用于制造功率半导体器件的方法转让专利

申请号 : CN200910258365.3

文献号 : CN101770949B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : A·科普塔M·拉希莫

申请人 : ABB技术有限公司

摘要 :

本发明涉及用于制造功率半导体器件的方法。为了制造功率半导体器件,在第一导电类型的衬底的第一主要侧上制作第一氧化物层。然后在所述第一主要侧上、在所述第一氧化物层的顶部上制作具有至少一个开口的结构化栅电极层。利用所述结构化栅电极层作为掩模,将所述第一导电类型的第一掺杂剂注入到在所述第一主要侧的衬底中,并且所述第一掺杂剂被扩散到衬底中。然后第二导电类型的第二掺杂剂被注入到在所述第一主要侧的衬底中,并且所述第二掺杂剂被扩散到衬底中。在将所述第一掺杂剂扩散到衬底中之后并且在将所述第二掺杂剂注入到衬底中之前,部分地除去所述第一氧化物层。所述结构化栅电极层被用作用于注入所述第二掺杂剂的掩模。

权利要求 :

1.用于制造功率半导体器件的方法,所述方法包括下列制造步骤:在第一导电类型的衬底(1)的第一主要侧上制作第一氧化物层(22),在所述第一主要侧上、在所述第一氧化物层(22)的顶部上制作具有至少一个开口(31)的栅电极层(3),利用所述栅电极层(3)作为掩模,将第一导电类型的第一掺杂剂注入到在所述第一主要侧的衬底(1)中,所述第一掺杂剂被扩散到衬底(1)中,

第二导电类型的第二掺杂剂被注入到在所述第一主要侧的衬底(1)中,以及所述第二掺杂剂被扩散到衬底(1)中,其特征在于在将所述第一掺杂剂扩散到衬底(1)中之后并且在将所述第二掺杂剂注入到衬底(1)中之前,部分地除去所述第一氧化物层(22),通过将第二导电类型的第二掺杂剂注入到在所述第一主要侧的衬底中及通过将所述第二掺杂剂扩散到衬底中而形成基极层,从而所述基极层在开口下方的中心区域中具有较低的深度,所述深度小于所述基极层在外围区域中延伸至的最大深度;以及所述栅电极层(3)被用作用于注入所述第二掺杂剂的掩模。

2.根据权利要求1的方法,其特征在于

除去在其中设置有栅电极层(3)的至少一个开口(31)的那些区域中的所述第一氧化物层(22),产生栅氧化物层(2)。

3.根据权利要求1或2的方法,其特征在于所述第一掺杂剂是磷和/或砷离子。

4.根据权利要求1到2中的任一项的方法,其特征在于

12 14 2

以40-150keV的能量和/或1×10 -1×10 /cm 的剂量注入所述第一掺杂剂。

5.根据权利要求1到2中的任一项的方法,其特征在于所述第一掺杂剂被扩散到衬底(1)中至至少1μm的深度,并且该深度最大为10μm。

6.根据权利要求1到2中的任一项的方法,其特征在于所述第二掺杂剂是硼、铝、镓和/或铟离子。

7.根据权利要求1到2中的任一项的方法,其特征在于

13 14 2

以20-120keV的能量和/或5×10 -3×10 /cm 的剂量注入所述第二掺杂剂。

8.根据权利要求1到2中的任一项的方法,其特征在于所述第二掺杂剂被扩散到衬底(1)中至在0.5μm和9μm之间的范围内的最大深度(54)。

说明书 :

