低角度内插装置及其方法转让专利

申请号 : CN200810170622.3

文献号 : CN101729882A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 徐正运

申请人 : 矽统科技股份有限公司

摘要 :

本发明提供一种低角度内插装置及其方法,所述低角度内插装置包括一低角度运算电路、一方向决定电路、一后处理电路、一内插器及一列缓冲器,是根据近似三角形的右角度运算矩阵及左角度运算矩阵,计算绝对误差总和,以正确检测棱线并有效减少锯齿图像。

权利要求 :

1.一种低角度内插装置,其特征在于,所述低角度内插装置用以根据一图场中相邻的一第一扫描线与一第二扫描线,产生一条位于所述第一扫描线与所述第二扫描线之间的一内插扫描线,所述装置包括:一低角度运算电路,接收所述第一扫描线的所有亮度值与所述第二扫描线的所有亮度值,根据一右角度运算矩阵及一左角度运算矩阵,计算及比较所述内插扫描线中每一像素的所有角度的绝对误差总和,以产生所述内插扫描线中每一像素的多个运算参数值;

一列缓冲器,用以储存上一条内插扫描线的所有像素的最终内插方向;

一方向决定电路,耦接至所述列缓冲器及所述低角度运算电路,根据所述内插扫描线中每一像素的所述这些运算参数值及上一条内插扫描线的所有像素的最终内插方向,决定所述内插扫描线中每一像素的临时内插角度;

一后处理电路,耦接至所述列缓冲器及所述方向决定电路,根据所述内插扫描线中所有像素的临时内插角度及上一条内插扫描线的所有像素的最终内插方向,进行内插方向校正处理,以决定所述内插扫描线中每一像素的最终内插角度及最终内插方向;以及一内插器,耦接至所述后处理电路,接收所述内插扫描线中每一像素的最终内插角度、所述第一扫描线中所有像素的亮度值与色度值及所述第二扫描线中所有像素的亮度值与色度值,并根据所述右角度运算矩阵及所述左角度运算矩阵,计算所述内插扫描线中每一像素的色度误差绝对值,并据以进行所述最终内插角度的内插处理或九十度内插处理,进而得到所述内插扫描线中每一像素的亮度值及色度值;

其中,所述最终内插角度及所述临时最终内插角度均包括内插方向的信息。

2.如权利要求1所述的低角度内插装置,其特征在于,所述低角度内插装置更包括:

一中值滤波器,耦接至所述内插器,对所述内插扫描线中最终内插方向不一致的像素,进行所述这些像素的亮度值及色度值的中值滤波处理。

3.如权利要求1所述的低角度内插装置,其特征在于,所述这些运算参数值至少包括一右角度绝对误差最小总和、一右角度、一左角度绝对误差最小总和、一左角度及一九十度绝对误差总和。

4.如权利要求1所述的低角度内插装置,其特征在于,所述右角度运算矩阵的宽度及所述左角度运算矩阵的宽度均随着角度的减少而增加。

5.如权利要求1所述的低角度内插装置,其特征在于,所述右角度运算矩阵及所述左角度运算矩阵各分成r种角度,每一种角度分别包括一对上矩阵与下矩阵,而r为一正整数。

6.如权利要求5所述的低角度内插装置,其特征在于,所述低角度运算电路包括:

一渐层补偿单元,对于所述内插扫描线的每一像素,用以根据所述像素周围的所述第一扫描线与所述第二扫描线在一渐层视窗范围内,水平及垂直方向上产生的亮度差异绝对值总和,来补偿所述像素的九十度绝对误差总和;以及一裂角补偿单元,对于所述内插扫描线的每一像素,通过统计每一种角度的上矩阵及下矩阵的视窗和棱线终点重迭的程度,用以补偿所述像素的r个左角度绝对误差总和及r个右角度绝对误差总和。

7.权利要求6所述的低角度内插装置,其特征在于,所述低角度运算电路更包括一斜率补偿单元,对于所述内插扫描线的每一像素,根据一预设补偿值及r,等比例反向补偿所述像素的所有角度的绝对误差总和。

8.如权利要求1所述的低角度内插装置,其特征在于,所述方向决定电路包括:

一左右决定电路,根据所述内插扫描线的每一像素的所述右绝对误差最小总和、所述右角度、所述左绝对误差最小总和、所述左角度及上一条内插扫描线的所有像素的最终内插方向,分配一方向旗标,以决定所述内插扫描线中每一像素的初步内插角度及其相对应的绝对误差最小总和;以及一方向选取电路,根据所述内插扫描线中每一像素的初步内插角度及其相对应的绝对误差最小总和与所述九十度绝对误差总和,决定所述临时内插角度;

其中,所述方向旗标是一左角度强旗标、一左角度弱旗标、一右角度强旗标及一右角度弱旗标的其中之一。

9.如权利要求8所述的低角度内插装置,其特征在于,所述左右决定电路是将所述内插扫描线中具有所述右角度强旗标的像素的初步内插角度设定为所述右角度,以及将所述内插扫描线中具有所述左角度强旗标的像素的初步内插角度设定为所述左角度。

10.如权利要求9所述的低角度内插装置,其特征在于,所述左右决定电路包括:

一第一辅助判定单元,耦接所述低角度运算电路,依循所述内插扫描线的一特定方向,若所述内插扫描线中包括连续x个左角度强旗标的像素跟随着y个左角度弱旗标或右角度弱旗标的像素,将所述y个左角度弱旗标或右角度弱旗标的像素的初步内插角度设定为所述左角度,以及,依循所述特定方向,若所述内插扫描线中包括连续x个右角度强旗标的像素跟随着y个右角度弱旗标或左角度弱旗标的像素,则将所述y个右角度弱旗标或左角度弱旗标的像素的初步内插角度设定为所述右角度,其中,x、y为正整数;以及一第二辅助判定单元,耦接所述第一辅助判定单元及所述列缓冲器,对于将所述内插扫描线中具有所述右角度弱旗标或所述左角度弱旗标的像素,根据所述像素相对应于所述左角度及所述右角度的上一条内插扫描线的二个像素的最终内插方向,将所述像素的初步内插角度设定为所述右角度、所述左角度及九十度的其中之一。

11.如权利要求1所述的低角度内插装置,其特征在于,所述后处理电路包括:

一复杂场景分析单元,对于所述内插扫描线的每一像素,在一场景视窗范围内,计算所述第一扫描线与所述第二扫描线中水平方向上亮度差异绝对值总和,若所述亮度差异绝对值总和大于一场景临界值,将所述像素的最终内插角度设定为九十度;

