铟柱,信号读出电路板生长铟柱,采用铟柱互连的方式。将芯片电极的铟柱和电极板的铟柱连在一起。信号和公用电极区上依次生长有铟层、金层,铟柱。构成背照式碲镉汞长波光导型红外面阵探测器。

权利要求 :

1.一种背照式碲镉汞长波光导型红外面阵探测器,它包括芯片和电路两部分,其特征在于:所述探测器的芯片结构为在硒化锌衬底(1)上,通过低温环氧胶(2)贴上厚度为10μm碲镉汞薄片(5),与硒化锌衬底(1)接触的碲镉汞薄片(5)的接触面先后长有 厚度的阳极氧化层(4)与 厚度的ZnS增透层(3),碲镉汞薄片(5)的另一面依次生长厚度为 的铟层(6)与厚度为 的金层A(7)作为导电电极,碲镉汞薄片(5)的另一面再生长一层厚度为 的SiO2绝缘层A(14),最后生长10μm高的铟柱A(13);

所述的探测器的电路结构为:在双面抛光的蓝宝石基板(12)上面依次生长厚度为的铬层(11)与厚度为 的金层B(10)作为电极,金层B(10)上再生长一层厚度为 的SiO2绝缘层B(9)与10μm高的铟柱B(15);

所述探测器的芯片部分和电路部分通过铟柱互连技术使芯片的铟柱A(13)与电路的铟柱B(15)进行互连而结合在一起,利用低温环氧填充胶(8)对互连好的探测器结构空隙进行导引灌封。

2.根据权利要求1所述的一种背照式碲镉汞长波光导型红外面阵探测器,其特征在于:所述的碲镉汞薄片(5)在40~60K的工作波段为12~12.5μm,77K温度下迁移率大

2 -1 -1 -3

于4E+5cm·V ·S ,电子浓度小于7E+14cm 。

3.根据权利要求1所述的一种背照式碲镉汞长波光导型红外面阵探测器,其特征在于:所述的硒化锌衬底(1)的厚度为0.5mm。

说明书 :

背照式碲镉汞长波光导型红外面阵探测器

技术领域

[0001] 本发明涉及光电探测器技术,具体是指一种背照式碲镉汞长波光导型红外面阵探测器。

背景技术

[0002] 随着红外器件应用领域的发展,对器件使用的分辨率要求越来越高,从单元发展到线列,再到现在的面阵。对于使用而言面阵探测器要求占空比越大越好,也就是说在给定的面阵器件面积内,光敏面占的比例越大越好,光敏面之间的间隔越小越好。由于面阵的每个光敏元有引线布置,所以又希望光敏面之间的间隔尽量的大,目前我们碲镉汞长波光导型红外面阵器件采用的是传统正照工艺,引线布置在器件正面,考虑到要有一定的占空比,导致了光敏面间隔太小,引线布置困难的问题。

发明内容

[0003] 本发明的目的就是要提供一种能够适用于碲镉汞长波光导型红外面阵探测器的背照式探测器结构,通过背照式结构的器件来解决目前要求列阵光敏面间间隙小,从而造成信号引线无法布置的问题。
[0004] 本发明碲镉汞长波光导型红外面阵探测器结构如附图1所示,它包括芯片和电路两部分,其结构特征在于:
[0005] 1)长波碲镉汞面阵芯片结构:在透过能达到70%的硒化锌衬底1上,通过低温环氧胶2贴上厚度为10μm碲镉汞薄片5,碲镉汞薄片在40~60K的工作波段为12~2 -1 -1 -3
12.5μm,77K温度下迁移率大于4E+5cm·V ·S ,电子浓度小于7E+14cm ,与硒化锌衬底
1接触的碲镉汞薄片5的表面分别长有 厚度的阳极氧化层4与 厚度的ZnS增透层3,通过光刻在碲镉汞薄片5表面的双层钝化面上形成光敏元面阵,碲镉汞薄片5的另一面依次生长厚度为 的铟层6与厚度为 的金层A7作为导电电极,其上再生长一层厚度为 的SiO2绝缘层A14,最后生长10μm高的铟柱A13。
[0006] 2)电路结构:采用双面抛光的蓝宝石基板12,在上面依次长厚度为 的铬层11与厚度为 的金层B10作为电极,其上再生长一层厚度为5000 的SiO2绝缘层B9与10μm高的铟柱B15。
[0007] 3)芯片与电路互连:利用铟柱互连技术,将芯片部分的铟柱A13与电路部分的铟柱B15进行互连,利用低温环氧填充胶8对互连好的探测器结构空隙进行引导灌封。
[0008] 本发明有以下几个优点:
[0009] 1.引线布置在背面可大大减小光敏面之间的间隔,能达最高的占空比,以我们8×8面阵,光敏面中心距为350×350的器件为例,光敏面面积337×337μm,间隔槽宽
13μm,通过计算得到得到的占空比约为93%,能使信号能量最大获取,可解决整机图象摄取,转换等一系列难题,使成像质量得到更大的保证,提高了仪器使用价值与结果的准确性,满足了用户要求,达到了使用的最大优化;
[0010] 2.背面引线使得多列面阵光导器件信号电极布线更容易。在信号线间加盖SiO2绝缘膜,使多元间的串音能降低到最小;
[0011] 3.由于电极做到了背面,减少了信号电极对入射光的阻碍,使得光敏面能接受到更多的光能;
[0012] 4.工艺中利用硒化锌衬底既解决了光导器件的衬底问题,同时又解决了此碲镉汞长波面阵芯片需高透过的窗口问题;
[0013] 5.在每个光敏面中央增加了只起热传导作用的铟柱,既解决了背照芯片工作时热量传导问题,又增加了芯片稳固性。