用于制造功率半导体器件的方法

技术领域

[0001] 本发明涉及功率电子学领域并且更具体地涉及根据独立权利要求的前序部分的用于制造功率半导体器件的方法。

背景技术

[0002] 现有技术的IGBT具有低(n-)掺杂的漂移层,所述漂移层在后面有集电极层的集电极侧上具有较高的n掺杂缓冲层。在所述漂移层的与集电极侧相对的发射极侧上设置p基极层。已经通过引入n掺杂的增强层来改善IGBT,所述n掺杂的增强层被设置在所述p基极层和所述(n-)漂移层之间并且分隔这两层。这导致IGBT具有改善的安全工作区(SOA)和低通态损耗。通过这种增强层来提高有源单元(cell)附近的载流子浓度。在金属氧化物半导体场效应晶体管(MOSFET)的情况下,这种增强层导致结型场效应晶体管(JFET)效应的降低并且也导致低的通态损耗。
[0003] 如果对于上述具有n增强层的IGBT而言,p基极层在单元边缘与在单元中心区域相比具有更高的深度,则pn结的这个剖面(profile)将峰值场从单元的外围转移到直接在发射极电极的接触区下面的区域。峰值场的这个位置导致IGBT以及MOSFET的SOA关断电流性能更高,并且由于场产生的空穴可以直接向所述发射极电极的接触区运输的事实,因此避开了在所述n+源区附近的临界区,所述临界区会分别导致IGBT和MOSFET的寄生晶闸管和晶体管的触发。
[0004] EP 0 837 508描述了用于制造具有这种调制p基极层剖面的绝缘栅双极晶体管(IGBT)的方法。在(p+)衬底上,通过外延生长首先形成n缓冲层并且然后形成(n-)层。其后,厚栅氧化物层形成在(n-)层上并且被制成指定的图案形状。然后薄栅氧化物层形成在其中没有形成厚氧化物层的区域中的所述(n-)层的顶部上,后面是在所述栅氧化物层上的作为栅电极的多晶硅层。然后在所述薄栅氧化物层和多晶硅层中形成开孔。利用多晶硅层中的孔作为掩模,通过所述开孔将磷注入到所述(n-)层中并且扩散到所述(n-)层中,产生第一n层。其后,所述孔被扩大并且磷被再次注入和扩散,产生第二n层。所述第一n层的深度大于所述第二n层的深度。接着,通过所述多晶硅层的相同掩模注入硼并且将硼扩散,产生p层,所述p层不及所述第二n层深。因此,可以通过利用相同的掩模制得所述第二n层和所述p层,而对于所述第一n层的制造而言需要另一个掩模。
[0005] 在EP 0 837 508中也被描述的替换方案中,在所述第二n层之后制作所述第一n层,所述第二n层如上所述是通过掩模和注入/扩散来制作的。在制作所述第二n层之后,绝缘膜被产生在栅电极上并且借助光致抗蚀剂来结构化。也可以在所述绝缘膜之前处理所述第一n层。对于制造所述第一n层而言,高能磷离子从所述开孔被直接注入,所述开孔受光致抗蚀剂限制并且因此比被用作所述第二n层的掩模的孔小。所述离子被直接注入到所述第二n层和所述(n-)层之间的深度。对于IGBT单元中需要的超过1μm的深度而言,高能磷离子的注入是复杂的过程,并且该过程也需要精确的掩模对准以便将所述磷放置在单元的中间。
[0006] JP 03-205832提到一种MOSFET器件,所述MOSFET器件包括在n掺杂源区之间、但在p掺杂基极区下面的区中的高n掺杂区域。
[0007] US 2004/0065934示出一种MOSFET,其中p基极区具有p掺杂并且被另一个更重掺杂的p区围绕。

发明内容

[0008] 本发明的目的是提供一种用于制造具有低通态损耗和高SOA性能的功率半导体器件的方法,所述方法比现有技术中已知的方法更容易执行并且因而避免了精密的制造步骤。
[0009] 该目的通过根据权利要求1的用于制造功率半导体器件的方法来实现。
[0010] 用于制造功率半导体器件的本发明的方法包括下列步骤:
[0011] -在第一导电类型的衬底的第一主要侧上制作第一氧化物层,
[0012] -在所述第一主要侧上、在所述第一氧化物层的顶部上制作具有至少一个开口的结构化栅电极层,
[0013] -利用所述结构化栅电极层作为掩模,将第一导电类型的第一掺杂剂注入到在所述第一主要侧的衬底中,
[0014] -所述第一掺杂剂被扩散到衬底中,
[0015] -第二导电类型的第二掺杂剂被注入到在所述第一主要侧的衬底中,以及[0016] -所述第二掺杂剂被扩散到衬底中,其特征在于
[0017] -在将所述第一掺杂剂扩散到衬底中之后并且在将所述第二掺杂剂注入到衬底中之前,部分地除去所述第一氧化物层,产生栅氧化物层,以及
[0018] -所述结构化栅电极层被用作用于注入所述第二掺杂剂的掩模。
[0019] 用于制造功率半导体器件(尤其是IGBT或MOSFET)的本发明的方法具有的优点是需要一个单独掩模来制造所述基极层(通过所述第一导电类型的第一掺杂剂的注入和扩散而制得)和所述增强层(通过所述第二导电类型的第二掺杂剂的注入和扩散而制得)。这些层通过利用所述结构化栅电极层作为掩模而被自对准。
[0020] 已经令人惊讶地发现,由于在扩散所述第一掺杂剂之后并且在注入所述第二掺杂剂之前除去所述结构化栅电极层的开口上的所述第一氧化物层,获得了所述第二导电类型的基极层,所述基极层在与发射极电极的接触区域下面的中心区域中具有更低的深度而在所述第二导电类型的基极层的外围区域中具有更高的深度。
[0021] 基极层剖面的这种变化允许操作具有低通态损耗和高SOA性能的半导体器件。所述方法优选用于制造IGBT和MOSFET。

