图像显示设备及其驱动方法转让专利

申请号 : CN200910161804.9

文献号 : CN101729917B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 丁愚南姜勋白因修

申请人 : 乐金显示有限公司

摘要 :

本发明提供了一种图像显示设备及其驱动方法。该图像显示设备包括:柱状透镜阵列;第一背光显示元件,其位于所述柱状透镜阵列上且以N×60Hz的帧频驱动,其中N是等于或大于1的整数;以及位于所述柱状透镜阵列下方的光源模块。所述第一背光显示元件在2D模式中显示2D格式的视频信号而在3D模式中显示N视点3D格式的视频信号。所述光源模块在2D模式中将表面光源形式的光照射到所述柱状透镜阵列上,而在3D模式中将多个线光源形式的光照射到所述柱状透镜阵列上。

权利要求 :

1.一种图像显示设备,该图像显示设备包括:

柱状透镜阵列;

第一背光显示元件,其位于所述柱状透镜阵列上且以N×60Hz的帧频驱动,其中N是等于或大于1的整数;以及光源模块,其位于所述柱状透镜阵列下方且使用多个可独立电控的像素来将光照射到所述柱状透镜阵列上,其中所述第一背光显示元件在2维(2D)模式中显示2D格式的视频信号而在3维(3D)模式中显示N视点3D格式的视频信号,其中所述光源模块在2D模式中将表面光源形式的光照射到所述柱状透镜阵列上,而在3D模式中将多个线光源形式的光照射到所述柱状透镜阵列上,所述多个线光源以均匀距离而彼此分隔。

2.根据权利要求1所述的图像显示设备,其中所述光源模块包括:包括光源的背光单元,该背光单元通过所述光源产生光;以及

第二背光显示元件,其位于所述背光单元和所述柱状透镜阵列之间,所述第二背光显示元件包括多个可独立电控的像素。

3.根据权利要求2所述的图像显示设备,其中所述第二背光显示元件与所述第一背光显示元件同步且以N×60Hz的帧频驱动,其中所述第二背光显示元件在2D模式中透射来自所述背光单元的光而不对光进行转换,而在3D模式中部分地遮蔽来自所述背光单元的光。

4.根据权利要求3所述的图像显示设备,其中所述第二背光显示元件包括第一和第二透明基板之间的薄膜晶体管TFT阵列以及通过所述TFT阵列在各个像素中独立地开启和关闭的液晶层,其中所述第一和第二透明基板中的每一个附接到偏振板,其中所述第二背光显示元件不包括滤色器。

5.根据权利要求1所述的图像显示设备,其中所述光源模块包括自发光元件,该自发光元件位于所述柱状透镜阵列下方且包括多个可独立电控的像素。

6.根据权利要求5所述的图像显示设备,其中所述自发光元件与所述第一背光显示元件同步且以N×60Hz的帧频驱动,其中所述自发光元件在2D模式中操作为表面光源,而在3D模式中操作为多个线光源。

7.根据权利要求6所述的图像显示设备,其中所述自发光元件包括薄膜晶体管TFT阵列以及白色有机发光二极管OLED元件,该白色有机发光二极管OLED元件通过所述TFT阵列在各个像素中独立地开启和关闭,其中所述自发光元件不包括滤色器。

8.根据权利要求1所述的图像显示设备,其中所述柱状透镜阵列的1个透镜间距基本等于所述光源模块的1个像素。

9.根据权利要求8所述的图像显示设备,其中,当所述第一背光显示元件和所述光源模块中的每一个的帧频为N×60Hz时,在3D模式中被包括在所述光源模块的1个像素中的子像素的数目为N,其中所述光源模块的子像素和所述柱状透镜阵列之间的角度为0至15°。

10.根据权利要求9所述的图像显示设备,其中,当所述第一背光显示元件以N×60Hz的帧频驱动时,在3D模式中在对应于1/60秒的1个帧周期的N个子帧周期中,所述第一背光显示元件时分地显示N视点3D格式的图像。

11.根据权利要求10所述的图像显示设备,其中,在3D模式中,所述光源模块在1个帧周期中的每个子帧周期中变换多个线光源形式的光。

12.一种驱动图像显示设备的方法,该方法包括以下步骤:

在柱状透镜阵列上设置第一背光显示元件从而以N×60Hz的帧频驱动所述第一背光显示元件,其中N是等于或大于1的整数;

在所述柱状透镜阵列下方设置包括多个可独立电控的像素的光源模块以将光照射到所述柱状透镜阵列上;

在2维(2D)模式中将来自所述光源模块的光控制为表面光源形式的光,以在所述第一背光显示元件上显示2D格式的视频信号;以及在3维(3D)模式中将来自所述光源模块的光控制为多个线光源形式的光,以在所述第一背光显示元件上显示N视点3D格式的视频信号,所述多个线光源以均匀距离而彼此分隔。

13.根据权利要求12所述的方法,该方法还包括当所述第一背光显示元件和所述光源模块中的每一个的帧频为N×60Hz时,在3D模式中将被包括在所述光源模块的1个像素中的子像素的数目设置为N。

14.根据权利要求13所述的方法,其中显示N视点3D格式的视频信号的步骤包括以下步骤:在3D模式中,时分地驱动所述第一背光显示元件,使得所述第一背光显示元件以N×60Hz的帧频驱动,且在对应于1/60秒的1个帧周期的N个子帧周期中,时分地显示所述N视点3D格式的图像;以及时分地驱动所述光源模块,使得所述光源模块与所述第一背光显示元件同步,以在1个帧周期中变换多个线光源形式的光。