一冲突方向校正单元,对于所述内插扫描线中位于一冲突视窗内具有一特定冲突态样的至少二像素,根据本身的临时内插角度及上一条内插扫描线的所有像素的最终内插方向,决定所述这些像素的最终内插角度;

一角度扩充电路,在所述内插扫描线中,若具有一第一内插方向的一第一群像素及一第二群像素夹着一个内插角度为九十度的一第三群像素,则将所述第三群像素的最终内插方向设定为所述第一内插方向,其中,所述第一内插方向为所述左角度及所述右角度的其中之一,同时,所述第一群像素及所述第二群像素间的所述最终内插角度差异值小于一第一预设角度而且所述第三群像素内无棱线存在;以及一角度排除电路,在所述内插扫描线中,若一个内插角度为九十度的一第四群像素及一第五群像素夹着一个具有一第一内插角度的第六群像素,则将所述第六群像素的最终内插角度设定为九十度,其中所述第一内插角度小于一第二预设角度。

12.如权利要求11所述的低角度内插装置,其特征在于,所述特定冲突态样为LR、RL、LNR、RNL、LNNR及RNNL的其中之一。

13.如权利要求1所述的低角度内插装置,其特征在于,当所述色度误差绝对值大于一色度误差临界值时,所述内插器是进行九十度内插处理,否则,进行所述最终内插角度的内插处理。

14.一种低角度内插方法,其特征在于,所述低角度内插方法用以根据一图场中相邻的一第一扫描线与一第二扫描线,产生一条位于所述第一扫描线与所述第二扫描线之间的一内插扫描线,所述方法包括以下步骤:根据所述第一扫描线的所有亮度值、与所述第二扫描线的所有亮度值、一右角度运算矩阵及一左角度运算矩阵,计算及比较所述内插扫描线中每一像素的所有角度的绝对误差总和,以产生所述内插扫描线中每一像素的多个运算参数值;

根据所述内插扫描线中每一像素的所述这些运算参数值及上一条内插扫描线的所有像素的最终内插方向,决定所述内插扫描线中所有像素的临时内插角度;

根据所述内插扫描线中所有像素的所述临时内插角度及上一条内插扫描线中每一像素的最终内插方向,进行内插方向校正处理,以决定所述内插扫描线中所有像素的最终内插角度及最终内插方向;以及根据所述内插扫描线中每一像素的最终内插角度、所述第一扫描线中所有像素的亮度值与色度值、所述第二扫描线中所有像素的亮度值与色度值,所述右角度运算矩阵及所述左角度运算矩阵,计算所述内插扫描线中每一像素的色度误差绝对值,并据以进行所述最终内插角度内插处理或九十度内插处理,进而得到所述内插扫描线中每一像素的亮度值及色度值;

其中,所述最终内插角度及所述临时最终内插角度均包括内插方向的信息。

15.如权利要求14所述的低角度内插方法,其特征在于,所述低角度内插方法更包括:

对所述内插扫描线中最终内插方向不一致的像素,进行所述这些像素的亮度值及色度值的中值滤波处理。

16.如权利要求14所述的低角度内插方法,其特征在于,所述这些运算参数值至少包括一右角度绝对误差最小总和、一右角度、一左角度绝对误差最小总和、一左角度及一九十度绝对误差总和。

17.如权利要求14所述的低角度内插方法,其特征在于,所述右角度运算矩阵的宽度及所述左角度运算矩阵的宽度均随着角度的减少而增加。

18.如权利要求14所述的低角度内插方法,其特征在于,所述右角度运算矩阵及所述左角度运算矩阵各分成r种角度,每一种角度分别包括一对上矩阵与下矩阵,而r为一正整数。

19.如权利要求18所述的低角度内插方法,其特征在于,所述计算及比较步骤包括:

计算根据所述像素周围的所述第一扫描线与所述第二扫描线在一渐层视窗范围内,水平及垂直方向上的亮度差异绝对值总和,以补偿所述像素的九十度绝对误差总和;以及通过统计每一种角度的上矩阵及下矩阵的视窗和棱线终点重迭的程度,补偿所述像素的r个左角度绝对误差总和及r个右角度绝对误差总和。

20.如权利要求19所述的低角度内插方法,其特征在于,所述计算及比较步骤更包括:

根据一预设补偿值及r,等比例反向补偿所述像素的所有角度的绝对误差总和。

21.如权利要求14所述的低角度内插方法,其特征在于,所述决定所述内插扫描线中所有像素的所述临时内插角度步骤包括:根据所述内插扫描线的每一像素的所述右绝对误差最小总和、所述右角度、所述左绝对误差最小总和、所述左角度及上一条内插扫描线的最终内插方向,分配一方向旗标,以决定所述内插扫描线中每一像素的初步内插角度及其相对应的绝对误差最小总和;以及根据所述内插扫描线中每一像素的初步内插角度及其相对应的绝对误差最小总和与所述九十度绝对误差总和,决定所述临时内插角度;

其中,所述方向旗标是一左角度强旗标、一左角度弱旗标、一右角度强旗标及一右角度弱旗标的其中之一。

22.如权利要求21所述的低角度内插方法,其特征在于,所述分配所述方向旗标步骤包括:

将所述内插扫描线中具有所述右角度强旗标的像素的初步内插角度设定为所述右角度;

将所述内插扫描线中具有所述左角度强旗标的像素的初步内插角度设定为所述左角度;

依循所述内插扫描线的一特定方向,若所述内插扫描线中包括连续x个左角度强旗标的像素跟随着y个左角度弱旗标或右角度弱旗标的像素,将所述y个左角度弱旗标或右角度弱旗标的像素的初步内插角度设定为所述左角度;

依循所述特定方向,若所述内插扫描线中包括连续x个右角度强旗标的像素跟随着y个右角度弱旗标或左角度弱旗标的像素,则将所述y个右角度弱旗标或左角度弱旗标的像素的初步内插角度设定为所述右角度,其中,x、y为正整数;以及对于将所述内插扫描线中具有所述右角度弱旗标或所述左角度弱旗标的像素,根据所述像素相对应于所述左角度及所述右角度的上一条内插扫描线的二个像素的最终内插方向,将所述像素的初步内插角度设定为所述右角度、所述左角度及九十度的其中之一。

23.如权利要求14所述的低角度内插方法,其特征在于,所述进行内插方向校正处理步骤包括:对于所述内插扫描线的每一像素,在一场景视窗范围内,计算所述第一扫描线与所述第二扫描线中水平方向上亮度差异绝对值总和,若所述亮度差异绝对值总和大于一场景临界值,将所述像素的最终内插角度设定为九十度;

对于所述内插扫描线中位于一冲突视窗内具有一特定冲突态样的至少二像素,根据本身的内插角度及上一条内插扫描线的所有像素的最终内插方向,决定所述这些像素的最终内插角度;