附图说明

[0022] 将在下文中参考附图更详细地解释本发明的主题,其中:
[0023] 图1示出根据本发明的绝缘栅半导体器件;以及
[0024] 图2-10示出用于制造根据本发明的半导体器件的方法的不同步骤。
[0025] 在附图中使用的参考符号以及它们的意思被总结在参考符号列表中。通常,相似部件或相似功能部件被给予相同的参考符号。所述实施例意思是作为实例并且不应该限制本发明。

具体实施方式

[0026] 在图1中示出根据本发明的功率半导体器件。IGBT被示为具有低(n-)掺杂的漂移层12。所述漂移层12具有第一主要侧和设置在所述第一主要侧对面的第二主要侧。所述第二主要侧是集电极侧121,在集电极侧121上设置掺杂的缓冲层9,所述缓冲层9具有比所述漂移层12更高的掺杂。在所述缓冲层9上,在与设置有漂移层12的侧相对的侧上是p掺杂的集电极层10,并且在所述集电极层10的顶部上设置集电极电极11。
[0027] 在所述第一主要侧(其是发射极侧122)设置p掺杂的基极区5,所述p掺杂的基极区5被嵌入n掺杂的增强层4中。增强层4具有比漂移层12更高的掺杂并且它把基极区5和漂移层12分开。在发射极侧122上设置栅氧化物层2,所述栅氧化物层2通常由SiO2制成。所述栅氧化物层2借助氧化物开口被结构化,所述氧化物开口使基极区5的表面的一部分没有被栅氧化物层2覆盖。在栅氧化物层2的顶部上设置通常由多晶硅制成的栅电极层3。栅电极层3具有位于与氧化物层2相同的位置且优选与氧化物层2的尺寸相同的开口31。栅电极层3和栅氧化物层2被绝缘层7覆盖。然后发射极电极8被设置在绝缘层7的顶部上并且在被绝缘层7覆盖的栅氧化物层2和栅电极层3的开口31中。在所述p掺杂的基极区5内设置高(n+)掺杂的源区6,所述高(n+)掺杂的源区6与在开口31的区域中的发射极电极8接触并且在发射极侧122的表面延伸到在栅电极层3下面的区域。
[0028] 通常,漂移层12、基极区5、增强区4和源区6形成一个共同的平坦表面。
[0029] 基极区5在中心区域具有比基极区5的最大深度54小的深度53,所述最大深度54位于中心区域以外,即在基极区5的外围区域中。
[0030] 在图2到10中示出用于制造功率半导体器件的本发明的方法。所述方法包括如下步骤。如图2中所示,所述方法从轻(n-)掺杂的衬底1开始,所述衬底1具有集电极侧121(在图中未示出)和与所述集电极侧121相对的发射极侧122。如图3中所示,在发射极侧122上形成完全覆盖衬底1的第一氧化物层22。如图4中所示,在所述第一氧化物层
22的顶部上制作导电层32。所述导电层32完全覆盖所述第一氧化物层22。根据图5,在所述导电层32中刻蚀通孔形式的开口31,产生结构化栅电极层3,因此现在氧化物层22的一部分未被覆盖。
[0031] 利用具有其开口31的结构化栅电极层3作为掩模,将n导电类型的第一掺杂剂注入衬底1中(在图6中由箭头42示出),产生第一n掺杂注入区41,所述第一注入区41的掺杂高于所述漂移层12的掺杂。然后,注入的第一掺杂剂被扩散到衬底1中(在图7中由箭头43示出),产生增强层4。优选使用磷和/或砷离子作为第一掺杂剂,优选用磷离子。12 14 2
优选以40-150keV的能量和/或1×10 -1×10 /cm 的剂量注入所述第一掺杂剂。所述第一掺杂剂被推进(drive in)到衬底1中至在1μm和10μm之间的深度,尤其是在1μm和
