液晶显示元件转让专利

申请号 : CN201010002066.6

文献号 : CN101762905B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 大泽和彦吉田哲志

申请人 : 卡西欧计算机株式会社

摘要 :

液晶显示元件由液晶单元、第一及第二偏振片和视场角补偿板构成,该液晶单元在一对基板之间夹持了90°的扭转取向的液晶层,该第一及第二偏振片夹着上述液晶单元使吸收轴配置在平行于与上述一对基板的取向处理方向以45°交叉的方向上,该视场角补偿板分别配置在这些偏振片和液晶单元之间。上述偏振片由基材和偏振层构成,视场角补偿板由基材和相位差层构成。由存在上述第一、第二偏振片的偏振层之间的多个光学层的垂直于液晶单元的基板面的面内的相位差、和其层厚的积的值定义的厚度方向延迟的合计值被设定为实质上抵消在上述液晶层上施加饱和电压时的液晶层的液晶层方向延迟的值。

权利要求 :

1.一种液晶显示元件,其特征在于,包括:

第一偏振片,该第一偏振片具有第一偏振层以及支撑上述第一偏振层的第一基材,所述第一偏振层具有使直线偏振光透射的透射轴以及在与上述透射轴正交的方向上的吸收轴;

第二偏振片,该第二偏振片具有第二偏振层以及支撑上述第二偏振层的第二基材,所述第二偏振层具有使直线偏振光透射的透射轴以及在与上述透射轴正交的方向上的吸收轴;

液晶单元,以覆盖第一电极的方式形成了第一取向膜的第一基板和以覆盖第二电极的方式形成了第二取向膜的第二基板,以取向膜的形成面对置的方式配置在上述第一偏振片和上述第二偏振片之间,在上述第一基板和上述第二基板之间,夹持使液晶分子实质上

90°扭转取向的液晶层;

第一视场角补偿板,配置在上述液晶单元和上述第一偏振片之间,具有由具有圆盘状的盘状液晶分子的盘状液晶层构成的第一视场角补偿层和支撑上述第一视场角补偿层的基材,该第一视场角补偿层具有平行于上述液晶单元的基板面的面内的相位差以及垂直于上述液晶单元的上述基板面的面内的相位差;

第二视场角补偿板,配置在上述液晶单元和上述第二偏振片之间,具有由具有上述圆盘状的盘状液晶分子的上述盘状液晶层构成的第二视场角补偿层和支撑上述第二视场角补偿层的基材,该第二视场角补偿层具有平行于上述液晶单元的上述基板面的面内的相位差以及垂直于上述液晶单元的上述基板面的面内的相位差;以及面光源,配置在位于观察侧的相反侧的偏振板的背面一侧,

在上述第一视场角补偿板和上述第二视场角补偿板的上述盘状液晶层中,与上述盘状液晶分子的圆盘面垂直的分子轴位于与上述视场角补偿板的上述基材面垂直、且与上述视场角补偿层的取向处理方向平行的面上,上述盘状液晶分子混合取向为上述盘状液晶分子的圆盘面相对于上述基材面的倾斜角度从上述基材侧朝向上述液晶单元侧依次增加,上述第一视场角补偿层的取向处理方向,与接近上述第一视场角补偿层的上述液晶单元的基板的取向处理方向实质上平行,上述第二视场角补偿层的取向处理方向,与接近上述第二视场角补偿层的上述液晶单元的基板的取向处理方向实质上平行,上述第一视场角补偿层和上述第二视场角补偿层具有在上述视场角补偿层的上述混合取向的上述盘状液晶分子的上述分子轴所在的上述面上的上述分子轴的平均倾斜方向上具有折射率为最小的光学轴的、负的光学各向异性,由上述第一偏振层和上述第二偏振层之间的、至少包含上述第一视场角补偿层和上述第二视场角补偿层且除了上述液晶层以外的其它多个光学层各自在垂直于上述基板面的面内的相位差和上述光学层的层厚的积所形成的、厚度方向延迟的合计值被设定为如下的值,即,能够抵消由在上述第一电极和上述第二电极之间施加了足够使上述液晶分子相对于上述基板面进行立起取向的较高电压时的、上述液晶层在垂直于上述基板面的面内的相位差和该液晶层厚度的积所形成的液晶层厚度方向延迟的值。

2.根据权利要求1所述的液晶显示元件,其特征在于,

上述多个光学层各自的上述厚度方向延迟和施加了足够使液晶分子立起取向的较高电压时的液晶层的液晶层厚度方向延迟被设定为,上述多个光学层各自的上述厚度方向延迟的合计值和上述液晶层的上述液晶层厚度方向延迟的值相加的值在-80nm~+80nm的范围内。

3.根据权利要求1所述的液晶显示元件,其特征在于,

施加足够使液晶分子立起取向的较高电压时的液晶层的液晶层厚度方向延迟的值和在上述第一偏振层与上述第二偏振层之间的除了上述液晶层以外的多个光学层各自的厚度方向延迟值的合计值被设定为,相互的绝对值之差是80nm以下且正负相反的值。

4.根据权利要求3所述的液晶显示元件,其特征在于,

上述液晶分子的预倾角在0.5°~10.5°的范围、足够使上述液晶分子立起取向的较高电压的值在3V~5V的范围内时,上述液晶层厚度方向延迟是如下的值,即,将构成上述液晶层的液晶材料的折射率各向异性Δn和液晶层厚d的积Δnd的值乘以0.72~0.86的范围的系数所算出的值。

5.根据权利要求3所述的液晶显示元件,其特征在于,

上述液晶分子的预倾角在0.5°~10.5°的范围、足够使上述液晶分子立起取向的较高电压的值在3V~5V的范围内时,对于上述第一偏振层和上述第二偏振层之间的、除了上述液晶层以外的多个光学层中的每一个,将平行于上述基板面的面内的相互垂直的2个方向中的一个方向和另一个方向分别设为X轴和Y轴、将垂直于上述基板面的厚度方向设为Z轴,将上述X轴方向的折射率设为nx、上述Y轴方向的折射率设为ny、上述Z轴方向的折射率设为nz、上述光学层的层厚设为d,此时,由{(nx+ny)/2-nz}·d表示的各光学层的厚度方向延迟的合计值被设定为实质上等于如下值,即,将构成上述液晶层的液晶材料的折射率各向异性Δn与液晶层厚d的积Δnd的值乘以0.72~0.86的范围的系数所算出的值。

6.根据权利要求3所述的液晶显示元件,其特征在于,

上述液晶分子的预倾角在0.5°~10.5°的范围、足够使上述液晶分子立起取向的较高电压的值在3V~5V的范围内时,上述第一偏振层和上述第二偏振层之间的除了上述液晶层以外的多个光学层各自的厚度方向延迟值的合计值被设定为实质上等于如下值,即,将构成上述液晶层的液晶材料的折射率各向异性Δn与液晶层厚d的积Δnd的值乘以

0.83的系数所算出的值。

7.根据权利要求1所述的液晶显示元件,其特征在于,

由上述第一偏振层和上述第二偏振层之间的除了上述液晶层以外的多个光学层各自在平行于基板面的面内的面内相位差和上述多个光学层各自的层厚的积形成的面内延迟的合计值,与构成上述液晶层的液晶材料的折射率各向异性和液晶层厚之积相加后得到的值被设定为350nm~600nm的范围。

8.根据权利要求1所述的液晶显示元件,其特征在于,

上述第一偏振片配置为,上述第一偏振层的吸收轴与上述第一取向膜的取向处理方向实质上以45°的角度交叉;

上述第二偏振片配置为,上述第二偏振层的吸收轴与上述第一偏振层的吸收轴实质上垂直或实质上平行。

9.根据权利要求1所述的液晶显示元件,其特征在于,

上述第一基材和上述第二基材分别由树脂膜构成,该树脂膜具有由在垂直于上述基板面的面内的相位差和层厚的积所形成的厚度方向延迟;

上述第一基材配置在上述第一偏振层和上述液晶单元之间,

上述第二基材配置在上述第二偏振层和上述液晶单元之间,

上述第一偏振层和上述第二偏振层之间的除了上述液晶层以外的多个光学层至少由上述第一基材、上述第二基材、上述第一视场角补偿层及上述第二视场角补偿层构成。

10.根据权利要求1或权利要求9所述的液晶显示元件,其特征在于,

在上述第一偏振层和上述第一视场角补偿层之间还设有第一相位差板,在上述第二偏振层和上述第二视场角补偿层之间还设有第二相位差板。

11.根据权利要求10所述的液晶显示元件,其特征在于,

上述第一相位差板层叠在上述第一偏振层的与上述第一基板相对的面上,上述第二相位差板层叠在上述第二偏振层的与上述第二基板相对的面上。

12.根据权利要求10所述的液晶显示元件,其特征在于,

在上述第一相位差板与上述第一视场角补偿层之间和上述第二相位差板与上述第二视场角补偿层之间的至少一方还设有光学膜,该光学膜在平行于上述基板面的面内的相互垂直的2个方向中的一个方向的折射率nx、另一方向的折射率ny和垂直于上述基板面的厚度方向的折射率nz是nx=ny>nz的关系。

13.一种液晶显示元件,其特征在于,包括:

第一基板,在一个面上形成有至少1个第一电极和被设置成覆盖上述第一电极并沿预定的第一方向被实施了取向处理的第一取向膜;

第二基板,配置成与上述第一基板的电极形成面对置,在与上述第一基板对置的面上形成有与上述第一电极对置的至少1个第二电极和被设置成覆盖上述第二电极并沿与上述第一方向实质上以90°的角度交叉的第二方向被实施了取向处理的第二取向膜;

液晶层,被夹持在上述第一基板的上述第一取向膜和上述第二基板的上述第二取向膜之间,液晶分子在上述第一取向膜和上述第二取向膜之间实质上以90°的扭转角被扭转取向;

第一偏振片,该第一偏振片具备第一偏振层和由树脂膜构成的基材,该第一偏振层设置成与上述第一基板的电极形成面的相反侧的外表面对置,并在与上述第一取向膜的取向处理方向实质上以45°的角度交叉的方向上具有吸收轴,该基材设置在该第一偏振层的至少与上述第一基板对置的面上,并具有由与上述第一基板及上述第二基板的基板面垂直的面内的相位差和层厚的积所形成的厚度方向延迟;

第二偏振片,该第二偏振片具备第二偏振层和由树脂膜构成的基材,该第二偏振层配置成与上述第二基板的电极形成面的相反侧的外表面对置,并在与上述第一偏振层的吸收轴实质上垂直的方向或实质上平行的方向上具有吸收轴,该基材设置在该第二偏振层的至少与上述第二基板对置的面上,并具有由垂直于上述基板面的面内的相位差和层厚的积所形成的厚度方向延迟;

第一视场角补偿板,配置在上述第一基板和上述第一偏振片之间,具有由具有圆盘状的盘状液晶分子的盘状液晶层构成的第一视场角补偿层和由树脂膜构成的基材,该第一视场角补偿层具有平行于上述基板面的面内的相位差和垂直于上述基板面的面内的相位差,该基材设置在该第一视场角补偿层的一个面上,具有由垂直于上述基板面的面内的相位差和层厚的积所形成的厚度方向延迟;

第二视场角补偿板,配置在上述第二基板和第二偏振片之间,具有由具有上述圆盘状的盘状液晶分子的上述盘状液晶层构成的第二视场角补偿层和由树脂膜构成的基材,该第二视场角补偿层具有平行于上述基板面的面内的相位差和垂直于上述基板面的面内的相位差,该基材设置在该第二视场角补偿层的一个面上,具有由垂直于上述基板面的面内的相位差和层厚的积所形成的厚度方向延迟;以及面光源,配置在位于观察侧的相反侧的偏振板的背面一侧,