15.根据权利要求14所述的方法,其中所述光源模块的子像素与所述柱状透镜阵列之间的角度为0至15°。

说明书 :

图像显示设备及其驱动方法

技术领域

[0001] 本发明的实施方式涉及能够显示2维(2D)图像和3维(3D)图像的图像显示设备及其驱动方法。

背景技术

[0002] 本申请要求2008年10月17日提交的韩国专利申请No.10-2008-0102188的优先权,此处以引证的方式并入其全部内容,就像在此进行了完整阐述一样。
[0003] 3D图像显示设备利用当用户通过他或她的双眼感知到的不同视频信号相组合时出现的透视感来立体地显示图像。3D图像显示设备主要可分为立体型、体积型(volumetric type)和全息型。
[0004] 立体型3D图像显示设备可以分成眼镜型和非眼镜型。最近,对非眼镜型立体3D图像显示设备的研究十分活跃。非眼镜型立体3D图像显示设备可以分成视差栅栏型和柱状透镜型。
[0005] 在视差栅栏型非眼镜立体3D图像显示设备中,垂直细狭缝以恒定的距离布置,从而透射或者遮蔽光,且右和左图像在预定时间点通过这些狭缝而被精确地划分。因此,可以显示3D图像。在视差栅栏型非眼镜立体3D图像显示设备中,存在诸如由栅栏导致的亮度减小、制作困难和衍射的问题。
[0006] 在柱状透镜型非眼镜立体3D图像显示设备中,如图1所示,多个半圆柱形柱状透镜1附接在液晶显示(LCD)面板2上且使得观察者的右眼和左眼观看不同的像素。因此,右图像和左图像被分开以由此显示3D图像。如图2所示,柱状透镜型非眼镜立体3D图像显示设备具有这样的结构,其中观察者在预定位置只看到LCD面板2的一部分子像素。如果柱状透镜型非眼镜立体3D图像显示设备使用利用了多视点技术(例如9视点技术)的具有FHD分辨率(1920×1080)的LCD面板,则可以显示具有大为减小的分辨率(即,VGA分辨率(640×480))的3D图像。在图2中,P表示柱状透镜1的间距,且θr表示柱状透镜1的折射角。

发明内容

[0007] 本发明实施方式提供一种能够在不减小分辨率的情况下显示2维(2D)图像和3维(3D)图像和能够在2D图像和3D图像之间执行切换的图像显示设备及其驱动方法。
[0008] 在一个方面,提供了一种图像显示设备,该图像显示设备包括:柱状透镜阵列;第一背光显示元件,其位于所述柱状透镜阵列上且以N×60Hz的帧频驱动,其中N是等于或大于1的整数;以及光源模块,其位于所述柱状透镜阵列下方且使用多个可独立电控的像素来将光照射到所述柱状透镜阵列上,其中所述第一背光显示元件在2维(2D)模式中显示2D格式的视频信号而在3维(3D)模式中显示N视点3D格式的视频信号,其中所述光源模块在2D模式中将表面光源形式的光照射到所述柱状透镜阵列上,而在3D模式中将多个线光源形式的光照射到所述柱状透镜阵列上,所述多个线光源以均匀距离而彼此分隔。
[0009] 在另一方面,提供了一种驱动图像显示设备的方法,该方法包括以下步骤:在柱状透镜阵列上设置第一背光显示元件从而以N×60Hz的帧频驱动所述第一背光显示元件,其中N是等于或大于1的整数;在所述柱状透镜阵列下方设置包括多个可独立电控的像素的光源模块以将光照射到所述柱状透镜阵列上;在2维(2D)模式中将来自所述光源模块的光控制为表面光源形式的光,以在所述第一背光显示元件上显示2D格式的视频信号;以及在3维(3D)模式中将来自所述光源模块的光控制为多个线光源形式的光,以在所述第一背光显示元件上显示N视点3D格式的视频信号,所述多个线光源以均匀距离而彼此分隔。

附图说明

[0010] 附图被包括在本说明书中以提供对本发明的进一步理解,并结合到本说明书中且构成本说明书的一部分,附图示出了本发明的实施方式,且与说明书一起用于解释本发明的原理。附图中:
[0011] 图1和2示意性示出了柱状透镜型3D图像显示设备;
[0012] 图3是示出根据本发明的第一示例性实施方式的图像显示设备的框图;
[0013] 图4示出了当以120Hz的帧频驱动图像显示设备时在有源分光元件上显示的白图案和黑图案;
[0014] 图5示出了当以180Hz的帧频驱动图像显示设备时在有源分光元件上显示的白图案和黑图案;
[0015] 图6示出了当以240Hz的帧频驱动图像显示设备时在有源分光元件上显示的白图案和黑图案;
[0016] 图7A和7B示出了当在被时分(time-divided)为第一和第二子帧周期的1个帧周期中在2D模式中以120Hz的帧频驱动图像显示设备时的光路;
[0017] 图8A和8B示出了当在被时分为第一和第二子帧周期的1个帧周期中在3D模式中以120Hz的帧频驱动图像显示设备时的光路;
[0018] 图9A至9C示出了当在被时分为第一至第三子帧周期的1个帧周期中在2D模式中以180Hz的帧频驱动图像显示设备时的光路;
[0019] 图10A至10C示出了当在被时分为第一至第三子帧周期的1个帧周期中在3D模式中以180Hz的帧频驱动图像显示设备时的光路;
[0020] 图11A至11D示出了当在被时分为第一至第四子帧周期的1个帧周期中在2D模式中以240Hz的帧频驱动图像显示设备时的光路;
[0021] 图12A至12D示出了当在被时分为第一至第四子帧周期的1个帧周期中在3D模式中以240Hz的帧频驱动图像显示设备时的光路;
[0022] 图13示意性示出了多视点3D图像;
[0023] 图14是示出根据本发明的第二示例性实施方式的图像显示设备的框图;以及[0024] 图15示出了柱状透镜阵列相对于光源模块的子像素的示例性倾斜角。