8μm之间的深度,并且尤其是在1μm和6μm之间的深度。
[0032] 在形成增强层4后,通常通过刻蚀来部分地除去在其中设置有所述结构化栅电极层3的开口31的那些区域中的所述第一氧化物层22(在图8中由虚线21示出)。然后,利用具有其开口31的所述结构化氧化物栅电极层3作为掩模,将p导电类型的第二掺杂剂注入基极区5中(在图9中由箭头55示出),产生第二注入区51。然后,注入的第二掺杂剂被扩散到基极区5中(在图10中由箭头52示出)。所述第二掺杂剂优选是硼、铝、镓和/13 14 2
或铟离子,优选是硼离子。优选以20-120keV的能量和/或5×10 -3×10 /cm 的剂量注入所述第二掺杂剂。所述第二掺杂剂被推进到在0.5μm和9μm之间的范围内的最大深度
54,尤其是在0.5μm和7μm之间的范围内的最大深度,并且尤其是在0.5μm和5μm之间的范围内的最大深度。
[0033] 由于这个制造过程,所述第二掺杂剂被推进到衬底中至中心区域中的深度53(见图1),所述深度53不及基极区5的最大深度54深,所述最大深度54位于外围区域,即在所述中心区域之外。如图10中所示,所述第二掺杂剂不仅沿垂直于表面的方向被推进到衬底1中,而且它们还横向散开,因而减小了中心区域中的所述第二掺杂剂的量。对于以低能量注入的硼掺杂剂而言,与中心区域之外的2.4μm的最大深度54相比,在中心区域中实现了基极区5的1.6μm的深度53。用于硼注入的能量通常在40和120keV之间,尤其在70和
90keV之间,尤其大约为80keV。
[0034] 当然,也可以制造具有至少两个开口31的结构化栅电极层3,并且从而形成至少两个基极区5,每个都被增强层4围绕。
[0035] 以任何合适的制造步骤并且通过任何合适的制造方法制造高(n+)掺杂的源区6和集电极侧121上的各层,即n掺杂的缓冲层9、p掺杂的集电极层10和集电极电极11。
[0036] 可以将本发明应用于制造其中所有层的导电类型被颠倒(reversed)(即具有轻(p-)掺杂的衬底等)的半导体器件的方法。
[0037] 已经针对平面半导体详细描述了本发明,但是本发明的方法也可以应用于沟槽栅半导体。此外,本发明也可以应用于类似MOSFET的其它半导体类型。
[0038] 参考符号列表
[0039] 1:衬底
[0040] 2:栅氧化物层
[0041] 21:区域
[0042] 22:第一氧化物层
[0043] 3:栅电极层
[0044] 32:导电层
[0045] 31:开口
[0046] 4:增强层
[0047] 41:第一注入区
[0048] 41’:第一掺杂剂的注入
[0049] 42:第一掺杂剂的扩散
[0050] 5:基极区
[0051] 51:第二注入区
[0052] 51’:第二掺杂剂的注入
[0053] 52:第二掺杂剂的扩散
[0054] 53:第二掺杂剂在中心区域的扩散深度
[0055] 54:第二掺杂剂的最大扩散深度
[0056] 6:源区
[0057] 7:绝缘层
[0058] 8:发射极电极
[0059] 9:缓冲层
[0060] 10:集电极层
[0061] 11:集电极电极
[0062] 12:漂移层
[0063] 121:集电极侧
[0064] 122:发射极侧