在上述第一视场角补偿板和上述第二视场角补偿板的上述盘状液晶层中,与上述盘状液晶分子的圆盘面垂直的分子轴位于与上述视场角补偿板的上述基材面垂直、且与上述视场角补偿层的取向处理方向平行的面上,上述盘状液晶分子混合取向为上述盘状液晶分子的圆盘面相对于上述基材面的倾斜角度从上述基材侧朝向上述液晶单元侧依次增加,上述第一视场角补偿层的取向处理方向,与接近上述第一视场角补偿层的上述液晶单元的基板的取向处理方向实质上平行,上述第二视场角补偿层的取向处理方向,与接近上述第二视场角补偿层的上述液晶单元的基板的取向处理方向实质上平行,上述第一视场角补偿层和上述第二视场角补偿层具有在上述视场角补偿层的上述混合取向的上述盘状液晶分子的上述分子轴所在的上述面上的上述分子轴的平均倾斜方向上具有折射率为最小的光学轴的、负的光学各向异性,由上述第一偏振片的上述第一偏振层和上述第二偏振片的上述第二偏振层之间的多个光学层各自在垂直于上述基板面的面内的相位差和上述多个光学层的各层厚的积所形成的厚度方向延迟的值、与液晶层厚方向延迟的值的合计值设定为-80nm~+80nm的范围,上述多个光学层至少包括上述第一偏振片中的上述基材、上述第二偏振片中上述基材、上述第一视场角补偿板中的上述第一视场角补偿层、上述第二视场角补偿板中的上述第二视场角补偿层、上述第一视场角补偿板中的上述基材以及上述第二视场角补偿板中的上述基材,并且将上述液晶层排除在外,上述液晶层厚方向延迟的值是由在上述第一基板中的上述电极和上述第二基板中的上述电极之间施加了足够使上述液晶分子相对于上述基板面进行立起取向的较高电压时的上述液晶层在垂直于上述基板面的面内的相位差和液晶层厚的积所形成的。

14.根据权利要求13所述的液晶显示元件,其特征在于,

上述液晶分子的预倾角在0.5°~10.5°的范围、足够使上述液晶分子立起取向的较高电压的值在3V~5V的范围内时,上述液晶层厚度方向延迟为下述的值,即,将构成上述液晶层的液晶材料的折射率各向异性Δn和液晶层厚度d的积Δnd的值乘以0.72~0.86的范围的系数所算出的值。

15.根据权利要求13所述的液晶显示元件,其特征在于,

由上述第一偏振层和上述第二偏振层之间的、包含多个基材、多个视场角补偿层及除了上述液晶层以外的多个光学层各自在平行于上述基板面的面内的面内相位差和上述多个光学层各自的层厚的积所形成的面内延迟的合计值,与构成上述液晶层的液晶材料的折射率各向异性和液晶层厚之积相加后得到的值被设定为350nm~600nm的范围。

16.根据权利要求13所述的液晶显示元件,其特征在于,

在上述第一偏振层和上述第一视场角补偿层之间还设有第一相位差板,在上述第二偏振层和上述第二视场角补偿层之间还设有第二相位差板。

17.一种液晶显示元件,其特征在于,包括:

第一基板,在一个面上形成有至少1个第一电极和被设置成覆盖上述第一电极并沿预定的第一方向实施了取向处理的第一取向膜;

第二基板,设置成与上述第一基板的电极形成面对置,在与上述第一基板对置的面上形成有与上述第一电极对置的至少1个第二电极和第二取向膜,该第二取向膜设置成覆盖上述第二电极并沿与上述第一方向实质上以90°的角度交叉的第二方向实施了取向处理;

液晶层,被夹持在上述第一基板的上述第一取向膜和上述第二基板的上述第二取向膜之间,液晶分子在上述第一取向膜和上述第二取向膜之间实质上以90°的扭转角被扭转取向;

第一偏振层,配置成与上述第一基板的电极形成面的相反侧的外表面对置,并在与上述第一取向膜的取向处理方向实质上以45°的角度交叉的方向上具有吸收轴;

第二偏振层,配置成与上述第二基板的电极形成面的相反侧的外表面对置,并在与上述第一偏振层的吸收轴实质上相垂直的方向或实质上相平行的方向上具有吸收轴;

第一视场角补偿板,配置在上述第一基板和上述第一偏振层之间,具有由具有圆盘状的盘状液晶分子的盘状液晶层构成的第一视场角补偿层和支撑上述第一视场角补偿层的基材,该第一视场角补偿层具有平行于上述第一基板及上述第二基板的基板面的面内的相位差和垂直于上述基板面的面内的相位差;

第二视场角补偿板,配置在上述第二基板和上述第二偏振层之间,具有由具有上述圆盘状的盘状液晶分子的上述盘状液晶层构成的第二视场角补偿层和支撑上述第二视场角补偿层的基材,该第二视场角补偿层具有平行于上述基板面的面内的相位差和垂直于上述基板面的面内的相位差;以及面光源,配置在位于观察侧的相反侧的偏振板的背面一侧,

在上述第一视场角补偿板和上述第二视场角补偿板的上述盘状液晶层中,与上述盘状液晶分子的圆盘面垂直的分子轴位于与上述视场角补偿板的上述基材面垂直、且与上述视场角补偿层的取向处理方向平行的面上,上述盘状液晶分子混合取向为上述盘状液晶分子的圆盘面相对于上述基材面的倾斜角度从上述基材侧朝向上述液晶单元侧依次增加,上述第一视场角补偿层的取向处理方向,与接近上述第一视场角补偿层的上述液晶单元的基板的取向处理方向实质上平行,上述第二视场角补偿层的取向处理方向,与接近上述第二视场角补偿层的上述液晶单元的基板的取向处理方向实质上平行,上述第一视场角补偿层和上述第二视场角补偿层具有在上述视场角补偿层的上述混合取向的上述盘状液晶分子的上述分子轴所在的上述面上的上述分子轴的平均倾斜方向上具有折射率为最小的光学轴的、负的光学各向异性,上述液晶分子的预倾角在0.5°~10.5°的范围、足够使上述液晶分子立起取向的较高电压的值在3V~5V的范围内时,对于上述第一偏振层和上述第二偏振层之间的、至少包含上述第一视场角补偿层及上述第二视场角补偿层且除了上述液晶层以外的多个光学层中的每一个,将平行于上述基板面的面内的相互垂直的2个方向中的一个方向和另一个方向分别设为X轴和Y轴,将垂直于上述基板面的厚度方向设为Z轴、设上述X轴方向的折射率为nx、上述Y轴方向的折射率为ny,将上述Z轴方向的折射率设为nz、上述光学层的层厚设为d、将由{(nx+ny)/2-nz}·d表示的各光学层的厚度方向延迟设为Rthi、将上述各光学层的厚度方向延迟Rthi的值相加的厚度方向延迟设为Rth,将构成上述液晶层的液晶材料的折射率各向异性Δn和液晶层厚度d的积设为Δnd,此时,上述厚度方向延迟Rth设定为满足-80nm<Rth-0.83Δnd<80nm的范围。

18.根据权利要求17所述的液晶显示元件,其特征在于,对于上述第一偏振层和第二偏振层之间的多个光学层,将由(nx-ny)·d表示的各光学层的面内延迟设为Roi、将上述各光学层的面内延迟Roi的值相加的面内延迟设为Ro时,上述面内延迟Ro和液晶层的Δnd设定在分别满足Ro+Δnd=350nm~600nm的范围。

说明书 :

液晶显示元件

[0001] 本发明为下述申请的分案申请,原申请信息如下:
[0002] 申请日:2007年05月29日
[0003] 申请号:200710146448.4
[0004] 发明名称:液晶显示元件

技术领域

[0005] 本发明涉及TN(twisted nematic扭转向列)型的液晶显示元件。

背景技术

[0006] 作为TN型液晶显示元件,已知下述的液晶显示元件,该液晶显示元件具备液晶单元和一对偏振片,上述液晶单元在一对基板之间夹持了液晶分子实质上以90°的扭转角进行扭转取向的液晶层;上述一对偏振片夹着该液晶单元而配置;将上述一对偏振片中的一个配置在平行于与上述液晶单元中的一个基板的取向处理的方向以45°交叉的方向上((日本)特开2006-285220号文献)。
[0007] 该液晶显示元件可提高对比度,并且可以改善中间灰度中的灰度反转。另外,在该液晶显示元件中,可以在上述液晶单元与一对偏振片之间分别设置视场角补偿板,还设置相位差板,从而可以改善视场角特性。
[0008] 但是,上述TN型液晶显示元件不能够充分补偿透射率的视角依赖性,不能得到足够宽的视场角特性。