在所述内插扫描线中,若具有一第一内插方向的一第一群像素及一第二群像素夹着一个内插角度为九十度的一第三群像素,则将所述第三群像素的最终内插方向设定为所述第一内插方向,其中,所述第一内插方向为所述左角度及所述右角度的其中之一,同时,所述第一群像素及所述第二群像素间的所述最终内插角度差异值小于一第一预设角度而且所述第三群像素内无棱线存在;以及在所述内插扫描线中,若一个内插角度为九十度的一第四群像素及一第五群像素夹着一个具有一第一内插角度的第六群像素,则将所述第六群像素的最终内插角度设定为九十度,其中所述第一内插角度小于一第二预设角度。

24.如权利要求23所述的低角度内插方法,其特征在于,所述特定冲突态样为LR、RL、LNR、RNL、RNNL及LNNR的其中之一。

25.如权利要求14所述的低角度内插方法,其特征在于,在所述计算所述内插扫描线中每一像素的所述色度误差绝对值的步骤中,当所述色度误差绝对值大于一色度误差临界值时,进行九十度内插处理,否则,进行所述最终内插角度的内插处理。

说明书 :

低角度内插装置及其方法

技术领域

[0001] 本发明有关图像处理技术,尤有关于一种低角度内插(low angleinterpolation)装置及其方法。

背景技术

[0002] 去 交 错 (deinterlacing) 是 将 交 错 式 (interlace) 图 像 信 号 转换为渐进式(progressive)图像信号的一种程序,一般分为单一场去交错(intra-fielddeinterlacing)、场间去交错(intra-field deinterlacing)、动态适应性(motionadaptive)去交错及动态补偿(motion compensated)去交错等等。而低角度内插法是属于单一场去交错的其中的一种方法,观念很简单,是通过检测棱线(edge)及找出所述棱线方向(edge direction)或角度,再沿着所述棱线方向来进行内插。
[0003] 至于如何正确检测棱线及得到正确棱线方向以有效减少锯齿图像及频率混迭(frequency alias)现象的发生,实为目前业界面对的一大挑战。

发明内容

[0004] 有鉴于上述问题,本发明目的之一为提供一种低角度内插装置,是根据似三角形的右角度运算矩阵及左角度运算矩阵,计算绝对误差总和(sum ofabsolute difference,SAD),以正确检测棱线并有效减少锯齿图像。
[0005] 为达成上述目的,本发明的低角度内插装置,是用以根据一图场中相邻的一第一扫描线与一第二扫描线,产生一条位于所述第一扫描线与所述第二扫描线之间的一内插扫描线,所述装置包括:一低角度运算电路,接收所述第一扫描线的所有亮度值与所述第二扫描线的所有亮度值,根据一右角度运算矩阵及一左角度运算矩阵,计算及比较所述内插扫描线中每一像素的所有角度的绝对误差总和,以产生所述内插扫描线中每一像素的多个运算参数值;一列缓冲器,用以储存上一条内插扫描线的所有像素的最终内插方向;一方向决定电路,耦接至所述列缓冲器及所述低角度运算电路,根据所述内插扫描线中每一像素的所述这些运算参数值及上一条内插扫描线的所有像素的最终内插方向,决定所述内插扫描线中每一像素的临时内插角度;一后处理电路,耦接至所述列缓冲器及所述方向决定电路,根据所述内插扫描线中所有像素的临时内插角度及上一条内插扫描线的所有像素的最终内插方向,进行内插方向校正处理,以决定所述内插扫描线中每一像素的最终内插角度及最终内插方向;以及,一内插器,耦接至所述后处理电路,接收所述内插扫描线中每一像素的最终内插角度、所述第一扫描线中所有像素的亮度值与色度值及所述第二扫描线中所有像素的亮度值与色度值,并根据所述右角度运算矩阵及所述左角度运算矩阵,计算所述内插扫描线中每一像素的色度误差绝对值,并据以进行所述最终内插角度的内插处理或九十度内插处理,进而得到所述内插扫描线中每一像素的亮度值及色度值;其中,所述最终内插角度及所述临时最终内插角度均包括内插方向的信息。
[0006] 本发明另一个目的为提供一种低角度内插方法,是用以根据一图场中相邻的一第一扫描线与一第二扫描线,产生一条位于所述第一扫描线与所述第二扫描线之间的一内插扫描线,所述方法包括以下步骤:根据所述第一扫描线的所有亮度值、与所述第二扫描线的所有亮度值、一右角度运算矩阵及一左角度运算矩阵,计算及比较所述内插扫描线中每一像素的所有角度的绝对误差总和,以产生所述内插扫描线中每一像素的多个运算参数值;根据所述内插扫描线中每一像素的所述这些运算参数值及上一条内插扫描线的所有像素的最终内插方向,决定所述内插扫描线中所有像素的临时内插角度;根据所述内插扫描线中所有像素的所述临时内插角度及上一条内插扫描线中每一像素的最终内插方向,进行内插方向校正处理,以决定所述内插扫描线中所有像素的最终内插角度及最终内插方向;以及,根据所述内插扫描线中每一像素的最终内插角度、所述第一扫描线中所有像素的亮度值与色度值、所述第二扫描线中所有像素的亮度值与色度值,所述右角度运算矩阵及所述左角度运算矩阵,计算所述内插扫描线中每一像素的色度误差绝对值,并据以进行所述最终内插角度内插处理或九十度内插处理,进而得到所述内插扫描线中每一像素的亮度值及色度值;其中,所述最终内插角度及所述临时最终内插角度均包括内插方向的信息。
[0007] 本发明的有益效果在于:本发明提供的低角度内插装置及其方法,正确检测棱线及得到正确棱线方向,以有效减少锯齿图像及频率混迭现象的发生。

