爆震确定装置转让专利

申请号 : CN200880101840.X

文献号 : CN101790677A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 枡田哲金子理人渡边聪田中博人千田健次花井纪仁山迫靖广

申请人 : 株式会社电装丰田自动车株式会社

摘要 :

爆震传感器的输出信号由多个带通滤波器过滤,以提取多个频带(f1-f4)的振动波形分量。乘到各个频带的振动波形分量上的加权系数(G1-G4)以这样的方式被建立以使其随着各个频带的噪声强度变得更大而成为小的值。因此,根据各个频带的噪声强度的影响,多个频带的振动波形分量通过加权被合成。即使当噪声被叠加到任意频带的振动波形分量上时,也可以减小噪声的影响和合成各个频带的振动波形分量,并且准确的爆震确定也可以基于复合振动波形而作出。

权利要求 :

1.一种用于内燃发动机的爆震确定装置,所述爆震确定装置包括:用于根据所述内燃发动机(11)的爆震振动输出振动波形信号的振动波形检测装置(28);

用于从所述振动波形检测装置的振动波形信号中提取多个频带的振动波形分量的过滤装置(36-39);

用于确定对于各个频带被叠加到所述振动波形分量上的噪声的强度的噪声强度确定装置(40);

用于根据各个频带的所述噪声强度的影响程度通过加权合成所述多个频带的所述振动波形分量、从而产生复合振动波形的合成装置(40);以及用于基于所述复合振动波形进行爆震确定的爆震确定装置(40)。

2.如权利要求1所述的用于内燃发动机的爆震确定装置,其特征在于,所述合成装置(40)通过随着各个频带的噪声强度变大而变小的加权合成所述多个频带的所述振动波形分量。

3.如权利要求1或2所述的用于内燃发动机的爆震确定装置,其特征在于,所述噪声强度确定装置(40)基于各个频带的所述振动波形分量确定各个频带的噪声强度,其中所述过滤装置(36-39)在噪声倾向于出现处的噪声强度确定范围中提取所述各个频带。

4.如权利要求3所述的用于内燃发动机的爆震确定装置,其特征在于,所述噪声强度确定装置(40)考虑到进/排气门(29、30)的开/关正时而限定噪声强度确定范围。

5.如权利要求3或4所述的用于内燃发动机的爆震确定装置,其特征在于,所述噪声强度确定装置(40)考虑到燃料喷射正时而限定噪声强度确定范围。

说明书 :

技术领域

本发明涉及一种爆震确定装置,其从振动波形检测装置的输出量提取多个频带的振动波形分量以便于确定是否有爆震存在,所述振动波形检测装置检测内燃发动机的爆震振动。

背景技术

近来,用于汽车的内燃发动机设有例如为可变气门正时机构的可变气门机构,并且直喷发动机根据燃烧模式改变燃料喷射正时,以便于获得高输出、低油耗、以及低排放。进/排气门的气门落座噪声和燃料喷射器的驱动噪声叠加到检测爆震振动的爆震传感器的输出信号上。由于这些噪声的出现时刻根据内燃发动机的控制状态而改变,因此难以将爆震与这些噪声区分开。
如在JP-2007-9814A(US-2007/0012090A1)中所示出的那样,在爆震振动所特有的波形出现处的多个频带的振动波形分量通过多个带通滤波器从爆震传感器的输出信号中提取。多个频带的所述振动波形分量被合成。基于所述复合振动波形,确定是否有爆震存在。
如上所述,由于噪声叠加到爆震传感器的输出信号上的时刻根据发动机的控制状态而改变,因此即使在爆震振动所特有的波形出现处的多个频带的振动波形分量也在爆震确定范围(从动力冲程中的TDC到ATDC90°CA(上止点后90°曲柄转角)的曲柄转角范围)中从爆震传感器的输出信号中被提取,所述噪声可以被叠加到多个频带的任意振动波形分量上,所述振动波形分量在所述爆震确定范围中被提取。
由于从爆震传感器的输出信号提取的多个频带的振动波形分量被简单地合成,因此如果有噪声被叠加到任意频带的振动波形分量上,则所述噪声实际上被叠加到复合振动波形上,这使得难以将爆震与噪声区分开。
JP-2006-169996A(US-7,181,338B2)示出了一种对策,其中确定出每个频带中是否有噪声存在,以及噪声何时在任意频带中被检测到,所述爆震确定被禁止。然而,如果在爆震实际发生时爆震确定被禁止,则该爆震无法被检测到。