具体实施方式

[0025] 下面将详细描述本发明的实施方式,在附图中例示出了其示例。
[0026] 如图3所示,根据本发明的第一示例性实施方式的图像显示设备包括柱状透镜阵列36、该柱状透镜阵列36上的图像显示板35以及该柱状透镜阵列36下方的光源模块39。
[0027] 柱状透镜阵列36包括与图像显示板35相对形成的多个半圆柱形柱状透镜。
[0028] 图像显示板35可以实现为透射型显示设备,例如液晶显示器。在液晶显示器用作图像显示板35的情况下,图像显示板35包括上玻璃基板GLS1、下玻璃基板GLS2以及该上玻璃基板和下玻璃基板GLS1和GLS2之间的液晶层LC1。薄膜晶体管(TFT)阵列TFTA1在该下玻璃基板GLS2上形成。TFT阵列TFTA1包括接收R、G和B数据电压的多条数据线、与数据线交叉以接收选通脉冲(即,扫描脉冲)的多条选通线(即,扫描线)、在数据线和选通线的各个交叉处形成的多个薄膜晶体管(TFT)、用于使液晶单元充入数据电压的多个像素电极、与像素电极相连以保持液晶单元电压恒定的存储电容器等。滤色器阵列CFA1在上玻璃基板GLS1上形成。滤色器阵列CFA1包括黑底、滤色器等。以诸如扭曲向列(TN)模式和垂直对准(VA)模式的垂直电驱动方式在上玻璃基板GLS1上形成公共电极。以诸如共面切换(IPS)模式和边缘场切换(FFS)模式的水平电驱动方式在下玻璃基板GLS2上形成公共电极和像素电极。偏振板POL1和POL2分别附接到上和下玻璃基板GLS1和GLS2。用于在接触液晶的界面中设置液晶的预倾角的配向层分别在上玻璃基板和下玻璃基板GLS1和GLS2上形成。柱状间隔体可以在上玻璃基板和下玻璃基板GLS1和GLS2之间形成以保持液晶单元之间的单元间隙恒定。
[0029] 光源模块39包括背光单元38和位于柱状透镜阵列36和背光单元38之间的有源分光元件37。
[0030] 背光单元38包括至少一个光源LS和多个光学构件,该光学构件将来自于光源LS的光转换成表面光源形式的光,以将表面光源形式的光照射到有源分光元件37。光源LS包括热阴极荧光灯(HCFL)、冷阴极荧光灯(CCFL)、外部电极荧光灯(EEFL)和发光二极管(LED)其中之一或者至少两个。光学构件包括导光板、散射板、棱镜片、散射片等,并且改善来自光源LS的光的均匀性以将具有改善均匀性的光照射到有源分光元件37。
[0031] 有源分光元件37通过电学控制在2维(2D)模式中透射来自背光单元38的光而不对光进行转换。有源分光元件37通过电学控制在3维(3D)模式中部分地遮蔽来自背光单元38的光,并且空间分开透射过柱状透镜阵列36且分别地行进到观察者的左眼和右眼的左眼光和右眼光的行进路径。为了进行上述操作,有源分光元件37包括以矩阵格式布置的多个像素。有源分光元件37被实现为背光显示元件,其中光路可以通过电学控制子像素和像素而开启和关闭。例如,有源分光元件37可以被实现为不包括滤色器阵列的液晶显示元件。在液晶显示元件用作有源分光元件37的情况中,有源分光元件37包括上玻璃基板GLS3、下玻璃基板GLS4以及该上玻璃基板和下玻璃基板GLS3和GLS4之间的液晶层LC2。TFT阵列TFTA2在该下玻璃基板GLS4上形成。TFT阵列TFTA2包括接收白灰度级电压和黑灰度级电压的多条数据线、与数据线交叉以接收选通脉冲(即,扫描脉冲)的多条选通线(即,扫描线)、在数据线和选通线的各个交叉处形成的多个TFT、用于使液晶单元充入数据电压的多个像素电极、与像素电极相连以保持液晶单元电压恒定的存储电容器等。滤色器阵列不在上玻璃基板GLS1上形成。公共电极在上玻璃基板GLS3或下玻璃基板GLS4上形成。偏振板POL3和POL4分别附接到上和下玻璃基板GLS3和GLS4。用于在接触液晶的界面中设置液晶的预倾角的配向层分别在上玻璃基板和下玻璃基板GLS3和GLS4上形成。柱状间隔体可以在上玻璃基板和下玻璃基板GLS3和GLS4之间形成以保持液晶单元的单元间隙恒定。
[0032] 柱状透镜阵列36和有源分光元件37在2D模式中将光均匀地照射到图像显示板35,且在3D模式中水平分离穿过柱状透镜阵列36的光。在2D模式中,以2D数据格式布置的R、G和B数据电压被提供到图像显示面板35,而在3D模式中,以3D图像数据格式布置的R、G和B数据电压被提供到图像显示板35。图像显示板35和有源分光元件37以预定帧率驱动,使得它们彼此同步。
[0033] 框架40稳定地支撑图像显示板35、柱状透镜阵列36、有源分光元件37以及背光单元38且以适当的距离彼此分离上述元件35、36、37和38。
[0034] 如果图像显示板35和有源分光元件37以对应于60Hz的整数倍的帧频(即,N×60Hz的帧频,其中N是等于或大于1的整数)驱动,则可以显示N视点3D图像。
[0035] 根据本发明的第一示例性实施方式的图像显示设备包括用于驱动图像显示板35的第一驱动器32、用于驱动有源分光元件37的第二驱动器33以及控制器31。