发明内容

[0009] 本发明的目的在,提供一种改善透射率的角度依赖性的宽视场角的TN型液晶显示元件。
[0010] 为了实现上述目的,本发明的第一观点的液晶显示元件的特征在于,包括:第一偏振片,该第一偏振片具有第一偏振层以及支撑上述第一偏振层的第一基材,所述第一偏振层具有使直线偏振光透射的透射轴以及在与该透射轴正交的方向上的吸收轴;第二偏振片,该第二偏振片具有第二偏振层以及支撑上述第二偏振层的第二基材,所述第二偏振层具有使直线偏振光透射的透射轴以及在与该透射轴正交的方向上的吸收轴;液晶单元,形成了覆盖第一电极的第一取向膜的第一基板和形成了覆盖第二电极的第二取向膜的第二基板,以取向膜的形成面对置的方式配置在上述第一偏振片和上述第二偏振片之间,在上述第一基板和上述第二基板之间,夹持使液晶分子实质上90°扭转取向的液晶层;第一视场角补偿层,配置在上述液晶单元和上述第一偏振片之间,该第一视场角补偿层具有平行于上述液晶单元的基板面的面内的相位差以及垂直于上述液晶单元的基板面的面内的相位差,该第一视场角补偿层具有负的光学各向异性,并且由倾斜角度连续变化的盘状液晶层构成;第二视场角补偿层,配置在上述液晶单元和上述第二偏振片之间,该第二视场角补偿层具有平行于上述液晶单元的基板面的面内的相位差以及垂直于上述液晶单元的基板面的面内的相位差,该第二视场角补偿层具有负的光学各向异性,并且由倾斜角度连续变化的盘状液晶层构成;以及面光源,配置在位于观察侧的相反侧的偏振板的背面一侧,由上述第一偏振层和上述第二偏振层之间的、至少包含上述第一视场角补偿层和上述第二视场角补偿层且除了上述液晶层以外的其它多个光学层各自在垂直于上述基板面的面内的相位差和上述光学层的层厚的积所形成的、厚度方向延迟的合计值被设定为如下的值,即,能够抵消由在上述第一电极和上述第二电极之间施加了足够使上述液晶分子相对于上述基板面进行立起取向的较高电压时的、上述液晶层在垂直于上述基板面的面内的相位差和该液晶层厚度的积所形成的液晶层厚度方向延迟的值。
[0011] 另外,本发明的第二方面的液晶显示元件的特征在于,包括:第一基板,在一个面上形成有至少1个第一电极和被设置成覆盖上述第一电极并沿预定的第一方向被实施了取向处理的第一取向膜;第二基板,配置成与上述第一基板的电极形成面对置,在与上述第一基板对置的面上形成有与上述第一电极对置的至少1个第二电极和被设置成覆盖上述第二电极并沿与上述第一方向实质上以90°的角度交叉的第二方向被实施了取向处理的第二取向膜;液晶层,被夹持在上述第一基板的上述第一取向膜和上述第二基板的上述第二取向膜之间,液晶分子在上述第一取向膜和上述第二取向膜之间实质上以90°的扭转角被扭转取向;第一偏振片,该第一偏振片具备第一偏振层和由树脂膜构成的基材,该第一偏振层设置成与上述第一基板的电极形成面的相反侧的外表面对置,并在与上述第一取向膜的取向处理方向实质上以45°的角度交叉的方向上具有吸收轴,该基材设置在该第一偏振层的至少与上述第一基板对置的面上,并具有由与上述第一基板及上述第二基板的基板面垂直的面内的相位差和层厚的积所形成的厚度方向延迟;第二偏振片,该第二偏振片具备第二偏振层和由树脂膜构成的基材,该第二偏振层配置成与上述第二基板的电极形成面的相反侧的外表面对置,并在与上述第一偏振层的吸收轴实质上垂直的方向或实质上平行的方向上具有吸收轴,该基材设置在该第二偏振层的至少与上述第二基板对置的面上,并具有由垂直于上述基板面的面内的相位差和层厚的积所形成的厚度方向延迟;第一视场角补偿板,配置在上述第一基板和上述第一偏振片之间,具有第一视场角补偿层和由树脂膜构成的基材,该第一视场角补偿层具有平行于上述基板面的面内的相位差和垂直于上述基板面的面内的相位差,该基材设置在该第一视场角补偿层的一个面上,具有由垂直于上述基板面的面内的相位差和层厚的积所形成的厚度方向延迟,该第一视场角补偿板具有负的光学各向异性,并且由倾斜角度连续变化的盘状液晶层构成;第二视场角补偿板,配置在上述第二基板和第二偏振片之间,具有第二视场角补偿层和由树脂膜构成的基材,该第二视场角补偿层具有平行于上述基板面的面内的相位差和垂直于上述基板面的面内的相位差,该基材设置在该第二视场角补偿层的一个面上,具有由垂直于上述基板面的面内的相位差和层厚的积所形成的厚度方向延迟,该第二视场角补偿板具有负的光学各向异性,并且由倾斜角度连续变化的盘状液晶层构成;以及面光源,配置在位于观察侧的相反侧的偏振板的背面一侧,由上述第一偏振片的上述第一偏振层和上述第二偏振片的上述第二偏振层之间的多个光学层各自在垂直于上述基板面的面内的相位差和上述多个光学层的各层厚的积所形成的厚度方向延迟的值、与液晶层厚方向延迟的值的合计值设定为-80nm~+80nm的范围,上述多个光学层至少包括上述第一偏振片中的上述基材、上述第二偏振片中上述基材、上述第一视场角补偿板中的上述第一视场角补偿层、上述第二视场角补偿板中的上述第二视场角补偿层、上述第一视场角补偿板中的上述基材以及上述第二视场角补偿板中的上述基材,并且将上述液晶层排除在外,上述液晶层厚方向延迟的值是由在上述第一基板中的上述电极和上述第二基板中的上述电极之间施加了足够使上述液晶分子相对于上述基板面进行立起取向的较高电压时的上述液晶层在垂直于上述基板面的面内的相位差和液晶层厚的积所形成的。
[0012] 还有,本发明的第三方面的液晶显示元件的特征在于,包括:第一基板,在一个面上形成有至少1个第一电极和被设置成覆盖上述第一电极并沿预定的第一方向实施了取向处理的第一取向膜;第二基板,设置成与上述第一基板的电极形成面对置,在与上述第一基板对置的面上形成有与上述第一电极对置的至少1个第二电极和第二取向膜,该第二取向膜设置成覆盖上述第二电极并沿与上述第一方向实质上以90°的角度交叉的第二方向实施了取向处理;液晶层,被夹持在上述第一基板的上述第一取向膜和上述第二基板的上述第二取向膜之间,液晶分子在上述第一取向膜和上述第二取向膜之间实质上以90°的扭转角被扭转取向;第一偏振层,配置成与上述第一基板的电极形成面的相反侧的外表面对置,并在与上述第一取向膜的取向处理方向实质上以45°的角度交叉的方向上具有吸收轴;第二偏振层,配置成与上述第二基板的电极形成面的相反侧的外表面对置,并在与上述第一偏振层的吸收轴实质上相垂直的方向或实质上相平行的方向上具有吸收轴;第一视场角补偿层,配置在上述第一基板和上述第一偏振层之间,具有平行于上述基板面的面内的相位差和垂直于上述基板面的面内的相位差,该第一视场角补偿层具有负的光学各向异性,并且由倾斜角度连续变化的盘状液晶层构成;第二视场角补偿层,配置在上述第二基板和上述第二偏振层之间,具有平行于上述基板面的面内的相位差和垂直于上述基板面的面内的相位差,该第二视场角补偿层具有负的光学各向异性,并且由倾斜角度连续变化的盘状液晶层构成;以及面光源,配置在位于观察侧的相反侧的偏振板的背面一侧,对于上述第一偏振层和上述第二偏振层之间的、至少包含上述第一视场角补偿层及上述第二视场角补偿层且除了上述液晶层以外的多个光学层中的每一个,将平行于上述基板面的面内的相互垂直的2个方向中的一个方向和另一个方向分别设为X轴和Y轴,将垂直于上述基板面的厚度方向设为Z轴、设上述X轴方向的折射率为nx、上述Y轴方向的折射率为ny,将上述Z轴方向的折射率设为nz、上述光学层的层厚设为d、将由{(nx+ny)/2nz}·d表示的各光学层的厚度方向延迟设为Rthi、将上述各光学层的厚度方向延迟Rthi的值相加的厚度方向延迟设为Rth,将构成上述液晶层的液晶材料的折射率各向异性Δn和液晶层厚度d的积设为Δnd,此时,上述厚度方向延迟Rth设定为满足-80nm<Rth-0.83Δnd<80nm的范围。
[0013] 根据本发明的上述各方面的液晶显示元件,能够改善透射率的角度依赖性,能够进行宽视场角的显示。附图说明:
[0014] 图1为表示本发明的第一实施例的液晶显示元件的概略剖面图;
[0015] 图2为液晶单元的一部分的放大剖面图;
[0016] 图3为视场角补偿板的一部分的放大剖面图;
[0017] 图4为表示第一实施例的第一及第二取向膜的取向处理方向、第一及第二偏振层的吸收轴的方向、以及第一及第二视场角补偿层的光学轴的方向的图;
[0018] 图5为表示第一实施例的液晶显示元件中的红、绿、蓝各色的像素部的液晶层厚度dR、dG、dB的比、和显示白色时的显示色度的关系的图;
[0019] 图6为表示第一实施例的液晶显示元件的液晶层的Δnd、与施加饱和电压时的液晶层的厚度方向延迟RthLC的关系的图;
[0020] 图7为表示将第一实施例的液晶显示元件的第一偏振层和第二偏振层之间的除了液晶层以外的多个光学层的基材的各面内延迟值相加的面内延迟Ro和液晶层的Δnd与透射率之间的关系的图;
[0021] 图8A~图8D分别是在第一实施例的液晶显示元件中,分别为白色显示TW、黑色显示TB、50%灰度(白色显示的50%的亮度的灰度)显示T50、以及20%灰度(白色显示的20%的亮度的灰度)显示T20时的视场角特性图;
[0022] 图9是在第一实施例的变形例的液晶显示元件中,分别为白色显示TW、黑色显示TB、50%灰度(白色显示的50%的亮度的灰度)显示T50、及20%灰度(白色显示的20%的亮度的灰度)显示T20时的视场角特性图;
[0023] 图10为表示本发明的第二实施例的液晶显示元件的概略剖面图;
[0024] 图11为表示第二实施例的液晶显示元件的第一及第二取向膜的取向处理方向、第一及第二偏振层的吸收轴的方向、第一及第二视场角补偿层的光学轴的方向、以及第一及第二相位差板的滞相轴的方向的图;
[0025] 图12A~图12D分别是在第二实施例的液晶显示元件中,分别为白色显示TW、黑色显示TB、50%灰度(白色显示的50%的亮度的灰度)显示T50、以及20%灰度(白色显示的20%的亮度的灰度)显示T20时的视场角特性图;
[0026] 图13为表示本发明的第三实施例的液晶显示元件的概略剖面图;
[0027] 图14为用于说明液晶显示元件中的光学膜的特性的透视图;
[0028] 图15是表示第三实施例的液晶显示元件的第一及第二取向膜的取向处理方向、第一及第二偏振层的吸收轴的方向、第一及第二视场角补偿层的光学轴的方向、第一及第二相位差板的滞相轴的方向、第一及第二光学膜的光学轴的方向的图;
[0029] 图16A~图16D分别是在第三实施例的液晶显示元件中,分别为白色显示TW、黑色显示TB、50%灰度(白色显示的50%的亮度的灰度)显示T50、以及20%灰度(白色显示的20%的亮度的灰度)显示T20时的视场角特性图;
[0030] 图17为表示本发明的第四实施例的液晶显示元件的概略剖面图;
[0031] 图18为表示第四实施例的液晶显示元件的第一及第二取向膜的取向处理方向、第一及第二偏振层的吸收轴的方向、第一及第二视场角补偿层的光学轴的方向、第一及第二相位差板的滞相轴的方向、光学膜的光学轴的方向的图;
[0032] 图19A~图19D分别是在第四实施例的液晶显示元件中,分别为白色显示TW、黑色显示TB、50%灰度(白色显示的50%的亮度的灰度)显示T50、以及20%灰度(白色显示的20%的亮度的灰度)显示T20时的视场角特性图;
[0033] 图20为表示本发明的第5实施例的液晶显示元件的概略剖面图;
[0034] 图21为表示第5实施例的第一及第二取向膜的取向处理方向、第一及第二偏振层的吸收轴的方向、第一及第二视场角补偿层的光学轴的方向、第一及第二相位差板的滞相轴的方向的图;
[0035] 图22A~图22D分别是在第5实施例的液晶显示元件中,分别为白色显示TW、黑色显示TB、50%灰度(白色显示的50%的亮度的灰度)显示T50、以及20%灰度(白色显示的20%的亮度的灰度)显示T20时的视场角特性图;
[0036] 图23为表示本发明第6实施例的液晶显示元件的概略剖面图;
[0037] 图24为表示第6实施例的液晶显示元件的第一及第二取向膜的取向处理方向、第一及第二偏振层的吸收轴的方向、第一及第二视场角补偿层的光学轴的方向、第一及第二相位差板的滞相轴的方向的图;
[0038] 图25A~图25D分别是在第6实施例的液晶显示元件中,分别为白色显示TW、黑色显示TB、50%灰度(白色显示的50%的亮度的灰度)显示T50、以及20%灰度(白色显示的20%的亮度的灰度)显示T20时的视场角特性图;
[0039] 图26为表示本发明的第7实施例的液晶显示元件的概略剖面图;
[0040] 图27为表示第7实施例的液晶显示元件的第一及第二取向膜的取向处理方向、第一及第二偏振层的吸收轴的方向、第一及第二视场角补偿层的光学轴的方向、第一及第二相位差板的滞相轴的方向的图;
[0041] 图28A~图28D分别是在第7实施例的液晶显示元件中,分别为白色显示TW、黑色显示TB、50%灰度(白色显示的50%的亮度的灰度)显示T50、以及20%灰度(白色显示的20%的亮度的灰度)显示T20时的视场角特性图。