附图说明

[0008] 图1显示一图场的局部区域,在去交错过程中,已存在的扫描线及需进行内插的扫描线的关系示意图。
[0009] 图2为本发明低角度内插装置的一实施例的架构示意图。
[0010] 图3A与图3B显示本发明的右角度运算矩阵与左角度运算矩阵的一实施例。
[0011] 图4显示具有相反渐层效果的局部扫描线L(i-1)、L(i+1)的一个例子。
[0012] 图5A是经过裂角补偿后的理想内插图像。
[0013] 图5B是未经裂角补偿处理的内插图像。
[0014] 图5C显示一图场中一条棱线及其二端终点的一个例子。
[0015] 图6显示本发明方向决定电路一实施例的架构图。
[0016] 图7A显示连续3个具有GL的像素的左角度有效性可以扩及到其后连续3个具有WL的像素的一个例子。
[0017] 图7B显示无法找到连续3个具有GL的像素,故具有WL或WR的像素的内插方向还是无法决定的一个例子。
[0018] 图7C显示一个具有SL的像素的左角度有效性可以扩及到其后连续3个具有WL的像素的一个例子。
[0019] 图7D显示利用列缓冲器260所储存的上一条内插扫描线L(i-2)的所有像素的最终内插方向dir_f,来帮忙判定内插方向仍未定的像素的一个例子。
[0020] 图8显示本发明后处理电路的一实施例的架构图。
[0021] 图9显示以像素p(i,n)为中心,在一预设场景视窗宽度等于21点中,比较扫描线L(i-1)、L(i+1)中每一像素与其左右像素的亮度差异YD的一个例子。
[0022] 图10A显示冲突视窗是LR态样的一个例子。
[0023] 图10B显示冲突视窗是LNR态样的一个例子。
[0024] 图11A显示内插方向为R的二群像素之间夹着另一群内插方向为N的像素的一个例子。
[0025] 图11B显示内插方向为N的二群像素之间夹着另一群低角度像素的一个例子。
[0026] 图12显示内插扫描线L(i)中的部分像素的最终内插方向dir_f的一个例子。
[0027] 图13是本发明低角度内插方法的流程图。
[0028] 附图标号
[0029] 200低角度内插装置
[0030] 210低角度运算电路 220方向决定电路
[0031] 230后处理电路 240内插器
[0032] 250适应性五点中值滤波器
[0033] 260列缓冲器 280图场
[0034] 610左右决定电路 620选取电路
[0035] 611GL/GR辅助判定单元
[0036] 612SL/SR辅助判定单元
[0037] 613前内插扫描线辅助判定单元
[0038] 810复杂场景分析单元
[0039] 820中突方向校正单元
[0040] 830角度扩张单元 840角度排除单元