[0036] 第一驱动器32包括用于向图像显示板35的数据线提供R、G和B数据电压的数据驱动电路以及用于向图像显示板35的选通线顺序提供选通脉冲的选通驱动电路。第一驱动器32的数据驱动电路将从控制器31接收到的RGB数字视频数据转换成模拟伽马电压以产生R、G和B数据电压,且在控制器31的控制下将该R、G和B数据电压提供到图像显示板35的数据线。
[0037] 第二驱动器33包括用于向有源分光元件37的数据线提供白灰度级电压和黑灰度级电压的数据驱动电路以及用于向有源分光元件37的选通线顺序提供选通脉冲的选通驱动电路。在2D模式中,第二驱动器33的数据驱动电路将从控制器31接收到的数字白数据转换成具有峰值白灰度级的伽马电压以产生白灰度级电压,且在控制器31的控制下将该白灰度级电压提供到有源分光元件37的数据线。在3D模式中,第二驱动器33的数据驱动电路将从控制器31接收到的数字白数据和数字黑数据转换成具有峰值白灰度级的伽马电压和具有峰值黑灰度级的伽马电压以产生白灰度级电压W和黑灰度级电压B,且在控制器31的控制下将该白灰度级电压W和该黑灰度级电压B提供到有源分光元件37的数据线。
[0038] 控制器31控制第一和第二驱动器32和33,使得第一和第二驱动器32和33响应于用户通过用户接口输入的2D或3D模式选择信号或者从输入视频信号中提取的2D/3D识别码而依照2D或3D模式进行操作。控制器31将RGB数字视频数据提供到第一驱动器32的数据驱动电路且将数字白数据和数字黑数据提供到第二驱动器33的数据驱动电路。在2D模式中,控制器31以2D数据格式重新布置RGB数字视频数据且将2D数据格式的RGB数字视频数据提供到第一驱动器32的数据驱动电路。在2D模式中,控制器31将数字白数据提供到第二驱动器33的数据驱动电路。在3D模式中,控制器31以3D数据格式重新布置RGB数字视频数据且将3D数据格式的RGB数字视频数据提供到第一驱动器32的数据驱动电路。在3D模式中,控制器31交替地将数字白数据和数字黑数据提供到第二驱动器33的数据驱动电路。在3D模式中,由第二驱动器33产生的白灰度级电压和黑灰度级电压被提供到有源分光元件37。因此,如图4至6所示,在有源分光元件上交替出现透射光的白图案和遮蔽光的黑图案。白图案和黑图案的位置在每1个帧周期/N反转。充入白灰度级电压的有源分光元件37的液晶单元以最大透射率透射光,且充入黑灰度级电压的有源分光元件37的液晶单元遮蔽光(即,以最小透射率进行驱动)。
[0039] 控制器31接收诸如水平和垂直同步信号、数据使能信号、点时钟信号的定时信号以产生用于控制第一和第二驱动器32和33的操作定时的定时控制信号。控制器31以整数倍的形式增加(multiply)定时控制信号,且使得第一和第二驱动器32和33以N×60Hz的帧频驱动。在这种情况下,控制器31依照多视点3D格式重新布置被提供到第一驱动器32的数据驱动电路的RGB视频数据,使得在3D模式中显示多视点3D图像。
[0040] 当图3中所示的图像显示设备以3D模式驱动时,穿过柱状透镜阵列36的光以最佳距离水平分离。如图4至6所示,柱状透镜阵列36的1个透镜间距P设置为基本等于有源分光元件37的1个像素1PXL从而显示多视点3D图像。最佳距离是观察者可以清晰地看到显示在图像显示板35上的3D图像时观察者和图像显示板35之间的距离。
[0041] 被包括在有源分光元件37的1个像素1PXL中的子像素的数目根据图像显示板35和有源分光元件37的帧频而变化。如果图像显示板35和有源分光元件37以60Hz×N的帧频驱动,则在3D模式中,有源分光元件37的1个像素1PXL包括N个子像素。
[0042] 如图4所示,如果图像显示板35和有源分光元件37以120Hz(=60Hz×2)的帧频驱动,则在3D模式中,有源分光元件37的1个像素1PXL包括位于1个像素的左边的第一子像素和位于1个像素的右边的第二子像素。如果图像显示板35和有源分光元件37以120Hz的帧频驱动,则在1个帧周期(即,1/60或者0-16.67ms)的第一和第二子帧周期SF1和SF2中,图像显示板35和有源分光元件37被时分地驱动(time-division driven)。更具体而言,在3D模式中,第一子像素在第一子帧周期SF1(即,0-8ms)被充入白灰度级电压且然后在第二子帧周期SF2(即,8-16ms)被充入黑灰度级电压。第二子像素在第一子帧周期SF1(即,0-8ms)被充入黑灰度级电压且然后在第二子帧周期SF2(即,8-16ms)被充入白灰度级电压。在2D模式中,第一和第二子像素在1个帧周期(0-16.67ms)中被连续地充入白灰度级电压。