具体实施方式

[0042] (第一实施例)
[0043] 图1~8表示本发明的第一实施例,图1为液晶显示元件的概略剖面图。
[0044] 该液晶显示元件为TN型的液晶显示元件,其包括:液晶单元1,在一对透明基板2、3之间夹持有液晶分子实质上以90°的扭转角进行扭转取向的向列液晶层10;夹着该液晶单元1而配置的第一及第二的一对偏振片11、15;以及分别设置在上述液晶单元1和上述一对偏振片11、15之间的第一及第二视场角补偿板19、22。
[0045] 图2为上述液晶单元1的一部分的放大剖面图。该液晶单元1由第一基板2,与该第一基板2对置设置的第二基板3,以及设置在第一及第二基板2、3之间的液晶层10构成。在该第一基板2中,在一个面上形成有至少1个第一透明电极4、和第一取向膜7,该第一取向膜7设置成覆盖第一电极4并沿预定的第一方向被实施了取向处理。上述第二基板3设置成与上述第一基板2的电极形成面对置,并在与上述第一基板2对置的面上形成有与上述第一电极4对置的至少1个第二透明电极5、和第二取向膜8,该第二取向膜8设置成覆盖第二电极,并沿与上述第一方向实质上以90°角度交叉的第二方向被实施了取向处理。上述液晶层10夹持在上述第一取向膜7和上述第二取向膜8之间,液晶分子10a在上述第一取向膜7和上述第二取向膜8之间实质上以90°的扭转角扭转取向。该液晶层10使以扭转取向的初始取向状态入射的偏振光旋转90°。另外,上述液晶层10根据上述液晶分子10a的取向状态,观察对于透射光产生的延迟值的基础上,实质上在λ/2的范围内变化。
[0046] 该液晶单元1为有源阵列液晶单元,设置在上述第一及第二基板2、3中的显示的观察侧的相反侧的基板(在下面称为“后基板”)2上的电极4由沿行方向(画面的左右方向)和列方向(画面的左右方向)呈矩阵状排列形成的多个像素电极构成。设置在观察侧的另一基板(在下面称为“前基板”)3上的电极5为与上述多个像素电极4的排列区域的整个区域对置而形成的一个膜状的对置电极。
[0047] 另外,虽然在图2中省略,但是在上述后基板2的与前基板3对置的面上设有分别对应于上述多个像素电极4而设置的多个TFT(薄膜晶体管)、向各行的多个TFT分别供给栅极信号的多个扫描线、向各列的多个TFT分别供给数据信号的多个信号线。
[0048] 上述TFT由形成在上述后基板2上的栅电极,覆盖上述栅电极而形成的栅极绝缘膜,与上述栅电极对置地形成在上述栅极绝缘膜上的i型半导体膜;以及隔着n型半导体膜而形成在上述i型半导体膜的两侧部上的漏电极和源电极构成。上述栅电极与上述扫描线连接,上述漏电极与上述信号线连接,上述源电极与对应的像素电极4连接。
[0049] 另外,在与上述前基板3中的与后基板2对置的面上,分别与由上述多个像素电极4和上述对置电极5相互对置的区域形成的多个像素对应,形成有红、绿、蓝的3色的彩色滤光片6R、6G、6B,上述对置电极5覆盖上述彩色滤光片6R、6G、6B而形成。
[0050] 此外,上述一对基板2、3在它们之间留有预定的间隙对置设置,通过形成为围绕上述多个像素电极4的排列区域的框状的密封材料9(参照图1)而接合。上述液晶层10被封入由上述一对基板2、3之间的上述密封材料9围绕的区域中。
[0051] 还有,在上述红、绿、蓝的3色的彩色滤光片6R、6G、6B中,分别使得上述多个像素中的设置有红色滤光片6R的像素的液晶层厚dR、设置有绿色滤光片6G的像素的液晶层厚dG、以及设置有蓝色滤光片6R的像素的液晶层厚dB成为dR>dG>dB的关系,形成为绿色滤光片6G的厚度大于红色滤光片6R,蓝色滤光片6B的厚度大于上述绿色滤光片6G。
[0052] 设置有上述红色滤光片6R的像素的液晶层厚dR、设置有绿色滤光片6G的像素的液晶层厚dG、以及设置有蓝色滤光片6B的像素的液晶层厚dB的比被设定为dR∶dG∶dB=1.1∶1.0∶0.9。
[0053] 此外,夹着上述液晶单元1而配置的一对偏振片中的、上述液晶单元1的与后基板2的电极形成面的相反侧的外表面对置而设置的第一偏振片11配置成吸收轴朝向实质上以45°的角度与形成在上述后基板2上的上述第一取向膜7的取向处理方向交叉的方向。
上述液晶单元1中的与前基板3的电极形成面的相反侧的外表面对置而配置的第二偏振片
15配置成吸收轴朝向实质上以45°的角度与形成在上述前基板3上的上述第二取向膜8的取向处理方向交叉的方向。即,第一偏振片11、第二偏振片15的各吸收轴相互垂直。
[0054] 第一偏振片11由第一偏振层12和一对基材13、14构成,该第一偏振层12在以实质上以45°的角度与上述第一取向膜7的取向处理方向交叉的方向上具有吸收轴,该一对基材13、14由TAC(三乙酰纤维素)膜等的透明树脂膜形成,夹着第一偏振层12分别设置在其两个面上,与上述一对基板2、3的基板面平行的面内的相位差实质上为零,具有与上述一对基板2、3的基板垂直的面内的相位差(在下面称为“厚度方向的相位差”)。第二偏振片15由第一偏振层16和一对基材17、18构成,该第一偏振层16在实质上以45°的角度与形成在上述前基板3上的第二取向膜8的取向处理方向交叉的方向上具有吸收轴,该一对基材17、18由TAC膜等的透明树脂膜形成,其夹着该第二偏振层16而分别设置在其两个面上,平行于上述基板面的面内的相位差实质上为零,具有垂直于上述基板的面内的相位差(厚度方向的相位差)。
[0055] 分别设置在上述液晶单元1和上述一对偏振片11、15之间的第一及第二视场角补偿板19、22分别由视场角补偿层20、23和一对基材21、24形成,该视场角补偿层20、23由使向列液晶分子混合取向的盘状液晶(Discotic Liquid Crystal)层形成,该一对基材21、24由上述TAC薄膜等的透明树脂膜形成,设置在上述视场角补偿层20、23中的至少一个面上。上述视场角补偿层20、23分别具有平行于上述基板面的面上的相位差和垂直于上述基板面的面内的相位差(厚度方向的相位差)。另外,一对基材21、24的平行于上述基板面的面内的相位差实质上为零,并具有垂直于上述基板面的面内的相位差(厚度方向的相位差)。
[0056] 本实施例所采用的第一及第二视场角补偿板19、22分别在上述视场角补偿层22、23的一个面上设置有上述基材21、24。
[0057] 图3为上述第一及第二视场角补偿板19、22中的一部分的放大剖面图,这些视场角补偿板19、22分别在上述基材21、24中的一个面上,形成沿一个方向被实施了取向处理的取向膜21a、24a,在上述取向膜21a、24a上设有由盘状液晶层形成的视场角补偿层20、23。该盘状液晶层的与盘状液晶分子25的圆盘面相垂直的分子轴位于与上述基材21的膜面相垂直、且与上述取向膜21a的取向处理方向相平行的面上,并且使上述盘状液晶分子
25混合取向为相对于上述基材21的倾角(倾斜角)从上述基材21侧朝向其相反侧依次增加。
[0058] 上述第一及第二视场角补偿板19、22的视场角补偿层20、23具有分别在混合取向的盘状液晶分子25的分子轴所在的面上的上述分子轴的平均倾斜方向上具有折射率为最小的光学轴的、负的光学各向异性。在这里,将盘状液晶分子25的分子轴所在的面与视场角补偿层20、23的面交叉的线称为光学轴方向。
[0059] 另外,在上述第一视场角补偿板19中,上述第一视场角补偿层20的盘状液晶分子25的倾斜角较大的一侧的面(基材21侧的相反侧的面)与上述液晶单元1中的后基板2的外表面对置设置。另外,上述第一视场角补偿层20的光学轴方向设定为平行于与形成在上述后基板2上的第一取向膜7的取向处理方向实质上相平行的方向或实质上相垂直的方向。在上述第二视场角补偿板22中,上述第二视场角补偿层23的盘状液晶分子的倾斜角较大的一侧的面(基材24侧的相反侧的面)与上述液晶单元1的前基板3的外表面对置设置。另外,上述第二视场角补偿层23的光学轴方向设定为平行于与形成在上述前基板3上的第二取向膜8的取向处理方向实质上平行的方向或实质上垂直的方向。
[0060] 图4表示上述液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a、上述第一及第二偏振片11、15的偏振层12、16的吸收层12a、16a的方向、以及上述第一及第二视场角补偿板19、22的视场角补偿层20、23的光学轴方向20a、23a的方向。
[0061] 如图4所示,形成在上述液晶单元1的后基板2上的第一取向膜7,沿从观察侧观看向右旋方向与液晶显示元件的画面的横轴方向(图中的点划线所示的方向)实质上以45°的角度交叉的第一方向被实施了取向处理。形成在前基板3上的第二取向膜8沿与上述第一方向实质上以90°的角度交叉的第二方向(从观察侧观看向左旋方向与画面的横轴方向实质上以45°的角度交叉的方向)被取向处理。夹持在上述后基板2的第一取向膜7与上述前基板3的第二取向膜8之间的液晶层10的液晶分子10a如表示分子排列的扭转方向的虚线箭头那样,在上述第一取向膜7和上述第二取向膜8之间沿液晶层10的层厚度方向实质上以90°的扭转角进行扭转取向。
[0062] 根据与施加在一对基板2、3的电极4、5之间的电压对应地变化的上述液晶分子10a的取向状态,上述液晶单元1的液晶层10的延迟值相对于透射光实质上在λ/2的范围内变化。
[0063] 另外,在与上述液晶单元1中的后基板2的外表面对置的第一偏振片11中,该偏振片11的第一偏振层12的吸收轴12a配置在平行于从观察侧观看平行的方向上,即,配置在平行于从观察侧观看向左旋方向与上述后基板2的第一取向膜7的取向处理方向7a实质上以45°的角度交叉的方向上。在上述液晶单元1中的与前基板3的外表面对置的第二偏振片15中,该偏振片15的第二偏振层16的吸收轴16a配置在平行于与上述第一偏振片11的偏振层12的吸收轴12a实质上垂直的方向(实质上与画面的横轴方向垂直的方向)上。
[0064] 此外,在上述液晶单元1的后基板2和上述第一偏振片11之间的第一视场角补偿板19中,将该视场角补偿板19的第一视场角补偿层20的光学轴方向20a配置在平行于与上述后基板2的第一取向膜7的取向处理方向7a实质上平行的方向上。在上述液晶单元1的前基板3和上述第二偏振片15之间的第二视场角补偿板22中,将视场角补偿板22的第二视场角补偿层23的光学轴方向23a配置在与上述前基板3的第二取向膜8的取向处理方向8a实质上平行的方向上,即,配置在平行于与第一视场角补偿板19的视场角补偿层
20的光学轴方向20a实质上垂直的方向上。
[0065] 该液晶显示元件对于上述多个像素部的每一个,通过向上述电极4、5之间施加电压,对从设置在其后侧(观察侧的相反侧)的未图示的面光源照射的白色照明光的透射进行控制,使通过与上述多个像素部分别对应的红、绿、蓝的3色的彩色滤光片6R、6G、6B着色的红、绿、蓝的3色光向观察侧出射,显示彩色图像。
[0066] 在该液晶显示元件中,将上述液晶单元1的设有红色滤光片6R的像素部(以下称为红色像素部)的液晶层厚dR、设有绿色滤光片6G的像素部(以下称为绿色像素部)的液晶层厚dG、和设有蓝色滤光片6B的像素部(发下称为蓝色像素部)的液晶层厚dR的比设定为dR∶dG∶dB=1.1∶1.0∶0.9,因此,可以显示彩色平衡良好的彩色图像。
[0067] 即,图5表示上述红、绿、蓝的各色的像素部的液晶层厚dR∶dG∶dB的比和从上述红、绿、蓝的各色的像素部分别射出光而显示白色时的显示的色度的关系。
[0068] 如图5那样,当比较将红、绿、蓝的各色的像素部的液晶层厚dR、dG、dB的比设定为dR∶dG∶dB=0.9∶1.0∶1.1,dR∶dG∶dB=1.0∶1.0∶1.0,dR∶dG∶dB=1.1∶1.0∶0.9的3个方式的情况时,上述各色的像素部的液晶层厚dR、dG、dB的比设定为dR∶dG∶dB=1.1∶1.0∶0.9时的白色显示的色度,与液晶层厚dR、dG、dB的比设定为其它的值时的白色显示的色度比较,是接近光源光(来自面光源的白色照明光)的色度,因此,可显示彩色平衡良好的彩色图像。