附图说明

[0014] 图1芯片剖面图中标号说明如下:1-硒化锌衬底;2-低温环氧胶;3-ZnS增透层;4-阳极氧化层;5-碲镉汞薄片;6-铟层;7-金层A;8-低温环氧填充胶;9-SiO2绝缘层B;
10-金层B;11-铬层;12-蓝宝石基板;13-铟柱A;14-SiO2绝缘层A;15-铟柱B。

具体实施方式

[0015] 结合说明书附图,以8×8背照式碲镉汞长波光导型红外面阵探测器为实施例,对本专利作进一步的详细说明,其中采用的工艺为碲镉汞芯片成型的常规工艺:
[0016] 1.第一面处理:将优选好的碲镉汞材料进行第一面粗磨去除100μm,抛光去除40μm,化学腐蚀去除3μm等一系列处理,去除损伤后长一层 阳极氧化层4作为钝化膜,整个表面再生长一层 ZnS增透层3;
[0017] 2.贴片:利用低温环氧胶2将处理完第一面的碲镉汞材料与硒化锌衬底1贴在一起,并在全自动压片机里进行环氧胶固化,由于我们制备的是长波器件,所以在选择衬底的时候要尽量选择对长波有高透过能力的材料,这里我们取用厚度为0.5mm,Φ20mm的硒化锌衬底1,它的透过能达到70%以上,另外碲镉汞与衬底两者之间的胶要尽量的薄,一般1~3μm贴片后环氧胶的厚度我们可以用德国Mikropack的NanoCalc-2000-VIS膜厚仪来测的;
[0018] 3.测位错:由于我们制备的是8×8面阵器件,光敏面中心距350×350μm,所以整个芯片面积较大,芯片的晶格缺陷对面阵器件性能的均匀性的影响比较大,因此在处理第二面之前的中间过程中我们还需要测位错,以便在光刻的时候可以避开缺陷严重的区域,得到有效优质的芯片图形;
[0019] 4.第二面处理:先将位错处理完的芯片用蜡贴在磨片玻璃板上,再通过真空压片机将之贴平,要保证不平整度在3μm以下,然后减薄,精抛至10μm后与第一面一样清洗,去损伤,测寿命,挑选符合要求的晶片再做后面的工艺;
[0020] 5.在薄片表面进行第一次光刻,HF腐蚀掉表面残留氧化层后在氩离子束镀膜机中生长高纯的铟层6与金层A7导电介质,长铟的目的是保证能与碲镉汞有很好的附着力与良好的欧姆接触,长金的目的是防止铟金属的自然氧化与使芯片有更好的导电能力。铟层厚度为 金层厚度为 金属镀膜温度为50摄氏度,完成之后进行浮胶;
[0021] 6.第二次光刻:刻出8×8图形进行氩离子刻蚀图形并保证刻透彻。完成之后再浮去表面的光刻胶;
[0022] 7.第三次光刻:留出每个图形的电极引出区,其它区域均生长 的SiO2绝缘层A(14),目的是在布置电极引线时与下面的碲镉汞薄片5绝缘;
[0023] 8.第四次光刻:在芯片已成型的铟金电极区域生长要与电路板互连的铟柱A13,铟柱高度为10μm,完成后将芯片表面不要铟层的区域去除,并清洗残留光刻胶;
[0024] 9.在整个芯片表面甩上3~5μm光刻胶保护,将芯片烘干等待与电极版互连;
[0025] 10.第五次光刻:在宝石电路板长铬金层,要有足够的厚度,才能保证串音间减小,电阻降低,信号能量不损失,铬层11厚度为 金层B10厚度为
[0026] 11.第六次光刻:宝石电路板生长 的SiO2绝缘层B9,进行浮胶去除焊盘区的SiO2层;
[0027] 12.第七次光刻:在已成型的宝石电路板上规定的区域内,光刻宝石电路铟柱图形;
[0028] 13.长10μm高度的铟柱B15,完成后同样要进行对表面不需要铟层的区域进行化学去除残留光刻胶;
[0029] 14.对已成型好的面阵芯片在disco宝石划片机上进行划片分割,清洗,表面镜检,挑选合格的芯片保存待用;
[0030] 15.将已成型的宝石电路与已成型好的面阵芯片利用铟柱互连工艺进行互连;
[0031] 16.对已互连组件的电路与面阵芯片间的区域进行低温环氧填充胶8灌胶固封,以便达到互连的可靠性与提高热传导的能力
[0032] 17.将互连后芯片的信号电极进行金丝球焊;
[0033] 18.在真空杜瓦测试瓶中进行一系列的测量,可测得器件的信号大小,噪声的量级,串音的范围等数据,从而筛选合格的多元面阵器件。
[0034] 这样我们就得到了8×8背照式碲镉汞长波光导型红外面阵探测器。