[0043] 如图5所示,如果图像显示板35和有源分光元件37以180Hz(=60Hz×3)的帧频驱动,则在3D模式中,有源分光元件37的1个像素1PXL包括从该1个像素的左边开始的第一至第三子像素。如果图像显示板35和有源分光元件37以180Hz的帧频驱动,则在1个帧周期(0-16.67ms)的第一至第三子帧周期SF1至SF3中,图像显示板35和有源分光元件37被时分地驱动。更具体而言,在3D模式中,第一子像素在第一子帧周期SF1(即,0-5.5ms)被充入白灰度级电压且在第二和第三子帧周期SF2和SF3(即,5.5-16.5ms)被充入黑灰度级电压。第二子像素在第一和第三子帧周期SF1和SF3(即,0-5.5ms和11.0-16.5ms)被充入黑灰度级电压且在第二子帧周期SF2(即,5.5-11.0ms)被充入白灰度级电压。第三子像素在第一和第二子帧周期SF1和SF2(即,0-11.0ms)被充入黑灰度级电压且在第三子帧周期SF3(即,11.0-16.5ms)被充入白灰度级电压。在2D模式中,在1个帧周期(0-16.67ms)中第一至第三子像素被连续充入白灰度级电压。
[0044] 如图6所示,如果图像显示板35和有源分光元件37以240Hz(=60Hz×4)的帧频驱动,则在3D模式中,有源分光元件37的1个像素1PXL包括从1个像素的左边开始的第一至第四子像素。如果图像显示板35和有源分光元件37以240Hz的帧频驱动,则图像显示板35和有源分光元件37在1个帧周期(即,0-16.67ms)的第一至第四子帧周期SF1至SF4中被时分地驱动。更具体而言,在3D模式中,第一子像素在第一子帧周期SF1(即,0-4.1ms)被充入白灰度级电压且在第二至第四子帧周期SF2至SF4(即,4.1-16.4ms)被充入黑灰度级电压。第二子像素在第一、第三和第四子帧周期SF1、SF3和SF4(即,0-4.1ms和8.2-16.4ms)被充入黑灰度级电压且在第二子帧周期SF2(即,4.1-8.2ms)被充入白灰度级电压。第三子像素在第一、第二和第四子帧周期SF1、SF2和SF4(即,0-8.2ms和
12.3-16.4ms)被充入黑灰度级电压且在第三子帧周期SF3(即,8.2-12.3ms)被充入白灰度级电压。第四子像素在第一至第三子帧周期SF1至SF3(即,0-12.3ms)被充入黑灰度级电压,且在第四子帧周期(即12.3-16.4ms)被充入白灰度级电压。在2D模式中,在1个帧周期(即,0-16.67ms)中,第一至第四子像素被连续充入白灰度级电压。
[0045] 发明人进行了实验以确认穿过柱状透镜阵列36的光是否空间分离。发明人确认这一实验结果:由于柱状透镜阵列36和有源分光元件37,柱状透镜阵列36所透射的光在最佳位置水平分离。最佳位置是观察者与图像显示板35相隔最佳距离的位置。如果显示在有源分光元件37上的白和黑图案变化,则在最佳位置水平分离的光路变化。如果在最佳位置的观察者观看有源分光元件37的白图案和黑图案以及图像显示板35上以3D模式显示的图像,则观察者通过他/她的左眼感知到的图像的像素不同于观察者通过他/她的右眼感知到的图像的像素。因此,观察者可以感觉到立体感。
[0046] 图7A至12D示出了了当以120Hz、180Hz和240Hz的帧频驱动图像显示设备时在2D和3D模式中光路的变化。
[0047] 图7A和7B示出了在被时分为第一和第二子帧周期SF1和SF2的1个帧周期中在2D模式中以120Hz的帧频驱动图像显示设备时的光路。
[0048] 如图7A和7B所示,当在2D模式中以120Hz的帧频驱动图像显示设备时,2D模式格式的视频信号显示在图像显示板35上且白灰度级电压被提供到有源分光元件37的所有子像素。因此,有源分光元件37透射来自背光单元38的光而不进行光转换。在2D模式中,因为有源分光元件37不分离来自光源的光,所以在第一和第二子帧周期SF1和SF2中在图像显示板35上显示相同的像素。因此,图像显示设备显示2D图像。
[0049] 图8A和8B示出了在被时分为第一和第二子帧周期SF1和SF2的1个帧周期中在3D模式中以120Hz的帧频驱动图像显示设备时的光路。如图11A和11B所示,图像显示板
35显示2视点格式的3D图像,其中右眼图像GRGRBR和左眼图像RLGLBL被时分。
[0050] 如图4所示,在第一子帧周期SF1(即,0-8ms)中,有源分光元件37的第一子像素被充入白灰度级电压,且有源分光元件37的第二子像素被充入黑灰度级电压。结果,来自光源的光通过有源分光元件37而空间分离。柱状透镜阵列36如图8A所示折射来自第一子像素的光。在第一子帧周期SF1(即,0-8ms)中,在最佳位置的观察者可以通过他/她的左眼看到其上显示右眼图像RRGRBR的图像显示板35的像素。
[0051] 如图4所示,在第二子帧周期SF2(即,8-16ms)中,有源分光元件37的第一子像素被充入黑灰度级电压,且有源分光元件37的第二子像素被充入白灰度级电压。因此,来自光源的光通过有源分光元件37而空间分离。柱状透镜阵列36如图11B所示折射来自第二子像素的光。在第二子帧周期SF2(即,8-16ms)中,在最佳位置的观察者可以通过他/她的右眼看到其上显示左眼图像RLGLBL的图像显示板35的像素。
[0052] 因此,如图8A和8B所示,图像显示设备空间分离行进到他/她左眼的右眼图像的光以及行进到他/她右眼的左眼图像的光,且还时分地显示该左眼图像和右眼图像。因此,观察者通过立体技术在1个帧周期中感觉到3D图像的立体感。