具体实施方式

[0041] 兹配合下列图示、实施例的详细说明及权利要求,将上述及本发明的其他目的与优点详述于后。
[0042] 本发明的低角度内插装置可以利用硬件、软件、固件(firmware)的其中之一、或前三者的任意组合来实施,例如:纯硬件实施的例子为一现场可编程逻辑门阵列(field programmable gate array,FPGA)设计、或一特殊应用集成电路(application specific integrated circuit,ASIC)设计,而硬件与固件合并实施的例子为一数字信号处理器(digital signal processor,DSP)及其内建固件的组合。
[0043] 图1显示一图场的局部区域,在去交错过程中,已存在的扫描线及需进行内插的扫描线的关系示意图。参考图1,每一个圆圈代表一个像素,其中的实线圆圈共有四列,表示已知像素值(Y、U、V信息)的扫描线;而虚线圆圈共有三列,表示所述图场中需进行内插的扫描线,其像素值目前未知。
[0044] 图2为本发明低角度内插装置的一实施例的架构示意图。参考图2,本发明低角度内插装置200包括一低角度运算电路210、一方向决定电路220、一后处理电路230、一内插器240、一适应性五点中值滤波器(adaptive 5-pointmedian filter)250及一列缓冲器260。低角度内插装置200用以接收一图场280(以下以NTSC信号为例作说明,是由240条扫描线所组成,而每条扫描线包括720个像素,每一像素均包括Y、U、V信息)中的任二条相邻扫描线(假设为图1的L(i-1)、L(i+1)),以产生一条位于其间的内插扫描线(假设为第
1图的L(i))。
[0045] 图3A与图3B显示本发明的右角度运算矩阵与左角度运算矩阵的一实施例。图3A与图3B的横轴表示像素位置索引值,位置索引值为0之处是对齐目前内插扫描线L(i)将要计算绝对误差总和(sum of absolute difference,SAD)的像素。在本实施例中,纵轴共有十种角度索引值,角度索引值越小角度越接近九十度,而角度索引值越大角度越低、越接近水平。需注意的是,角度索引值还包括内插方向的信息,如图3A的角度索引值均为奇数,表示内插方向为右角度;而图3B的角度索引值为偶数,表示内插方向为左角度;至于角度索引值等于0时,则表示内插方向为九十度。另外,图中每一种角度均包括一对上矩阵与下矩阵,计算SAD值时,上矩阵套用在扫描线L(i-1),而下矩阵套用在扫描线L(i+1)。从图中可以观察到,右角度运算矩阵与左角度运算矩阵的形状近似于三角形,角度索引值越大(角度越低),其相对应的一对上矩阵与下矩阵运算矩阵的宽度越宽(横轴),参考的像素点越多,表示在计算SAD值时,除非真的有低角度棱线的存在,否则不容易挑到低角度。当上矩阵与下矩阵的宽度为奇数点时,其中心各有一个深色点;而当上矩阵与下矩阵的宽度为偶数点时,其中心各有二个深色点,这些深色点是在其相对应的角度索引值当作最后内插角度时,内插器240当作内插用的参考点。
[0046] 请注意,以上为方便解释,将图3A与图3B的纵轴分为十种角度,但本发明不以此为限,实际应用时,只要右角度运算矩阵与左角度运算矩阵的整体形状近似于三角形,无论斜率大小及角度索引值多寡,都属本发明的范畴。
[0047] 低角度运算电路210接收图场280的二条相邻扫描线L(i-1)、L(i+1)的所有像素的亮度值(在图2中以L(i-1)Y、L(i+1)Y来表示),根据图3A的右角度运算矩阵与图3B的左角度运算矩阵,为内插扫描线L(i)的每一个像素(从左到右,共720个像素)计算九十度的绝对误差总和sad_n、10个不同右角度的SAD值及10个不同左角度的SAD值,并比较10个左角度SAD值大小及10个右角度SAD值大小,以得到右角度绝对误差最小总和min_sad_r及其角度angle_r、左角度绝对误差最小总和min_sad_l及其角度angle_l与九十度的绝对误差总和sad_n。请注意,本说明书中的角度angle_r、angle_l、angle_lr、angle_t及angle_f均利用角度索引值表示其角度。
[0048] 以下介绍本发明低角度运算电路210如何搭配图3A的右角度运算矩阵来计算右角度绝对误差总和sad_r及九十度的绝对误差总和sad n。以计算图1内插扫描线L(i)的第n个像素(即p(i,n))的右角度6的SAD值为例,图3A的角度6包括一对宽度等于4的上矩阵与下矩阵,上矩阵套用在扫描线L(i-1)像素p(i-1,n)~p(i-1,n+3),而下矩阵套用在扫描线L(i+1)的像素p(i+1,n-3)~p(i+1,n)。图1像素p(i,n)的角度6的SAD值等于上下矩阵中取相同角度的像素间亮度差绝对值的总和,也就是sad_r(6)=abs(y(i-1,n+3)-y(i+1,n))+abs(y(i-1,n+2)-y(i+1,n-1))+abs(y(i-1,n+1)-y(i+1,n-2))+abs(y(i-1,n)-y(i+1,n-3))。由于其他角度(九十度除外)的SAD计算方式都相同,在此不再赘述。低角度运算电路210利用上述方式初步计算出十个右角度绝对误差总和sad_r(2)~sad_r(20)及十个左角度绝对误差总和sad_l(1)~sad_l(19)。
[0049] 至于图1像素p(i,n)的九十度的绝对误差总和sad_n=abs(y(i-1,n-1)-y(i+1,n-1))×w0+abs(y(i-1,n)-y(i+1,n))×w1+abs(y(i-1,n+1)-y(i+1,n+1))×w2……(1)。在本实施例中,参数w0=w2=0.25,w1=0.5,而在其他实施例中,参数w0、w1、w2则可依据图像内容来调整。
[0050] 接下来,低角度运算电路210利用三个补偿单元来分别补偿十个右角度绝对误差总和sad_r(2)~sad_r(20)、十个左角度绝对误差总和sad_l(1)~sad_l(19)及九十度的绝对误差总和sad_n后,才开始比较SAD值大小。以下介绍三个补偿单元(图未示)。
[0051] 第一个渐层补偿单元是应用于九十度角的SAD补偿。图4显示具有相反渐层效果的局部扫描线L(i-1)、L(i+1)的一个例子。参考图4,扫描线L(i-1)、L(i+1)在像素p(i,n)的附近呈现相反渐层、但亮度接近的现象,虽然观察者可以看到画面上一个明显的右角度棱线,但若依照上述方程式(1)来计算sad_n时,最后得到的sad_n值会偏小,故方向决定电路220极可能选到九十度作为临时内插方向dir_t,结果像素p(i,n)被内插出来的亮度值会偏向白色,而使得图像中的右角度棱线看起来有断掉的不连续现象。为避免此现象,本发明对上述sad_n值再加上一个渐层补偿值sad_nc=abs((y(i-1,n-2)-y(i-1,n-1))-(y(i+1,n-2)-y(i+1,n-1))×w3+abs((y(i-1,n-1)-y(i-1,n))-(y(i+1,n-1)-y(i+1,n))×w4+abs((y(i-1,n)-y(i-1,n+1))-(y(i+1,n)-y(i+1,n+1))×w4+abs((y(i-1,n+1)-y(i-1,n+2))-(y(i+1,n+1)-y(i+1,n+2))×w3....(2)[0052] 其中,参数w3、w4可依据图像内容来调整大小。上述渐层补偿值sad nc的方程式(2)主要是利用扫描线L(i-1)、L(i+1)呈现渐层效果时,在一渐层视窗(宽度等于5)内水平及垂直方向上产生的亮度差异绝对值总和,来补偿sad_n。因此,当扫描线L(i-1)、L(i+1)是反方向渐层时,sad_nc值会偏大,使得像素p(i,n)补偿后的九十度的绝对误差总和(sad_n=sad_n+sad_nc)变大,最后方向决定电路220选到九十度的机率会变小,而低角度被选到的机率则增加,避免了上述的棱线不连续现象。另一方面,若扫描线L(i-1)、L(i+1)是同方向渐层或无渐层时,得到的sad_nc值偏小,比较不会影响最后方向决定电路220选到九十度的机率。在另一实施例中,sad_nc可设一极限值,若超过及极限值即以极限值取代,以避免过度补偿。请注意,本发明并未限制渐层视窗的宽度,可视需要来调整。