[0069] 另外,该液晶显示元件是将上述第一偏振片11和第二偏振片15分别配置成偏振层12、16的吸收轴12a、16a实质上相垂直的标准白色型,在各像素部的电极4、5之间未施加电压时显示白色,在上述各像素部的电极4、5之间施加足够使上述液晶层10的层厚方向的实质上整体的液晶分子10a相对于上述基板面大致垂直地立起取向的较高的电压(称为饱和电压)时显示黑色。
[0070] 具有液晶分子10a在一对基板2、3之间实质上以90°的扭转角进行扭转取向的液晶层10的上述液晶单元1,上述液晶层10的一对基板2、3附近的液晶分子10a的举动由上述取向膜7、8的锚固效果抑制。由此,在上述电极4、5之间施加上述饱和电压时,上述一对基板2、3附近的液晶分子10a不立起取向,存在液晶层10的基板2、3附近的液晶分子10a的面内延迟(在下面称为残留延迟)。
[0071] 另外,在上述电极4、5之间施加上述饱和电压时,上述液晶层10在垂直于上述基板面的面内具有负的相位差(在下面称为液晶层厚度方向的相位差)。
[0072] 特别是,上述第一及第二偏振片11、15的各偏振层12、16的吸收轴12a、16a配置成与上述取向膜7、8的取向处理方向7a、8a实质上以45°的方向平行的液晶显示元件,上述液晶层厚度方向的相位差对倾斜射入上述基板面的光作用较大,使视场角特性下降。
[0073] 于是,在本实施例的液晶显示元件中,分别在配置于上述液晶单元1的前后的第一及第二偏振片11、15与上述液晶单元1的后基板2和前基板3之间配置上述第一及第二视场角补偿板19、22,通过这些上述第一及第二视场角补偿板19、22抵消残留延迟。另外,在上述液晶单元1的上述电极4、5之间施加上述饱和电压(足够使液晶分子10a立起取向的较高的电压)时的与上述液晶层10的上述基板面相垂直的面内的相位差通过下述的相位差来抵消,该下述的相位差是上述第一偏振片11的第一偏振层12和第二偏振片15的第二偏振层16之间的多个光学层各自的垂直于上述基板面的面内的相位差,上述多个光学层包括:上述第一及第二偏振片11、15的与上述液晶单元1对置的面的基材14、18;上述第一及第二视场角补偿板19、22的各视场角补偿层20、23;及上述第一及第二视场角补偿板19、22的基材21、24。
[0074] 即,在将上述液晶层10的上述液晶层厚度方向的相位差与液晶层厚(设置有红、绿、蓝的彩色滤光片6R、6G、6B的各色的像素部的液晶层厚dR、dG、dB的平均值)d的积的值定义为液晶层厚度方向延迟,将上述多个光学层各自的厚度方向的相位差和各层厚的积的值定义为厚度方向延迟时,将液晶层厚度方向延迟和上述多个光学层的厚度方向延迟合计的值设定在-80nm~+80nm的范围(0±80nm),最好设定在0nm,由此,抵消施加了上述饱和电压时的上述液晶层10的厚度方向的延迟。
[0075] 图6表示液晶分子10a的预倾角为5.5°、饱和电压为4V时的、构成上述液晶层10的液晶材料的折射率各向异性Δn和液晶层厚d的积Δnd与施加了上述饱和电压时的上述液晶层10的液晶层厚度方向延迟RthLC之间的关系。施加上述饱和电压时的上述液晶层10的液晶层厚度方向延迟RthLC对应于上述液晶层10的上述积Δnd的值而如图那样变化。即,液晶层厚度方向的延迟RthLC相对于上述液晶层10的上述积Δnd的值的变化线性地变化。于是,延迟RthLC可通过将与图6所示的直线的斜率相对应的系数与上述液晶层10的上述积Δnd的值相乘来得到。
[0076] 于是,将上述第一偏振片11的第一偏振层12和上述第二偏振片15的第二偏振层16之间的、除了上述液晶层10以外的多个光学层各自的厚度方向延迟值合计的绝对值被设定为,与在上述液晶层10的Δnd的值上乘以根据上述液晶分子10a的预倾角和上述饱和电压来预先设定的系数而得到的值的绝对值一致,或者各绝对值的差成为-80nm~+80nm的范围。
[0077] 下面的表1表示上述液晶分子10a的预倾角和饱和电压不同的上述液晶层10的液晶层方向延迟RthLC、和为了计算多个光学层各自的厚度方向延迟的值而与上述液晶层的Δnd的值相乘的系数值的关系。
[0078] 表1
[0079]预倾角 饱和电压 RthLC 系数
0.5° 3V -299.43 0.72
5.5° 3V -311.03 0.75
10.5° 3V -321.85 0.77
0.5° 4V -338.46 0.81
5.5° 4V -345.40 0.83
10.5° 4V -352.11 0.85
0.5° 5V -358.35 0.86
5.5° 5V -363.41 0.87
10.5° 5V -368.32 0.86
[0080] 如该表1所示,上述液晶分子10a的预倾角在0.5°~10.5°的范围、且上述饱和电压在3~5V的范围内,施加上述饱和电压时的上述液晶层10的液晶层厚方向延迟值,可以通过将0.72~0.86的范围的系数与上述液晶层的Δnd的值相乘来计算。在这里,施加上述饱和电压时的上述液晶层10的液晶层厚度方向延迟的值、与除了上述液晶层10以外的多个光学层各自的厚度方向延迟的合计值是各绝对值实质上相等、且正负相反的值。
[0081] 由此,在本实施例中,上述第一偏振层12和第二偏振层16之间的除了上述液晶层10以外的多个光学层各自的厚度方向延迟的合计值设定为在上述液晶层10的Δnd的值上乘以上述0.72~0.86的范围的系数而获得的值,除了上述液晶层10以外的多个光学层的各厚度方向延迟的值、和施加上述饱和电压时的上述液晶层10的液晶层厚度方向延迟的合计值为0±80nm(-80nm~+80nm)的范围。在此场合,最好施加了上述饱和电压时的上述液晶层10的液晶层厚度方向延迟的值为在上述液晶层10的Δnd的值上乘以0.83的系数而算出的值。
[0082] 另外,图7表示液晶显示元件对于将上述液晶层显示元件的第一偏振片11的第一偏振层12和第二偏振片的第二偏振层之间的除了上述液晶层10以外的多个光学层各自的面内延迟的值相加而得到的面内延迟Ro、与上述液晶层10的积Δnd的合计值Ro+Δnd的透射率。上述多个光学层包括:与第一及第二偏振片11、15的液晶单元1对置的面的基材14、18,第一及第二视场角补偿板19、22的各视场角补偿层20、23,上述第一及第二视场角补偿板19、22的基材21、24。上述液晶显示元件的Ro+Δnd的值在350nm~600nm的范围显示较高的透射率,特别是在Ro+Δnd的值为480nm时显示峰值。
[0083] 于是,在本实施例中,将由上述第一偏振层12和第二偏振层16之间的多个光学层各自的、平行于上述基板面的面上的面内相位差和上述光学层的层厚的积形成的面内延迟的合计值、与上述液晶层10的Δnd相加而得到的值设定在350~600nm的范围,最好设定在480nm。
[0084] 此外,如果具体描述,在本实施例的液晶显示元件中,位于上述第一及第二偏振片11、15的上述第一及第二偏振层12、16的外侧的各基材13及17的光学的作用与观察者的辨认性无关。另外,与观察者的辨认性有关的是由上述第一偏振层12和第二偏振层16之间的、上述第一及第二偏振片11、15的基材14、18、上述第一及第二视场角补偿板19、22的上述第一及2视场角补偿层20、23及其基材21、24、以及上述液晶层10构成的多个光学层。
[0085] 如果象表示光学媒体100的X、Y,Z坐标和其各坐标轴方向的折射率的图14那样,对于作为光学媒体100的上述多个光学层的每一个,将平行于上述基板面的面上的相互垂直的2个方向中的一个方向和另一个方向分别设为X轴和Y轴,将垂直于上述基板面的厚度方向设为Z轴,上述X轴方向的折射率为nx,上述Y轴方向的折射率为ny,上述Z轴方向的折射率为nz,上述光学层的层厚为d,各光学层的厚度方向延迟Rthi由{(nx+ny)/2-nz}·d表示。在将这些各光学层的厚度方向的延迟Rthi的值相加而得到的总的厚度方向延迟设为Rth、构成上述液晶层10的液晶材料的折射率各向异性Δn和平均的液晶层厚度d的积为Δnd时,上述总的厚度方向延迟Rth设定在满足:
[0086] Rth=0.83Δnd±80nm
[0087] 的范围。即,总的厚度方向延迟Rth设定在0.83Δnd-80nm~0.83Δnd+80nm的范围内。
[0088] 另外,在是在上述第一偏振层12和第二偏振层16之间的多个光学层,由(nx-ny)·d表示的各光学层的面内延迟设为Roi,将上述各光学层的面内延迟Roi的值相加的面内延迟设为Ro时,上述相加后的面内延迟Ro设定在满足:
[0089] Ro+Δnd=350nm~600nm
[0090] 的范围内。
[0091] 在本实施例的液晶显示元件中,上述液晶单元1的液晶层10的Δnd的值为380nm,上述第一及第二视场角补偿层20、23的厚度方向延迟Rthi和面内延迟Roi的值分别是Rthi=70nm,Roi=-47nm,与上述第一及第二偏振层16的液晶单元1对置的面的基材14、18、上述第一及第二视场角补偿层20、23的基材21、24的厚度方向延迟Rthi和面内延迟Roi的值分别为Rthi=89nm,Roi=9nm。
[0092] 于是,将上述第一偏振层12和第二偏振层16之间的、除了上述液晶层10以外的多个光学层的由{(nx+ny)/2-nz}·d表示的厚度方向延迟Rthi的值相加而得到的厚度方向延迟Rth为353nm,将上述多个光学层的面内延迟Roi的值相加的面内延迟Ro为12nm。于是,将上述优选的系数0.83与上述液晶层10的Δnd的值相乘的值0.83Δnd为315nm,作为相加后的厚度方向延迟Rth的353nm是在作为上述0.83Δnd的值的315加上正和负的80nm而得到的值的范围内。另外,将上述相加后的面内延迟Ro与Δnd进行合计的值是
392nm,并在确定了Ro+Δnd的范围的350nm~600nm的范围内。
[0093] 由于上述液晶显示元件为上述那样的结构,故可改善透射率的角度依赖性,扩大显示的宽视场角。
[0094] 图8A~图8D分别为上述液晶显示元件的白色显示TW、黑色显示TB、50%灰度(白色显示的50%的亮度的灰度)显示T50、以及20%灰度(白色显示的20%的亮度的灰度)显示T20时的视场角特性图,图8A表示画面的左-右方向的视场角特性,图8B表示画面的下-上方向的视场角特性,图8C表示画面的左下-右下方向的视场角特性,图8D表示画面的右下-左上方向的视场角特性。
[0095] 另外,在图8A中,负的角度为左方向的角度,正的角度为右方向的角度。在图8B中,负的角度为下方向的角度,正的角度为上方向的角度。在图8C中,负的角度为左下方向的角度,正的角度为右上方向的角度。在图8D中,负的角度为右下方向的角度,正的角度为左上方向的角度。
[0096] 如图8A~图8D那样,上述液晶显示元件具有改善了画面的左-右方向、下-上方向、左下-右下方向和右下-左上方向的各方向的透射率的角度依赖性的、在上述各方向上的整个较宽的角度范围内没有中间灰度的反转的视场角特性,特别是,左-右方向、左下-右下方向和右下-左上方向的视场角较宽。
[0097] (第一实施例的变形实例)
[0098] 另外,在上述第一实施例的液晶显示元件中,上述液晶单元1的液晶层10的Δnd的值设定为380nm,但是,液晶层10的Δnd的值也可设定为其它的值。
[0099] 图9A~图9D为液晶层10的Δnd的值设定为505nm的,其它的结构分别与上述实施例相同的液晶显示元件中的、白色显示Tw、黑色显示TB、50%灰度显示T50和20%灰度显示T20时的视场角特性图。图9A表示画面的左-右方向的视场角特性,图9B表示画面的下-上方向的视场角特性,图9C表示画面的左下-右下方向的视场角特性,图9D表示画面的右下-左上方向的视场角特性。
[0100] 如图9A~图9D那样,该变形实例的上述液晶显示元件具有改善了画面的左-右方向、下-上方向、左下-右下方向和右下-左上方向的各方向的透射率的角度依赖性的、在上述各方向上的整个较宽角度范围内没有中间灰度的反转的视场角特性,而且,其对比度高于上述实施例的液晶显示元件。