[0053] 图9A至9C示出了当在被时分为第一至第三子帧周期SF1至SF3的1个帧周期中在2D模式中以180Hz的帧频驱动图像显示设备时的光路。
[0054] 如图9A至9C所示,当在2D模式中以180Hz的帧频驱动图像显示设备时,2D模式格式的视频信号显示在图像显示板35上且白灰度级电压被提供到有源分光元件37的所有子像素。因此,有源分光元件37透射来自背光单元38的光而不进行光转换。在2D模式中,因为有源分光元件37不分离来自光源的光,所以在第一至第三子帧周期SF1至SF3中在图像显示板35上显示相同的像素。因此,图像显示设备显示2D图像。
[0055] 图10A至10C示出了当在被时分为第一至第三子帧周期SF1至SF3的1个帧周期中在3D模式中以180Hz的帧频驱动图像显示设备时的光路。图像显示板35顺序显示第一视点的第一图像R1G1B1、第二视点的第二图像R2G2B2以及第三视点的第三图像R3G3B3,这些图像根据最佳位置的观察者的观看位置以不同的角度示出了3D图像的对象。因此,图像显示板35显示多视点3D图像。
[0056] 如图5所示,在第一子帧周期SF1(即0-5.5ms)中,有源分光元件37的第一子像素被充入白灰度级电压,且有源分光元件37的第二和第三子像素被充入黑灰度级电压。结果,来自光源的光通过有源分光元件37而空间分离。图像显示板35的像素在第一子帧周期SF1(0-5.5ms)中显示第一图像R1G1B1。柱状透镜阵列36如图10A所示折射来自第一子像素的光。在第一子帧周期SF1(0-5.5ms)中,在最佳位置的观察者可以通过他/她的右眼看到其上显示第一图像R1G1B1的图像显示板35的像素。
[0057] 如图5所示,在第二子帧周期SF2(即5.5-11.0ms)中,有源分光元件37的第一和第三子像素被充入黑灰度级电压,且有源分光元件37的第二子像素被充入白灰度级电压。结果,来自光源的光通过有源分光元件37而空间分离。图像显示板35的像素在第二子帧周期SF2(5.5-11.0ms)中显示第二图像R2G2B2。柱状透镜阵列36如图10B所示折射来自第二子像素的光。在第二子帧周期SF2(5.5-11.0ms)中,在最佳位置的观察者可以通过他/她的左眼看到其上显示第二图像R2G2B2的图像显示板35的像素。因此,通过立体技术,在第一和第二子帧周期SF1和SF2,观察者可以感觉到3D图像的立体感。
[0058] 如图5所示,在第三子帧周期SF3(即11.0-16.5ms)中,有源分光元件37的第一和第二子像素被充入黑灰度级电压,且有源分光元件37的第三子像素被充入白灰度级电压。结果,来自光源的光通过有源分光元件37而空间分离。图像显示板35的像素在第三子帧周期SF3(即11.0-16.5ms)中显示第三图像R3G3B3。柱状透镜阵列36如图10C所示折射来自第三子像素的光。
[0059] 如图10A至10C所示,可以通过在3D模式中以180Hz的帧频驱动根据本发明的实施方式的图像显示设备来显示3视点3D图像。与图9A和9B示出的以120Hz的帧频驱动图像显示设备相比,图10A至10C中示出的以180Hz的帧频驱动图像显示设备可以进一步增加3D图像的立体感的范围,而没有3D图像的失真。
[0060] 图11A至11D示出了当在被时分为第一至第四子帧周期SF1至SF4的1个帧周期中在2D模式中以240Hz的帧频驱动图像显示设备时的光路。
[0061] 如图11A至11D所示,当在2D模式中以240Hz的帧频驱动图像显示设备时,2D模式格式的视频信号显示在图像显示板35上且白灰度级电压被提供到有源分光元件37的所有子像素。因此,有源分光元件37透射来自背光单元38的光而不进行光转换。在2D模式中,因为有源分光元件37不分离来自光源的光,所以在第一至第四子帧周期SF1至SF4中在图像显示板35上显示相同的像素。因此,图像显示设备显示2D图像。
[0062] 图12A至12D示出了当在被时分为第一至第四子帧周期SF1至SF4的1个帧周期中在3D模式中以240Hz的帧频驱动图像显示设备时的光路。如图12A至12D所示,图像显示板35顺序显示第一图像R1G1B1、第二图像R2G2B2、第三图像R3G3B3以及第四图像R4G4B4,这些图像被时分为右眼图像和左眼图像。
[0063] 如图6所示,在第一子帧周期SF1(即0-4.1ms)中,有源分光元件37的第一子像素被充入白灰度级电压,且有源分光元件37的第二至第四子像素被充入黑灰度级电压。结果,来自光源的光通过有源分光元件37而空间分离。图像显示板35的像素在第一子帧周期SF1(0-4.1ms)中显示第一图像R1G1B1。柱状透镜阵列36如图12A所示折射来自第一子像素的光。
[0064] 如图6所示,在第二子帧周期SF1(即4.1-8.2ms)中,有源分光元件37的第一、第三和第四子像素被充入黑灰度级电压,且有源分光元件37的第二子像素被充入白灰度级电压。结果,来自光源的光通过有源分光元件37而空间分离。图像显示板35的像素在第二子帧周期SF2(4.1-8.2ms)中显示第二图像R2G2B2。柱状透镜阵列36如图12B所示折射来自第二子像素的光。在第二子帧周期SF2(4.1-8.2ms)中,在最佳位置的观察者可以通过他/她的右眼看到其上显示第二图像R2G2B2的图像显示板35的像素。