发明内容

考虑到以上问题而作出本发明,并且本发明的一个目的是提供一种用于内燃发动机的爆震确定装置,其可以在即使噪声被叠加到多个频带的振动波形分量上时减小噪声的影响并且作出准确的爆震确定,所述频带从例如为爆震传感器的振动波形检测装置的输出信号中被提取。
为了实现以上提及的目的,根据本发明,所述爆震确定装置包括:用于根据所述内燃发动机的爆震振动输出振动波形信号的振动波形检测装置;用于从所述振动波形检测装置的振动波形信号中提取多个频带的振动波形分量的过滤装置;用于确定被相对各个频带叠加到所述振动波形分量上的噪声的强度的噪声强度确定装置;用于合成所述多个频带的所述振动波形分量、从而产生复合振动波形的合成装置;以及用于基于所述复合振动波形进行爆震确定的爆震确定装置。
多个频带的振动波形分量根据各个频带的噪声强度的影响程度通过加权被合成。
根据本发明,由于各个频带的振动波形分量根据各个频带的噪声强度的影响程度通过加权被合成。即使噪声被叠加到任意频带的振动波形分量上,各个频带的振动波形分量也可以被合成以减小噪声的影响程度,并且准确的爆震确定也可以基于复合振动波形而作出。

附图说明

图1是根据本发明的一个实施方式的发动机控制系统的示意图。
图2是示出了处理爆震传感器的输出信号的回路的框图。
图3是用于说明爆震确定单元的功能的图表。
图4是用于说明爆震确定范围和气门落座噪声之间的关系的图表。
图5是示出了在其中噪声被叠加到第一次到第四次频带f1-f4的振动波形分量上的波形、以及在其中没有噪声被叠加到振动波形分量上的波形,所述频带从爆震传感器的传感器输出信号中被提取。
图6是示出了爆震确定程序的过程的流程图。