[0053] 第二个裂角(break angle)补偿单元是应用于右角度与左角度的SAD补偿。图5A是经过裂角补偿后的理想内插图像,图5B是未经裂角补偿处理的内插图像。图5B的例子因为没有进行裂角检测,故在分别比较像素a、b、c、d各自的SAD值时,会发现左角度绝对误差总和值sad_l最小,而容易被内插为白色,进而在L型棱线的边缘形成一个裂角。图5C显示一图场中一条棱线及其二端终点的一个例子。为检测一个像素是否为位于棱线的终点(即裂角检测),本发明是以横跨上下三条扫描线的像素亮度差异绝对值(垂直方向)做判断,如图5C中的直立虚线框所示。以检测像素p(i-1,n+6)是否为位于棱线的终点为例,若像素p(i-1,n+6)及p(i-3,n+6)间的亮度差异绝对值以及p(i-1,n+6)及p(i+1,n+6)间的亮度差异绝对值均小于一临界值th1,即abs(y(i-3,n+6)-y(i-1,n+6))<th1&&abs(y(i-1,n+6)-y(i+1,n+6))<th1,则本发明会将像素p(i-1,n+6)当作位于棱线的终点,并将像素p(i-1,n+6)的裂角旗标(breakangle flag)设为1(亦即break(i-1,n+6)=1),否则,裂角旗标break(i-1,n+6)=0。
[0054] 本发明观察到,计算内插扫描线L(i)任一像素的十个sad_r值及sad_1值时均会使用到十组不同宽度的上矩阵及下矩阵,若一组上矩阵及下矩阵的视窗和棱线终点重迭的程度越高,则裂角的机率越大,故必须统计每一角度的上矩阵及下矩阵的视窗和棱线终点重迭的程度,亦即累加每一角度的上矩阵及下矩阵的视窗范围内所有像素的裂角旗标值(value of break angle flag),以补偿所述角度的SAD值。以图5B的例子而言,就必须补偿像素a、b、c、d的左角度绝对误差总和值sad_l,以减少方向决定电路220挑到左角度的机率,进而避免上述裂角问题。以补偿图5C的像素p(i,n)的sad_r(4)值为例,根据图3A的右角度运算矩阵,右角度4包括一对宽度等于3的上矩阵与下矩阵,本发明先累加上矩阵所套用的像素p(i-1,n)、p(i-1,n+1)、p(i-1,n+2)的裂角旗标值,及下矩阵套用的像素p(i+1,n-2)、p(i+1,n-1)、p(i+1,n)的裂角旗标值,以补偿至像素p(i,n)的右角度4的SAD值,补偿方法如下:sad_c(4)=(break(i-1,n)+break(i-1,n+1)+break(i-1,n+2)+break(i+1,n)+break(i+1,n-1)+break(i+1,n-2))
[0055] if(sad_c(4)>break_th 1(4))
[0056] sad_r(4)=sad_r(4)+(sad_c(4)*break_th2)
[0057] else
[0058] sad_r(4)=sad_r(4)
[0059] 其中,允许值break_th1为角度索引值的函式,意谓不同角度索引值允许不同数量的裂角旗标值,超过允许值break_th1的裂角旗标值才会贡献对应的补偿值sad_c于sad_r。由于其他角度(九十度除外)的SAD补偿方式都相同,在此不再赘述。
[0060] 第三个斜率补偿单元是应用于所有角度的SAD补偿。请注意,这个斜率补偿机制并非必须实施的,是应用在一些特定的情况,例如:图3A的右角度运算矩阵及图3B的左角度运算矩阵的斜率设太斜或太陡,而且所述斜率是以硬件实施、不方便再更改时,就可以启动这个斜率补偿机制。若左(右)角度运算矩阵的斜率太斜,表示上下矩阵的宽度很宽,低角度比较不容易被选上,此时,本发明可通过调整各角度的SAD值来达到反向调整左(右)角度运算矩阵的斜率的功效。斜率补偿单元的一实施例的方程式如下:
[0061] sad_n=sad_n+10×step
[0062] for i=1to 10
[0063] sad_r(2×i)=sad_r(2×i)+(10-i)×step;
[0064] sad_l(2×i-1)=sad_l(2×i-1)+(10-i)×step;
[0065] end
[0066] 从上面方程式可以观察到,角度索引值越大时,补偿值越小,近似于将左(右)角度运算矩阵的斜率变陡(即三角形的底变窄)的效果,使得低角度比较容易被选上。反之,若左(右)角度运算矩阵的斜率太陡,就可以设计另一个方程式使得角度索引值越大时,补偿值也越大,即可达到反向调整左(右)角度运算矩阵的斜率的功效,使得低角度比较不容易被选上。
[0067] 在经过上述三个补偿单元的补偿后,低角度运算电路210为内插扫描线L(i)的每一个像素(从左到右,共720个像素),以一次处理一个像素的方式,比较右角度10个不同的sad_r值以得到右角度绝对误差最小总和min_sad_r及其角度angle_r、及比较左角度10个不同的sad_l值以得到左角度绝对误差最小总和min_sad_l及其角度angle_r,最后将min_sad_r、angle_r、min_sad_l、angle_1与sad_n输出至方向决定电路220。
[0068] 列缓冲器260是储存上一条内插扫描线L(i-2)的所有像素的最终内插方向dir_f,在本实施例中,每一像素是以二个位元来表示其最终内插方向为右角度、左角度及九十度的其中之一,故列缓冲器260的大小必须大于或等于720x2位元。
[0069] 图6显示本发明方向决定电路一实施例的架构图。参考图6,方向决定电路220包括一左右决定电路610及一选取电路620。方向决定电路220以一次处理一个像素(pixel by pixel)的方式,根据内插扫描线L(i)中所有像素的min_sad_r、min_sad_l、angle_r、angle_r、sad_n及列缓冲器260所储存的上一条内插扫描线L(i-2)中所有像素的最终内插方向dir_f,以决定内插扫描线L(i)的每个像素的临时内插角度angle_t。方向决定电路220接收内插扫描线L(i)的每一个像素的min_sad_r及min_sad_l后,首先根据下列六个不同方程式,以分配一个最相符的方向旗标(flag)给每一像素。
[0070] SR=>min_sad_l>(min_sad_r+big_dif)
[0071] GR=>min_sad_1>(min_sad_r+normal_dif)
[0072] WR=>(min_sad_l>min_sad_r)&&(min_sad_l<=(min_sad_r+[0073] normal_dif))
[0074] SL=>min_sad_r>(min_sad_l+big_dif)
[0075] GL=>min_sad_r>(min_sad_l+normal_dif)
[0076] WL=>(min_sad_r>min_sad_1)&&(min_sad_r<=(min_sad_l+[0077] normal_dif))
[0078] 其中,参数big_dif必需大于参数normal_dif,而左角度方向旗标的强度排序是:SL>GL>WL,右角度方向旗标的强度排序则是:SR>GR>WR。
[0079] 在一整列刚分配到方向旗标的像素中,若方向旗标的强度在SL或GL之上,可直接判定所述像素的内插方向为左角度,而若方向旗标的强度在SR或GR之上,可直接判定所述像素的内插方向为右角度。至于方向旗标的强度为WL及WR时,因为方向指标性比较弱,故必须再利用以下三个判定单元来帮忙做判断。