[0065] 如图6所示,在第三子帧周期SF3(即8.2-12.3ms)中,有源分光元件37的第一、第二和第四子像素被充入黑灰度级电压,且有源分光元件37的第三子像素被充入白灰度级电压。结果,来自光源的光通过有源分光元件37而空间分离。图像显示板35的像素在第三子帧周期SF3(8.2-12.3ms)中显示第三图像R3G3B3。柱状透镜阵列36如图12C所示折射来自第三子像素的光。在第三子帧周期SF3(8.2-12.3ms)中,在最佳位置的观察者可以通过他/她的左眼看到其上显示第三图像R3G3B3的图像显示板35的像素。因此,通过立体技术,在第二和第三子帧周期SF2和SF3,观察者可以感觉到3D图像的立体感。
[0066] 如图6所示,在第四子帧周期SF4(即12.3-16.4ms)中,有源分光元件37的第一至第三子像素被充入黑灰度级电压,且有源分光元件37的第四子像素被充入白灰度级电压。结果,来自光源的光通过有源分光元件37而空间分离。图像显示板35的像素在第四子帧周期SF4(12.3-16.4ms)中显示第四图像R4G4B4。柱状透镜阵列36如图12D所示折射来自第四子像素的光。
[0067] 如图12A至12D所示,可以通过在3D模式中以240Hz的帧频驱动根据本发明的实施方式的图像显示设备来显示4视点3D图像。与图10A至10C示出的以180Hz的帧频驱动图像显示设备相比,在图12A至12D中示出的以240Hz的帧频驱动图像显示设备可以进步一步增加3D图像的立体感的范围,而没有3D图像的失真。
[0068] 图13示意性示出了多视点效果。如上所述,根据本发明的实施方式的图像显示设备能够以N×60Hz的帧频显示N视点(即,多视点)3D图像。因此,如图13所示,根据观察者的位置,在最佳位置的观察者可以在各个角度观看3D图像的对象。
[0069] 图14示出了根据本发明的第二示例性实施方式的图像显示设备。因为图14中示出的图像显示设备的构造与图3中示出的图像显示设备基本相同,所以可以简要地做出进一步的描述或者可以完全省略进一步的描述。
[0070] 如图14所示,根据本发明的第二示例性实施方式的图像显示设备包括柱状透镜阵列166、柱状透镜阵列166上的图像显示板165以及柱状透镜阵列166下方的光源模块167。
[0071] 因为图像显示板165和柱状透镜阵列166的构造和操作与第一示例性实施方式中示出的相同,所以可以简要地做出进一步的描述或者完全省略进一步的描述。
[0072] 光源模块167可以比第一示例性实施方式中的光源模块39更纤薄。光源模块167可以使用能够获得高效率的自发光元件,例如白色有机发光二极管(OLED)面板。白色OLED面板包括透明基板GLS5和GLS6之间的TFT阵列TFTA3和白色OLED阵列OLEDA。TFT阵列TFTA3包括多条数据线、多条选通线、电源线、开关TFT、驱动TFT、存储电容器等。白色OLED板不包括滤色器。各个白色OLED通过数据线和选通线提供的电信号而被独立地控制且被开启或者关闭。各个白色OLED的阳极电极和阴极电极之一与TFT阵列TFTA3的驱动TFT相连。各个白色OLED包括有机化合物层,该有机化合物层包括在阳极电极和阴极电极之间堆叠的电子注入层(EIL)、电子传输层(ETL)、多个发射层(EML)、空穴传输层(HTL)和空穴注入层(HIL)。当阳极电极和阴极电极之间的电压差等于或大于白色OLED的阈值电压时,白色OLED开启以由此产生白光。当阳极电极和阴极电极之间的电压差等于或小于白色OLED的阈值电压时,白色OLED关闭。如图4、5、7A至12D所示,白色OLED被时分地驱动且顺序地将白图案变为黑图案或者将黑图案变为白图案。因此,白色OLED空间地时分来自光源的光。
[0073] 柱状透镜阵列166和光源模块167在2D模式中将光均匀地照射到图像显示板165,且在3D模式中水平地分离穿过柱状透镜阵列166的光。在2D模式中,以2D数据格式布置的R、G和B数据电压被提供到图像显示板165,在3D模式中,以3D图像数据格式布置的R、G和B数据电压被提供到图像显示板165。图像显示板165和光源模块167以预定帧率驱动,使得它们彼此同步。
[0074] 框架170稳定地支撑图像显示板165、柱状透镜阵列166以及光源模块167,且以适当的距离彼此分离上述元件165、166和167。
[0075] 如果以对应于60Hz的整数倍的帧频(即,N×60Hz的帧频,其中N是等于或大于1的整数)驱动图像显示板165和光源模块167,则可以显示N视点3D图像。
[0076] 根据本发明的第二示例性实施方式的图像显示设备包括用于驱动图像显示板165的第一驱动器162、用于驱动光源模块167的第二驱动器163以及控制器161。