[0101] (第二实施例)
[0102] 图10~图12表示本发明的第二实施例,图10为液晶显示元件的概略剖面图。
[0103] 本实施例的液晶显示元件是如下元件:在上述第一实施例的液晶显示元件中,在第一偏振片11和第一视场角补偿板19之间设置第一相位差板26,在上述第二偏振片15和第二视场角补偿板22之间设置第二相位差板27。第一偏振层12和第二偏振层16之间的除了液晶层10以外的多个光学层包括:与上述第一及第二偏振层12、16的液晶单元1的一对基板2、3对置的面的基材14、18;上述第一及第二视场角补偿层20、23和其基材21、24;以及上述第一及第二相位差板26、27。另外,本实施例的液晶显示元件的其它的结构实质上与上述第一实施例相同。
[0104] 图11表示本实施例的液晶显示元件中的液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a,第一及第二偏振片11、15的偏振层12、16的吸收轴12a、16的方向,第一及第二视场角补偿板19、22的视场角补偿层20、23的光学轴方向20a、23a的方向,以及第一及第二相位差板26、27的滞相轴26a、27a的方向。
[0105] 如图11那样,上述液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a;第一及第二偏振片11、15的偏振层12、16的吸收层12a、16a的方向;第一及第二视场角补偿板19、22的视场角补偿层20、23的光学轴方向20a、23a的方向与上述第一实施例相同。
将上述第一相位差板26的滞相轴26a配置在与上述第一视场角补偿板19的第一视场角补偿层20的光学轴方向20a实质上平行的方向上。将上述第二相位差板27的滞相轴27a配置在与上述第二视场角补偿板22的第二视场角补偿层23的光学轴方向23a实质上平行的方向上。
[0106] 此外,在本实施例中,上述液晶单元1的液晶层10的Δnd的值设定为420nm,上述第一及第二视场角补偿层20、23的厚度方向延迟Rthi与面内延迟Roi的值分别设定为Rthi=70nm、Roi=-47nm。另外,上述第一及第二偏振层12、16中的与液晶单元1对置的面的基材14、18和上述第一及第二视场角补偿层20、23的基材21、24的厚度方向延迟Rthi和面内延迟Roi的值分别设定为Rthi=89nm、Roi=9nm。另外,上述第一及第二相位差板26、27的厚度方向延迟Rthi和面内延迟Roi的值分别设定为Rthi=175nm、Roi=35nm。
这样,将上述第一偏振层12和第二偏振层16之间的除了上述液晶层10以外的多个光学层各自的厚度方向的延迟值、与施加电压时的上述液晶层10的液晶层方向的延迟值的合计值设定为-80nm~+80nm的范围。
[0107] 图12A~图12D为本实施例的液晶显示元件的白色显示TW,黑色显示TB,50%灰度显示T50和20%灰度显示T20时的视场角特性图。图12A表示画面的左-右方向的视场角特性,图12B表示画面的下-上方向的视场角特性,图12C表示画面的左下-右下方向的视场角特性,图12D表示画面的右下-左上方向的视场角特性。
[0108] 如图12A~图12D那样,在本实施例的液晶显示元件中,画面的左-右方向、下-上方向、左下-右下方向、右下-左上方向的各方向的透射率的角度依赖性得到改善。另外,具有在上述各方向上的整个较宽的角度范围内没有中间灰度反转的视场角特性,特别是,左-右方向、左下-右下方向、及右下-左上方向的视场角较高,而且对比度高。
[0109] (第三实施例)
[0110] 图13~图16表示本发明的第三实施例,图13表示液晶显示元件的概略剖面图。
[0111] 本实施例的液晶显示元件是如下元件:在上述第二实施例的液晶显示元件中,在上述第一相位差板26和第一视场角补偿板19之间、以及上述第二相位差板27和第二视场角补偿板22之间分别还设置具有相位差的第一及第二光学膜28、29。第一偏振层12和第二偏振层16之间的除了液晶层10以外的多个光学层包括:第一及第二偏振层12、16中的与液晶单元1的一对基板2、3对置的面的基材14、18;上述第一及第二视场角补偿层20、23及其基材21、24;上述第一及第二相位差板26、27;以及上述第一和第二光学膜28、29。另外,本实施例的液晶显示元件的其它的结构实质上与上述第二实施例相同。
[0112] 如图14所示的那样,作为光学媒体100的第一及第二光学膜28、29的与其膜面即液晶单元1中的基板面平行的面上的相互垂直的2个方向x、y中的一个折射率nx和另一折射率nx、和与膜面(液晶单元1的基板面)相垂直的厚度方向z的折射率nz,是nx=ny>nz的关系。
[0113] 即,该第一及第二光学膜28、29分别为沿与膜面相垂直的厚度方向z具有光学轴的相位差膜。
[0114] 图15为表示本实施例的液晶显示元件中的液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a;第一及第二偏振片11、15的偏振层12、16的吸收轴12a、16a的方向;第一及第二视场角补偿板19、22的视场角补偿层20、23的光学轴方向20a、23a的方向;第一及第二相位差板26、27的滞相轴26a、27a的方向;以及第一及第二光学膜28、29的光学轴28a、29a的方向。
[0115] 如图15那样,上述液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a;第一及第二偏振片11、15的偏振层12、16的吸收轴12a、16a的方向;第一及第二视场角补偿板19、22的视场角补偿层20、23的光学轴方向20a、23a的方向与上述第一及第二实施例相同。
[0116] 另一方面,上述第一相位差板26配置成使滞相轴26a平行于从观察侧观看向左转方向实质上以110°的角度与画面的横轴方向(通过图中的点划线表示的方向)交叉的方向。上述第二相位差板27配置成使滞相轴27a平行于从观察侧观看向左转方向与画面的横轴方向实质上以20°的角度交叉的方向,即,平行于与上述第一相位差板26的滞相轴26a实质上垂直的方向。另外,上述第一及第二光学膜28、29的光学轴28a、29a的方向与上述液晶单元1的基板面相垂直。
[0117] 另外,在本实施例中,上述液晶单元1的液晶层10的Δnd的值设定为385nm,上述第一和第二视场角补偿层20、23的厚度方向延迟Rthi与面内延迟Roi的值分别设定为Rthi=159nm,Roi=-38nm。另外,上述第一及第二偏振层12、16中的与液晶单元1对置的面的基材14、18,第一和2视场角补偿层20、23的基材21、24的厚度方向延迟Rthi和面内延迟Roi的值分别设定为Rthi=89nm,Roi=9nm。另外,上述第一及第二相位差板26、27的厚度方向延迟Rthi和面内延迟Roi的值分别设定为Rthi=50nm,Roi=64nm。此外,上述第一及第二光学膜28、29的厚度方向延迟Rthi设定为-160nm(该光学膜28、29的面内延迟Roi分别为0)。这样,上述第一偏振层12和上述第二偏振层16之间的除了液晶层10以外的多个光学层各自的厚度方向延迟的值与上述液晶层10的液晶层厚度方向延迟的值的合计值设定为0±80nm的范围内。
[0118] 图16A~图16D为本实施例的液晶显示元件的白色显示TW,黑色显示TB,50%灰度显示T50,以及20%灰度显示T20时的视场角特性图,图16A表示画面的左-右方向的视场角特性,图16B表示画面的下-上方向的视场角特性,图16C表示画面的左下-右下方向的视场角特性,图16D表示画面的右下-左上方向的视场角特性。
[0119] 如图16A~图16D那样,本实施例的上述液晶显示元件具有改善了画面的左-右方向、下-上方向、左下-右下方向和右下-左上方向的各方向的透射率的角度依赖性的、在上述各方向上的整个较宽的角度范围内没有中间灰度的反转的视场角特性,特别是,左-右方向、左下-右下方向和右下-左上方向的视场角较宽,而且对比度较高。
[0120] (第四实施例)
[0121] 图17~图19表示本发明的第四实施例,图17为液晶显示元件的概略剖面图。
[0122] 本实施例的液晶显示元件是如下元件:在上述第二实施例的液晶显示元件中,在上述第一相位差板26和第一视场角补偿板19之间、以及上述第二相位差板27和第二视场角补偿板22之间的任何一方,例如在第一相位差板26和第一视场角补偿板19之间还设有上述第三实施例中设置的光学膜29。第一偏振层12和第二偏振层16之间的除了液晶层10以外的多个光学层包括:第一及第二偏振层12、16中的与液晶单元1的一对基板2、3对置的面的基材14、18;第一及第二视场角补偿层20、23和其基材21、24;第一及第二相位差板26、27;以及上述光学膜29。另外,本实施例的液晶显示元件的其它结构实质上与上述第三实施例相同。
[0123] 图18表示本实施例的液晶显示元件中的液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a,第一及第二偏振片11、15的偏振层12、16的吸收层12a、16a的方向,第一及第二视场角补偿板19、22的视场角补偿层20、23的光学轴方向20a、23a的方向,上述第一及第二相位差板26、27的滞相轴26a、27a的方向、以及上述光学膜29光学轴29a的方向。
[0124] 如图18那样,上述液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a、第一及第二偏振片11、15的偏振层12、16的吸收轴12a、16a的方向,上述第一及第二视场角补偿板19、22的视场角补偿层20、23的光学轴方向20a、23a的方向与上述第一及第二实施例相同。另外,第一相位差板26的滞相轴26a的方向、第二相位差板27的滞相轴27a的方向与上述第三实施例相同。此外,上述光学膜29的光学轴29a的方向与上述液晶单元1的基板面相垂直。
[0125] 此外,在本实施例中,将上述液晶单元1的液晶层10的Δnd的值设定为386nm,上述第一及第二视场角补偿层20、23的厚度方向延迟Rthi和面内延迟Roi的值分别设定为Rthi=159nm、Roi=-38nm。另外,上述第一及第二偏振层12、16中的与液晶单元1对置的面的基材14、18以及上述第一及第二视场角补偿层20、23的基材21、24的厚度方向延迟Rthi和面内延迟Roi的值分别设定为Rthi=89nm、Roi=9nm。另外,上述第一及第二相位差板26、27的厚度方向延迟Rthi和面内延迟Roi的值分别设定为Rthi=50nm、Roi=64nm。另外,上述光学膜28的厚度方向延迟Rthi设定为-160nm(该光学膜28的面内延迟Roi为0)。这样,将上述第一偏振层12和上述第二偏振层16之间的除了上述液晶层10以外的多个光学层各自的厚度方向的延迟的值,与上述液晶层10的液晶层厚度方向延迟的值的合计值设定为0±80nm的范围。
[0126] 图19A~图19D分别为本实施例的液晶显示元件的白色显示TW、黑色显示TB、50%灰度显示T50以及20%灰度显示T20时的视场角特性图,图19A表示画面的左-右方向的视场角特性,图19B表示画面的下-上方向的视场角特性,图19C表示画面的左下-右下方向的视场角特性,图19D表示画面的右下-左上方向的视场角特性。
[0127] 如图19A~19D图那样,本实施例的液晶显示元件具有改善了画面的左-右方向、下-上方向、左下-右下方向和右下-左上方向的各方向的透射率的角度依赖性的、在上述各方向上的整个较宽的角度范围内没有中间灰度的反转的视场角特性,特别是,左-右方向、左下-右下方向和右下-左上方向的视场角较宽,而且对比度高。
[0128] (第5实施例)