[0080] GL/GR辅助判定单元611,是利用以下准则来做判定:连续x个具有GL(或GR)的像素可以影响其后连续y个具有WL(或WR)的像素的内插方向,其中x、y是可调整的。假设x=y=3,就图7A的例子而言,从左到右先找到连续3个具有GL的像素(a3~a5),则左角度的有效性可以扩及到跟随在后的连续3个具有WL(或WR)的像素(a6~a8),图中的问号表示其内插方向仍未决定。就图7B的例子而言,从左到右因为找不到连续3个具有GL的像素,故具有WL或WR的像素的内插方向还是无法决定。
[0081] SL/SR辅助判定单元612,是利用以下准则来做判定:一个具有SL(或SR)的像素可以影响其后连续z个具有WL(或WR)的像素的内插方向,其中z是可调整的。假设z=3,就图7C的例子而言,像素(b5)的方向旗标SL的左角度有效性可以扩及到跟随在后的连续3个具有WL的像素(b6~b8)。
[0082] 前内插扫描线辅助判定单元613,是利用列缓冲器260所储存的上一条内插扫描线L(i-2)的所有像素的最终内插方向dir_f,来帮忙判定内插方向仍悬而未决的像素。就图7D像素(d6)的例子而言,顺着angle_l方向找出去的像素(c4)的方向是L,顺着angle_r方向找出去的像素(c11)的方向也是L,左边是对的右边是错的,所以像素(d6)的内插方向应所述是左角度。就像素(d7)的例子而言,顺着angle_l方向找出去的像素(c5)的方向是N(九十度),顺着angle_r方向找出去的像素(c12)的方向是L,左边右边都是错的,此时像素(d7)的内插方向被设定为N(九十度)。就像素(d8)的例子而言,顺着angle_l方向找出去的像素(c6)的方向是L,顺着angle_r方向找出去的像素(c12)的方向是R,左边右边都是对的,此时像素(d8)的内插方向被设定为N(九十度)。
[0083] 经过上述三个单元的判定之后,左右决定电路610根据每一个像素的内插方向,输出相对应方向的min_sad_lr及其角度angle_lr至方向选取电路620,方向选取电路620接着比较min_sad-lr及sad_n的大小,以选取其中最小值当作sad_t并记录相对应的角度索引值angle_t,最后检查sad_t有没有大于一预设值max_sad(angle_t),若sad_t大于max_sad(angle_t),则将临时内插角度angle_t设为九十度。
[0084] 请注意,预设值max_sad(angle_t)是角度的函数,即不同角度angle_t的max_sad值会不同。另外,在图6显示的左右决定电路610的电路中,是按照GL/GR辅助判定单元611、SL/SR辅助判定单元612及前内插扫描线辅助判定单元613的顺序来执行。在另一实施例中,GL/GR辅助判定单元611及SL/SR辅助判定单元612的执行顺序可以交换,或者可以并联方式同时执行。
[0085] 图8显示本发明后处理电路的一实施例的架构图。本发明后处理电路230包括一复杂场景分析单元810、一冲突方向校正单元820、一角度扩张单元830及一角度排除单元840。后处理电路230根据内插扫描线L(i)中所有像素的angle_t及上一条内插扫描线L(i-2)中所有像素的最终内插方向dir_f,进行内插方向校正处理,以决定内插扫描线L(i)中每一像素的最终内插角度angle_f及最终内插方向dir_f,并将内插扫描线L(i)中每一像素的最终内插方向dir_f储存至列缓冲器260,以及将内插扫描线L(i)中每一像素的最终内插角度angle_f传送至内插器240。
[0086] 复杂场景分析单元810接收内插扫描线L(i)中所有像素的angle_t及扫描线L(i-1)、L(i+1)的所有像素的亮度值(Y),根据一场景视窗宽度,以内插扫描线L(i)的像素p(i,n)为中心,累计扫描线L(i-1)、L(i+1)中水平方向上亮度差异绝对值,若亮度差异绝对值>临界值th2时,代表是一个复杂场景,将像素p(i,n)的angle_t设定为九十度。如图9的例子所示,以像素p(i,n)为中心,假设预设场景视窗宽度等于2m+1点(m=10,m值是可调整的),以每三个像素为单位,分别计算视窗内的扫描线L(i-1)、L(i+1)中每一像素与其左右像素的亮度差异绝对值YD,并取YD与临界值th3间的最小值来做累计。以方程式表示如下:
[0087]
[0088]
[0089]
[0090] 若累计的亮度差异绝对值YD_sum>临界值th2时,代表视窗内是一个复杂场景,故将像素p(i,n)的angle_t设定为九十度。反之,若YD_sum<临界值th2时,代表视窗内是一个单纯场景,像素p(i,n)的angle_t维持不变。
[0091] 冲突方向校正单元820接收内插扫描线L(i)中所有像素的angle_t及列缓冲器260所储存的上一条内插扫描线L(i-2)的所有像素的最终内插方向dir_f,来帮忙校正内插扫描线L(i)中内插方向有冲突的像素。因为根据一般图像特性,内插方向不可能从左(或右)马上转成右(或左),故有冲突的内插方向包括以下六种态样:LR、RL、LNR、RNL、LNNR及RNNL,必须再确认其内插方向。图10A的例子是LR的态样,冲突方向校正单元820找到内插扫描线L(i)中LR态样的交界后,以交界处为中心点画一个左右对称的冲突视窗,并确认冲突视窗中的所有像素(e4~e9)的内插方向。像素e4~e6的临时内插方向分别为L,像素e4、e5再顺着临时内插角度找出去的像素f3的方向是N,方向是错的,应改为N。
另一方面,像素e7~e9的临时内插方向分别为R,像素e7~e9顺着临时内插角度找出去的像素g12~g14的方向是R,方向是正确的。
[0092] 此外,图10B的例子是LNR的态样,冲突方向校正单元820找到内插扫描线L(i)中LNR的态样后,以N为中心点画一个左右对称的冲突视窗,并确认内插扫描线L(i)的冲突视窗范围内的所有像素(h4~h8)的内插方向。像素h4、h5的临时内插方向分别为L,像素h4、h5再顺着临时内插角度找出去的像素g3的方向是N,方向是错的,应改为N。另一方面,像素h7、h9的临时内插方向分别为R,像素h7、h9再顺着临时内插角度找出去的像素g12、g13的方向是R,方向是正确的。
[0093] 角度扩张单元830比对内插扫描线L(i)本身所有像素的angle_t,若同一内插方向(L或R)的二群像素之间夹着另一群内插方向为N的像素,则将所述这些内插方向为N的像素改成同一方向,但先决条件是同一内插方向(L或R)的二群像素之间的内插角度差异不大以及内插方向为N的像素群之间是一平滑区、没有棱线存在。如图11A所示,从左至右,连续三个内插方向为R的像素p(i,n)~p(i,n+2)及另外连续三个内插方向同为R的像素p(i,n+9)~p(i,n+11)夹着连续六个内插方向为N的像素p(i,n+3)~p(i,n+8),如果像素p(i,n)~p(i,n+2)、p(i,n+9)~p(i,n+11)之间的角度差异不大(例如角度索引值只差2、4或6)且像素p(i,n+2)~p(i,n+9)间是一平滑区、没有棱线存在,角度扩张单元830会将像素p(i,n+3)~p(i,n+8)的内插方向校正为R,而像素p(i,n+3)~p(i,n+8)校正后的内插角度等于像素p(i,n+2)与像素p(i,n+9)的内插角度的平均(0.5×angle_t(i,n+2)+0.5×angle_t(i,n+9))。