[0077] 第一驱动器162包括用于向图像显示板165的数据线提供R、G和B数据电压的数据驱动电路以及用于向图像显示板165的选通线顺序提供选通脉冲的选通驱动电路。第一驱动器162的数据驱动电路将从控制器161接收到的RGB数字视频数据转换成模拟伽马电压以产生R、G和B数据电压,且在控制器161的控制下将该R、G和B数据电压提供到图像显示板165的数据线。
[0078] 第二驱动器163包括用于将白灰度级电压和黑灰度级电压提供到光源模块167的数据线的数据驱动电路和用于将选通脉冲顺序提供到光源模块167的选通线的选通驱动电路。在2D模式中,第二驱动器163的数据驱动电路将从控制器161接收到的数字白数据转换成具有峰值白灰度级的伽马电压以产生白灰度级电压,且在控制器31的控制下将该白灰度级电压提供到光源模块167的数据线。在3D模式中,第二驱动器163的数据驱动电路将从控制器161接收到的数字白数据和数字黑数据转换成具有峰值白灰度级的伽马电压和具有峰值黑灰度级的伽马电压以产生白灰度级电压W和黑灰度级电压B,且在控制器161的控制下将该白灰度级电压W和黑灰度级电压B提供到光源模块167的数据线。
[0079] 控制器161控制第一和第二驱动器162和163,使得第一和第二驱动器162和163响应于用户通过用户接口输入的2D或3D模式选择信号或者从输入视频信号中提取的
2D/3D识别码来依照2D或3D模式进行操作。控制器161将RGB数字视频数据提供到第一驱动器162的数据驱动电路且将数字白数据和数字黑数据提供到第二驱动器163的数据驱动电路。在2D模式中,控制器161以2D数据格式重新布置RGB数字视频数据且将2D数据格式的RGB数字视频数据提供到第一驱动器162的数据驱动电路。在2D模式中,控制器
161将数字白数据提供到第二驱动器163的数据驱动电路。在3D模式中,控制器161以3D数据格式重新布置RGB数字视频数据且将3D数据格式的RGB数字视频数据提供到第一驱动器162的数据驱动电路。在3D模式中,控制器161交替地将数字白数据和数字黑数据提供到第二驱动器163的数据驱动电路。在3D模式中,由第二驱动器163产生的白灰度级电压和黑灰度级电压被提供到光源模块167。因此,在有源分光元件37上交替出现透射光的白图案和遮蔽光的黑图案。白图案和黑图案的位置在每1个帧周期/N反转。充入白灰度级电压的光源模块167的液晶单元以最大透射率透射光,且充入黑灰度级电压的光源模块
167的液晶单元遮蔽光(即,以最小透射率进行驱动)。
[0080] 控制器161接收诸如水平和垂直同步信号、数据使能信号、点时钟信号的定时信号,以产生用于控制第一和第二驱动器162和163的操作定时的定时控制信号。控制器161以整数倍的形式增加定时控制信号,且使得第一和第二驱动器162和163以N×60Hz的帧频驱动。在这种情况下,控制器161依照多视点3D格式重新布置被提供到第一驱动器162的数据驱动电路的RGB视频数据,使得在3D模式中显示多视点3D图像。
[0081] 在根据本发明的第二示例性实施方式的图像显示设备及其驱动方法中,2D模式和3D模式可以切换。因为第二示例性实施方式中的2D模式和3D模式的操作与参考图10A至
15D示出的第一示例性实施方式基本相同,所以简要地做出进一步的描述或者完全省略进一步的描述。
[0082] 如图15所示,在第一和第二示例性实施方式中,在各个光源模块39和167上显示的白图案和黑图案可以上下和左右彼此交替。光源模块39和167的子像素以及柱状透镜阵列33和166可以彼此平行布置。柱状透镜36和166可以以预定角度向光源模块39和167的子像素倾斜。在柱状透镜阵列36和166向光源模块39和167的子像素倾斜的情况中,优选地是,光源模块39和167的白图案和黑图案以柱状透镜的中心对称从而减小龟纹(Moire)。因为被包括在柱状透镜的间距中的光源模块的子像素的间距根据帧频而变化,所以柱状透镜阵列36和166相对于光源模块39和167的子像素的倾斜角可以根据帧频而变化。优选地,该倾斜角为0至15°。
[0083] 图15示出了柱状透镜阵列36和166相对于光源模块39和167的子像素的示例性倾斜角。在图15中,柱状透镜阵列36和166的倾斜角为9.46°,且光源模块39和167以120Hz的帧频驱动。
[0084] 如上所述,在根据本发明的实施方式的图像显示设备及其驱动方法中,通过电学控制,光源模块在2D模式中操作为表面光源且在3D模式中操作为多个线光源,该多个线光源以均匀距离而彼此分隔,并且柱状透镜阵列被置于背光显示元件下方,该背光显示元件在2D模式中显示2D格式图像且在3D模式中显示3D格式图像。因此,可以在背光显示元件上显示3D图像而不会减小分辨率,可以容易地控制2D和3D图像,且可以在背光显示元件上显示多视点3D图像。
[0085] 尽管参照多个示例性实施方式描述了实施方式,应理解的是本领域技术人员可建议落入本公开的原理的精神和范围内的许多其他修改和实施方式。更具体地,在本公开、附图以及所附的权利要求的范围内,在主题组合设置的组成部件和/或设置中可以做出各种变型和修改。除了组成部件和/或设置中的变型和修改之外,替换使用对于本领域技术人员也是明显的。