[0129] 图20~图22表示本发明的第5实施例,图20为液晶显示元件的概略剖面图。
[0130] 本实施例的液晶显示元件是如下元件:在上述第二实施例的液晶显示元件中,在第一及第二相位差板26、27的板面上形成第一及第二视场角补偿层20、23。第一偏振层12和第二偏振层16之间的、除了液晶层10以外的多个光学层包括:上述第一及第二偏振片12、16中的与液晶单元1的一对基板2、3对置的面的基材14、18;上述第一及第二视场角补偿层20、23;以及上述第一及第二相位差板26、27。另外,本实施例的液晶显示元件的其它的结构实质上与上述第二实施例相同。
[0131] 图21表示本实施例的液晶显示元件中的液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a,第一及第二偏振片11、15的偏振层12、16的吸收轴12a、16a的方向,第一及第二视场角补偿层20、23的光学轴方向20a、23a的方向,上述第一及第二相位差板26、27的滞相轴26a、27a的方向。
[0132] 如图21那样,上述液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a,第一及第二偏振片11、15的偏振层12、16的吸收轴12a、16a的方向,第一及第二视场角补偿层20、23的光学轴方向20a、23a的方向与上述第一实施例相同。另外,第一相位差板26的滞相轴26a的方向和第二相位差板27的滞相轴27a的方向与上述第三实施例相同。
[0133] 此外,在本实施例中,上述液晶单元1的上述液晶层10的Δnd的值设定为385nm,上述第一及第二视场角补偿层20、23的厚度方向延迟Rthi和面内延迟Roi的值分别设定为:Rthi=70nm,Roi=-47nm。另外,上述第一及第二偏振层12、16中的与液晶单元1对置的面的基材14、18的厚度方向延迟Rthi和面内延迟Roi的值分别设定为:Rthi=89nm,Roi=9nm。此外,上述第一及第二相位差板26、27的厚度方向延迟Rthi和面内延迟Roi的值分别设定为:Rthi=55nm,Roi=71nm。这样,上述第一偏振层12和上述第二偏振层16之间的除了液晶层10以外的多个光学层各自的厚度方向延迟的值、上述液晶层10的液晶层厚度方向延迟的值的合计值设定在0±80nm的范围。
[0134] 本实施例的液晶显示元件可在第一及第二相位差板26、27的板面上形成第一及第二视场角补偿层20、23,将具有上述第一偏振层12和第二偏振层16之间的多个光学层中的厚度方向的延迟的基材仅设为第一及第二偏振层12、16中的与液晶单元1对置的面的基材14、18。这样,由于可以减少具有上述厚度方向的延迟的基材的数量,故可更加有效地改善透射率的角度依赖性。
[0135] 图22A~图22D为本实施例的液晶显示元件的白色显示TW、黑色显示TB、50%灰度显示T50、以及20%灰度显示T20时的视场角特性图,图22A表示画面的左-右方向的视场角特性,图22B表示画面的下-上方向的视场角特性,图22C表示画面的左下-右下方向的视场角特性,图22D表示画面的右下-左上方向的视场角特性。
[0136] 如图22A~22D那样,本实施例的上述液晶显示元件具有改善了画面的左-右方向、下-上方向、左下-右下方向和右下-左上方向的各方向的透射率的角度依赖性的、在上述各方向上的整个较宽的角度范围内没有中间灰度的反转的视场角特性,特别是,左-右方向、左下-右下方向和右下-左上方向的视场角较宽,而且对比度较高。
[0137] (第6实施例)
[0138] 图23~图25表示-本发明的第6实施例,图23为液晶显示元件的概略剖面图。
[0139] 本实施例的液晶显示元件是如下元件:在上述第二实施例的液晶显示元件中,仅在第一及第二偏振层12、16中的与液晶单元1的一对基板2、3对置的面的相反侧的外表面设置基材13、17,在该第一及第二偏振层12、16中的与液晶单元1对置的面上分别层叠了第一及第二相位差板26、27。第一偏振层12和第二偏振层16之间的除了液晶层10以外的多个光学层包括:上述第一及第二相位差板26、27,上述第一及第二视场角补偿层20、23,以及这些视场角补偿层20、23的基材21、24。本实施例的液晶显示元件的其它结构实质上与上述第二实施例相同。
[0140] 图24表示本实施例的液晶显示元件中的液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a,第一及第二偏振层12、16的吸收轴12a、16a的方向,第一及第二视场角补偿层20、23的光学轴方向20a、23a的方向,第一及第二相位差板26、27的滞相轴26a、27a的方向。
[0141] 如图24那样,上述液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a,第一及第二偏振层12、16的吸收轴12a、16a的方向,第一及第二视场角补偿层20、23的光学轴方向20a、23a的方向,以及第一及第二相位差板26、27的滞相轴26a、27a的方向与上述第一实施例相同。
[0142] 另外,在本实施例中,将上述液晶单元1的液晶层10的Δnd的值设定为420nm,上述第一及第二视场角补偿层20、23的厚度方向延迟Rthi和面内延迟Roi的值分别设定为:Rthi=159nm,Roi=-38nm。另外,上述第一及第二视场角补偿层20、23的基材21、24的厚度方向延迟Rthi和面内延迟Roi的值分别设定为:Rthi=89nm,Roi=9nm。此外,上述第一及第二相位差板26、27的厚度方向延迟Rthi和面内延迟Roi的值分别设定为:Rthi=175nm,Roi=35nm。这样,上述第一偏振层12和上述第二偏振层16之间的除了液晶层
10以外的多个光学层各自的厚度方向延迟的值与上述液晶层10的液晶层厚度方向延迟的值的合计值设定在0±80nm的范围内。
[0143] 本实施例的液晶显示元件仅在第一及第二偏振层12、16的外表面设置基材13、17,在该第一及第二偏振层12、16中的与液晶单元1对置的面上层叠第一及第二相位差板
26、27,将具有上述第一偏振层12和第二偏振层16之间的多个光学层中的厚度方向的延迟的基材仅作为第一及第二视场角补偿层20、23的基材21、24。这样,由于可减少具有上述厚度方向的延迟的基材的数量,故可更加有效地改善透射率的角度依赖性。
[0144] 图25A~图25D为本实施例的液晶显示元件的白色显示TW,黑色显示TB,50%灰度显示T50,以及20%灰度显示T20时的视场角特性图,图25A表示画面的左-右方向的视场角特性,图25B表示画面的下-上方向的视场角特性,图25C表示画面的左下-右下方向的视场角特性,图25D表示画面的右下-左上方向的视场角特性。
[0145] 如图25A~25D图那样,本实施例液晶显示元件具有改善了画面的左-右方向、下-上方向、左下-右下方向和右下-左上方向的各方向的透射率的角度依赖性的、在上述各方向上的整个较宽的角度范围内没有中间灰度的反转的视场角特性,特别是,左-右方向、左下-右下方向和右下-左上方向的各方向的视场角较宽,而且对比度较高。
[0146] (第7实施例)
[0147] 图26~图28表示本发明的第7实施例,图26表示液晶显示元件的概略剖面图。
[0148] 本实施例的液晶显示元件是如下元件:在上述第二实施例的液晶显示元件中,仅在第一及第二偏振层12、16中的与液晶单元1的一对基板2、3对置的面的相反侧的外表面上设置基材13、17,分别在第一及第二偏振层12、16中的与液晶单元1对置的面上分别层叠第一及第二相位差板26、27,另外,在上述第一及第二相位差板26、27中的与液晶单元1对置的面上分别形成第一及第二视场角补偿层20、23。第一偏振层12和第二偏振层16之间的除了液晶层10以外的多个光学层包括:上述第一及第二相位差板26、27;以及第一及第二视场角补偿层20、23。另外,本实施例的液晶显示元件的其它的结构实质上与上述第二实施例相同。
[0149] 图27表示本实施例的液晶显示元件中的液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a、第一及第二偏振层12、16的吸收轴12a、16a的方向、第一及第二视场角补偿层20、23的光学轴方向20a、23a的方向、以及第一及第二相位差板26、27的滞相轴26a、27a的方向。
[0150] 如图27那样,上述液晶单元1的第一及第二取向膜7、8的取向处理方向7a、8a、第一及第二偏振层12、16的吸收轴12a、16a的方向、第一及第二视场角补偿层20、23的光学轴方向20a、23a的方向与上述第一实施例相同。第一相位差板26配置成使其滞相轴26a平行于从观察侧观看向左转方向与上述画面的横轴方向实质上以100°的角度交叉的方向。第二相位差板27配置成使其滞相轴27a平行于从观察侧观看向左转方向与上述画面的横轴方向实质上以10°的角度交叉的方向,即,平行于与上述第一相位差板26的延迟轴26a实质上垂直的方向。
[0151] 另外,在本实施例中,上述液晶单元1的液晶层10的Δnd的值设定为430nm,上述第一及第二视场角补偿层20、23的厚度方向延迟Rthi和面内延迟Roi的值分别设定为:Rthi=70nm,Roi=-47nm。此外,上述第一及第二相位差板26、27的厚度方向延迟Rthi和面内延迟Roi的值分别设定为:Rthi=70nm,Roi=48nm。这样,上述第一偏振层12和上述第二偏振层16之间的除了上述液晶层10以外的多个光学层各自的厚度方向延迟的值、和上述液晶层10的液晶层厚度方向延迟的值的合计值设定为0±80nm的范围内。
[0152] 本实施例的液晶显示元件仅在第一及第二偏振层12、16的外表面设置基材13、17,在第一及第二偏振层12、16的与液晶单元1对置的面上层叠第一及第二相位差板26、
27,另外,在上述第一及第二相位差板26、27的与液晶单元1对置的面上形成第一及第二视场角补偿层20、23,由此,从第一偏振层12和第二偏振层16之间的多个光学层中去除具有厚度方向的延迟的基材,仅仅形成第一及第二视场角补偿层20、23的基材21、24。这样,由于可减小具有上述厚度方向延迟的基材的数量,故可更加有效地改善透射率的角度依赖性。
[0153] 图28A~图28D为本实施例的液晶显示元件的白色显示TW,黑色显示TB,50%灰度显示T50和20%灰度显示T20时的视场角特性图,图28A表示画面的左-右方向的视场角特性,图28B表示画面的下-上方向的视场角特性,图28C表示画面的左下-右下方向的视场角特性,图28D表示画面的右下-左上方向的视场角特性。
[0154] 如图28A~图28D那样,本实施例的上述液晶显示元件具有改善了画面的左-右方向、下-上方向、左下-右下方向和右下-左上方向的各方向的透射率的角度依赖性的、在上述各方向上的整个较宽的角度范围内没有中间灰度的反转的视场角特性,特别是,左-右方向、左下-右下方向和右下-左上方向的各方向的视场角较宽,而且对比度也较高。
[0155] (另一实施例)
[0156] 另外,上述各实施例的第一及第二视场角补偿层20、23是由使盘状液晶分子25混合取向的盘状液晶层形成,但是,第一及第二视场角补偿层不限于上述盘状液晶层,比如,也可由细长球状的液晶分子相对与液晶单元1的基板面平行的面向其中一个方向倾斜的方向倾斜取向的液晶层形成。
[0157] 此外,上述各实施例的液晶显示元件是将第一偏振层12和第二偏振层16配置成各吸收轴12a、16a实质上垂直的标准白色型,但是,液晶显示元件也可以是将上述第一偏振层12和第二偏振层16配置成各吸收轴12a、16a实质上平行的标准白色型。