[0094] 根据图像特性,内插角度越斜越低,所找出的棱线一定是一整段而非只有一、二个点,据此,角度排除单元840将一些散布在九十度中几个零散低角度的点均校正为九十度。如图11B所示,连续三个内插方向不为N的像素p(i,n+5)~p(i,n+7)夹在其他内插方向为N的像素p(i,n)~p(i,n+4)、p(i,n+8)~p(i,n+12)之间,如果像素p(i,n+5)~p(i,n+7)的角度索引值大于一角度临界值(亦即角度比较斜),角度排除单元840会将像素p(i,n+5)~p(i,n+7)的内插方向校正为N。最后,角度排除单元840将内插扫描线L(i)中每一像素的校正后的内插方向当作最终内插方向dir f储存至列缓冲器260,并将内插扫描线L(i)中每一像素的最终内插角度angle_f及传送至内插器240。
[0095] 需注意的是,在图8显示之后处理电路230的电路中,是按照复杂场景分析单元810、冲突方向校正单元820、角度扩张单元830及角度排除单元840的顺序来执行。在另一实施例中,复杂场景分析单元810、冲突方向校正单元820及角度扩张单元830可以并联方式同时执行,而角度排除单元840则是最后一个执行的元件。
[0096] 内插器240接收内插扫描线L(i)中每一像素的最终内插角度angle_f、扫描线L(i-1)中所有像素的亮度值(Y)与色度值(U、V)及扫描线L(i+1)中所有像素的亮度值(Y)与色度值(U、V)(在图2中以L(i-1)_YUV、L(i+1)_YUV来表示),并根据图3A的右角度运算矩阵及图3B的左角度运算矩阵,先计算每一像素的色度误差绝对值chroma_error。在本实施例中,色度误差绝对值chroma_error等于所述像素的最终内插角度angle_f所对应的一对上矩阵及下矩阵中,内插用的深色点间的UV误差绝对值的总和。举例而言,若图
1所显示为像素p(i,n)的最终内插角度angle_f相对应的一对上矩阵及下矩阵,因为矩阵宽度为偶数,故各有二个内插用的深色点,而像素p(i,n)的色度误差绝对值chroma_error= abs(u(i-1,n+1)+u(i-1,n+2)-u(i+1,n-1)-u(i+1,n-2))+abs(v(i-1,n+1)+v(i-1,n+2)-v(i+1,n-1)-v(i+1,n-2))。
[0097] 若色度误差绝对值chroma_error在预设值内,内插器240则进行angle_f的内插处理;反之,若色度误差绝对值chroma_error过大,则进行九十度的内插处理。依此,即得到内插扫描线L(i)中每一像素相对应的亮度值、色度值及最终内插方向(在图2中以L(i)_YUVD来表示)。
[0098] 最后,适应性五点中值滤波器250,对内插扫描线L(i)中最终内插方向dir_f不连续的像素,进行中值滤波处理。图12显示内插扫描线L(i)中的部分像素的最终内插方向dir_f的一个例子,图中三个虚线矩形标示出dir_f不连续之处。就最左边虚线矩形而言,适应性五点中值滤波器250先对内插扫描线L(i)的像素p(i,n)进行中值滤波,换言之,也就是将适应性五点中值滤波器250套用于扫描线L(i)的像素p(i,n-1)、p(i,n)、p(i,n+1)、扫描线L(i-1)的像素p(i-1,n)及扫描线L(i+1)的像素p(i+1,n)上,对上述五个像素的Y值取中间值,并选取相对应于中间值Y的像素,例如p(i,n-1)的Y为五点的中间值,则选取p(i,n-1)的Y、U、V为输出;之后,适应性五点中值滤波器250再对内插扫描线L(i)的像素p(i,n+1)进行中值滤波,换言之,也就是将适应性五点中值滤波器250套用于扫描线L(i)的像素p(i,n)、p(i,n+1)、p(i,n+2)、扫描线L(i-1)的像素p(i-1,n+1)及扫描线L(i+1)的像素p(i+1,n+1)上,并利用上述相同的方法,选取Y值为中间值的像素的Y、U、V值为输出。因此,对任一虚线矩形而言,总共需进行2次中值滤波处理,以滤除噪声,进而提高图像品质。
[0099] 当适应性五点中值滤波器250处理完内插扫描线L(i)之后,低角度内插装置200即完成对内插扫描线L(i)的所有内插及滤波程序。接着,低角度内插装置200随即接收图场280中的下二条相邻扫描线L(i+1)、L(i+3),以产生一条位于其间的内插扫描线L(i+2),重复以上步骤直到补满图场280内所有需内插扫描线为止。
[0100] 图13是本发明低角度内插方法的流程图。以下根据图2、图3A、图3B及图13说明本发明低角度内插方法的所有步骤。
[0101] 步骤S1310:计算及比较图场280的内插扫描线L(i)的每一像素的所有角度的绝对误差总和,以产生内插扫描线L(i)的每一像素的多个运算参数值。
[0102] 根据图场280的二条相邻扫描线L(i-1)、L(i+1)的所有像素的亮度值Y、图3A的右角度运算矩阵与图3B的左角度运算矩阵,为内插扫描线L(i)的每一个像素计算九十度的绝对误差总和sad_n、10个不同右角度的SAD值及10个不同左角度的SAD值,并比较其大小,以得到以下的运算参数值:右角度绝对误差最小总和min_sad_r及其角度angle_r、左角度绝对误差最小总和min_sad_l及其角度angle_l与九十度的绝对误差总和sad_n。
[0103] 步骤S1320:根据内插扫描线L(i)中每一像素的上述运算参数值及上一条内插扫描线L(i-2)中所有像素的最终内插方向dir_f,决定内插扫描线L(i)中所有像素的临时内插角度angle_t。
[0104] 以一次处理一个像素(pixel by pixel)的方式,根据内插扫描线L(i)中所有像素的min_sad_r、min_sad_l、angle_r、angle_r、sad_n及列缓冲器260所储存的上一条内插扫描线L(i-2)中所有像素的最终内插方向dir_f,以决定内插扫描线L(i)的每个像素的临时内插角度angle_t。
[0105] 步骤S1330:根据内插扫描线L(i)中所有像素的angle_t及上一条内插扫描线中所有像素的最终内插方向dir_f,进行内插方向校正处理,以决定内插扫描线L(i)中所有像素的最终内插角度angle_f及最终内插方向dir_f。
[0106] 步骤S1340:进行内插处理,以得到内插扫描线L(i)中每一像素的亮度值(Y)与色度值(U、V)。
[0107] 接收内插扫描线L(i)中每一像素的最终内插角度angle_f、扫描线L(i-1)中所有像素的亮度值(Y)与色度值(U、V)及扫描线L(i+1)中所有像素的亮度值(Y)与色度值(U、V),并根据图3A的右角度运算矩阵及图3B的左角度运算矩阵,先计算出色度误差绝对值chroma_error,若色度误差绝对值chroma_error在一预设值内,则进行最终内插角度angle_f的内插处理;反之,若色度误差绝对值chroma_error过大,则进行九十度内插处理。依此,即得到内插扫描线L(i)中每一像素相对应的亮度值(Y)、色度值(U、V)及最终内插方向dir_f。
[0108] 步骤S1350:对所述内插扫描线中最终内插方向不一致的像素,进行所述这些像素的YUV值的中值滤波处理。请注意,本步骤并非本发明低角度内插方法的必要步骤,但有滤除噪声、提高图像品质的功效。
[0109] 步骤S1360:判断本图场所有的内插扫描线是否已补满?若未补满,则跳到步骤S1370,否则结束所有流程。
[0110] 步骤S1370:i=i+1。递增i值后,回到步骤S1310,以根据图场280中的下二条相邻扫描线L(i+1)、L(i+3),产生一条位于其间的内插扫描线L(i+2)。
[0111] 在较佳实施例的详细说明中所提出的具体实施例仅用以方便说明本发明的技术内容,而非将本发明狭义地限制于上述实施例,在不超出本发明的精神及以下权利要求的情况,所做的种种变化实施,皆属于本发明的范围。