[0158] 如上述那样,本发明的液晶显示元件的特征在于,包括:液晶单元,在相互对置的各内面形成有至少1个电极和覆盖该电极的取向膜的一对基板(substrate)之间,夹持使液晶分子实质上90°扭转取向的液晶层而构成;第一及第二偏振片,配置在该液晶单元的两侧,各偏振片由偏振层和支承该偏振层的至少1个基材构成,该偏振层具有使直线偏振光透射的透射轴、和在与该透射轴相垂直的方向上的吸收轴;及第一及第二视场角补偿层,分别配置在上述液晶单元和上述第一及第二偏振片之间,各视场角补偿层具有平行于上述液晶单元的基板面的面内的相位差、和垂直于上述基板面的面内的相位差;由上述第一偏振层和上述第二偏振层之间的、至少包含上述第一和第二视场角补偿层且除了上述液晶层以外的其它多个光学层各自的垂直于上述基板面的面内的相位差和上述光学层的层厚的积形成的、厚度方向延迟的合计值被设定为如下的值:该值能够抵消由在上述第一和第二基板的上述电极之间施加了足够使上述液晶分子相对于上述基板面进行立起取向的较高的电压时的上述液晶层的垂直于上述基板面的面内的相位差、和该液晶层厚度的积形成的液晶层厚度方向延迟。
[0159] 最好,在该液晶显示元件中,上述多个光学层各自的上述厚度方向延迟和上述液晶层的液晶层厚度方向延迟被设定为,将上述多个光学层各自的上述厚度方向延迟的合计值和上述液晶层的液晶层厚度方向延迟的值相加的值成为-80nm~+80nm的范围。
[0160] 另外,最好,在该液晶显示元件中,施加足够使上述液晶分子立起取向的较高的电压时的液晶层的液晶层厚度方向延迟的值、和第一偏振层和第二偏振层之间的除了上述液晶层以外的多个光学层各自的厚度方向延迟值的合计值被设定为,相互的绝对值之差是80nm以下、且正负相反的值。在此场合,上述液晶层厚度方向延迟最好为下述的值:在构成上述液晶层的液晶材料的折射率各向异性Δn和液晶层厚d的积Δnd的值上,乘以根据液晶分子对于基板面的预倾角和足够使上述液晶分子立起取向的较高的电压值来选择出的
0.72~0.89的范围的系数而算出的值。另外,对于上述第一偏振层和第二偏振层之间的、除了上述液晶层以外的多个光学层的每一个,在将平行于上述基板面的面内的相互垂直的
2个方向中的一个方向和另一个方向分别设为X轴和Y轴、将垂直于上述基板面的厚度方向设为Z轴、设上述X轴方向的折射率为nx、上述Y轴方向的折射率为ny、上述Z轴方向的折射率为nz、上述光学层的层厚为d时,由{(nx+ny)/2-nz}·d表示的各光学层的厚度方向延迟的合计值被设定为实质上等于如下值的值:在构成上述液晶层的液晶材料的折射率各向异性Δn与液晶层d的积Δnd的值上,乘以根据液晶分子对于基板面的预倾角和足够使上述液晶分子立起取向的较高的电压值来选择出的0.72~0.89的范围的系数而算出的值。
另外,上述第一偏振层和第二偏振层之间的除了上述液晶层以外的多个光学层各自的厚度方向延迟值的合计值被设定为实质上等于如下值的值,即,在构成上述液晶层的液晶材料的折射率各向异性Δn与液晶层厚d的积Δnd的值上乘以0.83的系数而算出的值。
[0161] 在本发明的液晶显示元件中,最好,由上述第一偏振层和第二偏振层之间的包含液晶层的多个光学层各自的平行于基板面的面内的面内相位差、与上述多个光学层各自的层厚的积形成的面内延迟的合计值被设定在350~600nm的范围。
[0162] 在本发明的液晶显示元件中,最好,上述液晶单元包括:第一基板,在一个面上形成有至少1个第一电极和第一取向膜,该第一取向膜设置成覆盖上述第一电极并沿预定的第一方向被实施了取向处理;第二基板,配置成与上述第一基板的电极形成面对置,在与上述第一基板对置的面上形成有与上述第一电极对置的至少1个第二电极和第二取向膜,该第二取向膜设置成覆盖上述第二电极并沿与上述第一方向实质上以90°的角度交叉的第二方向被实施了取向处理;液晶层,实质上以90°的扭转角扭转取向并被夹持在上述第一基板的上述第1取向膜和上述第二基板的上述第二取向膜之间;上述第一偏振片具有第一偏振层,该第一偏振层在与上述第一取向膜的取向处理方向实质上以45°的角度交叉的方向上具有吸收轴;第二偏振片具有第二偏振层,该第二偏振层在与上述第一偏振层的吸收轴实质上垂直的方向或实质上平行的方向上具有吸收轴。
[0163] 在本发明的液晶显示元件中,上述第一及第二偏振层分别具备由树脂膜构成的基材,该基材设置在这些偏振层的至少与第一及第二基板对置的面上并具有由在垂直于上述基板面的面内的相位差和层厚的积形成的厚度方向延迟;第一及第二视场角补偿层分别具备由树脂膜构成的基材,该基材设置在这些视场角补偿层的至少一个面上并具有由在垂直于上述基板面的面内的相位差和层厚的积形成的厚度方向延迟;上述第一偏振层和上述第二偏振层之间的除了液晶层以外的多个光学层至少由上述第一及第二偏振层的与第一及第二基板对置的面的基材、上述第一及第二视场角补偿层、及这些视场角补偿层的上述基材构成。
[0164] 在本发明的液晶显示元件中,最好,在上述第一偏振层和第一视场角补偿层之间还设有第一相位差板,在第二偏振层和第二视场角补偿层之间还设有第二相位差板。在此场合,最好,上述第一及第二偏振层分别具备由树脂膜构成的基材,该基材设置在这些偏振层的至少与上述第一及第二基板对置的面上并具有由在垂直于上述基板面的面内的相位差和层厚的积形成的厚度方向延迟;上述第一及第二视场角补偿层分别形成在第一相位差板和第二相位差板的板面上。另外,最好,上述第一及第二偏振层分别具备由树脂膜构成的基材,该基材设置在这些偏振层的与第一及第二基板对置的面的相反侧的外表面;上述第一及第二视场角补偿层分别具备由树脂膜构成的基材,该基材设置在这些视场角补偿层的至少一个面上并具有由在垂直于基板面的面上的相位差和层厚的积形成的厚度方向延迟;上述第一及第二相位差板分别层叠在上述第一及第二偏振层的与上述第一及第二基板相对置的面上。此外,最好,上述第一及第二偏振层分别具有由树脂膜构成的基材,该基材设置在这些偏振层的与第一及第二基板对置的面的相反侧的外表面;上述第一及第二相位差板分别层叠在上述第一及第二偏振层的与上述第一及第二基板对置的面上;上述第一及第二视场角补偿层分别形成在上述第一及第二相位差板的板面上。另外,最好,在上述第一相位差板和第一视场角补偿层之间、与第二相位差板和第二视场角补偿层之间的至少一方还设有光学膜,该光学膜的平行于上述基板面的面内的相互垂直的2个方向中的一个方向的折射率nx及另一方向的折射率ny、和垂直于上述基板面的厚度方向的折射率nz是nx=ny>nz的关系。
[0165] 本发明的液晶显示元件的特征在于,包括:第一基板,在一个面上形成有至少1个第一电极和第一取向膜,该第一取向膜设置成覆盖上述第一电极并沿预定的第一方向被实施了取向处理;第二基板,配置成与上述第一基板的电极形成面对置,在与上述第一基板对置的面上形成有与上述第一电极对置的至少1个第二电极和第二取向膜,该第二取向膜设置成覆盖上述第二电极并沿与上述第一方向实质上以90°的角度交叉的第二方向被实施了取向处理;液晶层,被夹持在上述第一基板的上述第一取向膜和上述第二基板的上述第二取向膜之间,液晶分子在上述第一取向膜和上述第二取向膜之间实质上以90°的扭转角被扭转取向;第一偏振片,该第一偏振片具备第一偏振层和由树脂膜构成的基材,该第一偏振层设置成与上述第一基板的电极形成面的相反侧的外表面对置,并在与上述第一取向膜的取向处理方向实质上以45°的角度交叉的方向上具有吸收轴,该基材设置在该第一偏振层的至少与上述第一基板对置的面上,并具有由垂直于上述第一及第二基板的基板面的面内的相位差和层厚的积形成的厚度方向延迟;第二偏振片,该第二偏振片具备第二偏振层和由树脂膜构成的基材,该第二偏振层配置成与上述第二基板的电极形成面的相反侧的外表面对置,并在与第一偏振层的吸收轴实质上垂直的方向或实质上平行的方向上具有吸收轴,该基材设置在该第二偏振层的至少与上述第二基板对置的面上,并具有由垂直于上述基板面的面内的相位差和层厚的积形成的厚度方向延迟;第一及第二视场角补偿板,配置在上述1基板和第一偏振片之间、以及上述第二基板和第二偏振片之间,各视场角补偿板具有视场角补偿层和由树脂膜构成的基材,该视场角补偿层具有平行于上述基板面的面内的相位差和垂直于上述基板面的面内的相位差,该基材设置在该视场角补偿层的至少一个面上,具有由垂直于上述基板面的面内的相位差和层厚的积形成的厚度方向延迟;由上述第一偏振片的第一偏振层和上述第二偏振片的第二偏振层之间的、多个光学层各自的垂直于上述基板面的面内的相位差和上述多个光学层的各层厚的积形成的厚度方向延迟的值、与由在第一及第二基板的电极之间施加了足够使上述液晶分子相对于上述基板面进行立起取向的较高的电压时的上述液晶层的垂直于上述基板面的面内的相位差和液晶层厚的积形成的液晶层厚方向延迟的值的合计值,设定在-80nm~+80nm的范围,上述多个光学层至少包括上述第一及第二偏振片的与上述第一及第二基板对置的面的上述基材、上述第一及第二视场角补偿板的各视场角补偿层、以及上述第一及第二视场角补偿板的基材,并且将上述液晶层排除在外。
[0166] 在该液晶显示元件中,上述液晶层厚度方向延迟最好为下述的值:在构成上述液晶层的液晶材料的折射率各向异性Δn和液晶层厚度d的积Δnd的值上,乘以根据对于基板面的液晶分子的预倾角和足够使上述液晶分子进行立起取向的较高的电压的值来选择出的0.72~0.89的范围的系数而算出的值。
[0167] 由上述第一偏振层和第二偏振层之间的包含多个基材、多个视场角补偿层、及液晶层的多个光学层各自的平行于基板面的面内的面内相位差,与上述多个光学层各自的层厚的积形成的面内延迟的合计值,被设定在350nm~600nm的范围。
[0168] 还有,最好在上述第一偏振层和第一视场角补偿层之间还设有第一相位差板,在第二偏振层和第二视场角补偿层之间还设有第二相位差板。
[0169] 本发明的液晶显示元件的特征在于,包括:第一基板,在一个面上形成有至少1个第一电极、和设置成覆盖上述第一电极并沿预定的第一方向被实施取向处理的第一取向膜;第二基板,该第二基板设置成与上述第一基板的电极形成面对置,在与上述第一基板对置的面上形成有与上述第一电极对置的至少1个第二电极和第二取向膜,该第二取向膜设置成覆盖上述第二电极并沿与上述第一方向实质上以90°的角度交叉的第二方向被实施了取向处理;液晶层,被夹持在上述第一基板的第一取向膜和上述第二基板的上述第二取向膜之间,液晶分子在上述第一取向膜和上述第二取向膜之间实质上以90°的扭转角被扭转取向;第一偏振层,配置成与上述第一基板的电极形成面的相反侧的外表面对置,并在与上述第一取向膜的取向处理方向实质上以45°的角度交叉的方向上具有吸收轴;第二偏振层,配置成与上述第二基板的电极形成面的相反侧的外表面对置,并在与上述第一偏振层的吸收轴实质上相垂直的方向、或实质上相平行的方向上具有吸收轴;第一及第二视场角补偿层,分别配置在上述第一基板和上述第一偏振层之间、以及上述第二基板和上述第二偏振层之间,各视场角补偿层具有平行于上述第一及第二基板的基板面的面内的相位差和垂直于上述基板面的面内的相位差;对于上述第一偏振层和上述第二偏振层之间的、至少包含上述第一及第二视场角补偿层且除了上述液晶层以外的多个光学层的每一个,在将平行于上述基板面的面内的相互垂直的2个方向中的一个方向和另一个方向分别设为X轴和Y轴、将垂直于上述基板面的厚度方向设为Z轴、设上述X轴方向的折射率为nx、上述Y轴方向的折射率为ny、上述Z轴方向的折射率为nz、上述光学层的层厚为d、将由{(nx+ny)/2-nz}·d表示的各光学层的厚度方向延迟设为Rthi、设将上述各光学层的厚度方向延迟Rthi的值相加的厚度方向延迟为Rth、设构成上述液晶层的液晶材料的折射率各向异性Δn和液晶层厚度d的积为Δnd时,上述厚度方向延迟Rth设定在满足-80nm<Rth-0.83Δnd<80nm的范围。
[0170] 在该液晶显示元件中,对于上述第一偏振层和第二偏振层之间的多个光学层,将由(nx-ny)·d表示的各光学层的面内延迟设为Roi、设将上述各光学层的面内延迟Roi的值相加的面内延迟为Ro时,上述面内延迟为Ro和液晶层的Δnd设定在分别满足Ro+Δnd=350nm~600nm的范围。