具体实施方式

本发明的一个实施方式将在下文中描述。
参考图1,说明了一个发动机控制系统。空气过滤器13被布置在内燃发动机11的进气管12的上游。检测进气空气流的空气流量计14设置在空气过滤器13的下游。由马达10驱动的节气门阀15和检测节气门位置是节气门位置传感器16设置在空气流量计14的下游。
包括进气压力传感器18的调压室17设置在节气门阀15的下游。进气压力传感器18检测进气压力。进气总管20与调压室17连接。燃料喷射阀20安装在各个气缸上以用于分别将燃料喷射进气缸的内部。火花塞21对应于各个气缸安装在发动机11的气缸盖上以在各个气缸中点燃空气-燃料混合物。
发动机11设有调节进气门29的气门正时的进气门正时控制器31、以及调节排气门30的气门正时的排气门正时控制器32。
发动机11的排气管22设有除去废气中的CO、HC、NOx等的三元催化器23。检测废气中空燃比或浓/稀状态的废气传感器24设置在三元催化器25的上游。检测爆震振动的爆震传感器28(振动波形检测装置)和输出发动机11的曲轴的每个预定曲柄转角的脉冲信号的曲柄转角传感器26设置在发动机11的缸体上。曲柄转角和发动机速度基于曲柄转角传感器26的输出信号被检测。
来自以上传感器的输出量被输入到电子控制单元27中,所述电子控制单元在下文中表示为ECU。ECU 27包括微型计算机,所述微型计算机执行存储在只读存储器(ROM)中的发动机控制程序以控制燃料喷射器20的燃料喷射量和火花塞21的点火正时。
如图2所示,ECU 27包括模数转换器35、第一到第四带通滤波器36-39(过滤装置)、以及爆震确定单元40(爆震确定装置)。模数转换器35将从爆震传感器28输出的振动波形信号转换成数字值。第一到第四带通滤波器36-39从模数转换器35的输出信号中提取四个频带f1-f4的振动波形分量。爆震确定单元40合成所述四个频带f1-f4的振动波形分量,并且基于复合振动波形确定是否有爆震存在。
第一到第四带通滤波器36-39提取的频带由第一次频带f1(爆震振动的基本频带)和第二到第四次频带f2-f4组成。第一次频带f1被建立为包括为爆震振动频率中最低频率的基本频率(取决于气缸内径的第一次谐振频率,例如为大约7.5kH)。第二到第四次频带f2-f4被建立为包括第二到第四次谐振频率(例如为大约12kH、17kH、21kH)。
在该实施方式中,在其中第一到第四次频带f1-f4的振动波形分量从爆震传感器28的输出信号中被提取的爆震确定范围被建立在从动力冲程中的TDC(上止点)到ATDC 90°CA(上止点后90°曲柄转角)的曲柄转角范围内。被叠加到爆震传感器28的输出信号上的进/排气门29、30的气门落座噪声和燃料喷射器20的驱动噪声根据发动机11的控制状态改变其产生的时间(参考图4)。因此,如图5所示,即使多个频带的振动波形分量从爆震传感器28的输出信号中被提取,所述噪声也可以被叠加到在爆震确定范围中被提取的第一到第四次频带f1-f4的某些振动波形分量上,其中爆震振动所特有的波形在所述多个频带中产生。
在传统的爆震确定方法中,第一到第四次频带f1-f4的振动波形分量被简单地合成。如果噪声被叠加到频带的某些振动波形分量上,则所述噪声实际上被叠加到复合振动波形上,这可能难以将爆震与噪声区分开。
在该实施方式中,如图3所示,爆震确定单元40起到噪声强度确定装置的作用,所述噪声强度确定装置确定被叠加到由第一到第四带通滤波器36-39提取的第一到第四次频带f1-f4的振动波形分量上的噪声的强度。所述爆震确定单元40还起到合成装置的作用,根据由于各个频带的噪声强度而引起的影响,所述合成装置将第一到第四次频带f1-f4的振动波形分量通过加权而合成,从而产生复合振动波形。特别地,在将第一到第四次频带f1-f4的振动波形分量合成时,乘到各个频带f1-f4的振动波形分量上的加权系数G1-G4被设定为随着各个频带f1-f4的噪声强度增大而变小。
各个频带f1-f4的噪声强度的确定可以根据以下方法中的一个而进行。[噪声强度确定方法(1)]
对于各个气缸中的每一次点火,在爆震确定范围中从爆震传感器28的输出信号中被提取的第一到第四次频带f1-f4的振动波形分量被积分。积分值(面积)被存储在ECU 27的存储器中。这样,如图3所示,每一次点火的各个频带f1-f4的振动波形分量的积分值的时序数据被准备。所述时序数列被用作各个频带f1-f4的噪声强度的指示指标。
[噪声强度确定方法(2)]
噪声(例如燃料喷射器20的驱动噪声或进/排气门的气门落座噪声)的产生时刻基于可变气门正时控制的目标提前值或目标燃料喷射正时而被估算,从而噪声在其中产生的曲柄转角范围被限定为噪声强度确定范围。在噪声确定范围中从爆震传感器28的输出信号中被提取的第一到第四次频带f1-f4的振动波形分量被分别积分。所述积分值(面积)被用作噪声强度的指示指标。
[噪声强度确定方法(3)]
在爆震确定范围之外的范围中,倾向于产生噪声的范围被限定为噪声强度确定范围。在噪声确定范围中从爆震传感器28的输出信号中被提取的第一到第四次频带f1-f4的振动波形分量被分别积分。所述积分值(面积)被用作噪声强度的指示指标。
[噪声强度确定方法(4)]
对于在每一次点火时在爆震确定范围中从爆震传感器28的输出信号中被提取的第一到第四次频带f1-f4的振动波形分量,最高值被提取为噪声(例如燃料喷射器20的驱动噪声或进/排气门的气门落座噪声)的特征的参数指标。所述最高值的平均值和方差被计算。最大平均值被选择为所有频带f1-f4所共有的平均值。基于所述方差和最大平均值之间的比、针对各个频带确定噪声强度。表示爆震传感器28的输出波形与爆震所特有的理想爆震波形之间的相关性的形状相关系数可以替代所述最高值被用作噪声的特征的参数指标。
上述的爆震确定根据图6所示的爆震确定程序而进行,该程序由ECU27的爆震确定单元40执行。
图6所示的爆震确定程序在ECU 27通电时在爆震传感器28的输出采样周期中被执行。在步骤100中,计算机确定是否处于爆震确定范围(从动力冲程中的TDC到ATDC 90°CA)中。当不处于爆震确定范围中时,程序终止。当处于爆震确定范围中时,程序进行到步骤101,在其中爆震传感器28的输出信号被模数转换器35进行模数转换,并且发动机11的缸体的振动被检测。
然后,程序进行到步骤102,在其中爆震传感器28的输出信号的模数转换值通过第一到第四带通滤波器36-39被过滤,以提取第一到第四次频带f1-f4的振动波形分量。在步骤103中,第一到第四次频带f1-f4的振动波形分量被分别积分。每个特定曲柄转角(例如5°CA)处的积分值被存储在ECU 27的存储器中。
然后,程序进行到步骤104,在其中计算机确定是否处于爆震确定范围的结束时刻。当不处于爆震确定范围的结束时刻时,程序终止。因此,直到结束时刻之前,每个特定曲柄转角处的各个频带f1-f4的积分值被重复计算。
然后,在处于爆震确定范围的结束时刻时,程序进行到步骤105,在其中各个频带f1-f4的噪声强度根据上述任意一个方法被确定。在步骤106中,用于合成每个特定曲柄转角处的各个频带f1-f4的积分值的各个频带f1-f4的加权系数G1-G4以这样的方式被限定以使其随着噪声强度变得更大而变小。
然后,程序进行到步骤107,在其中每个特定曲柄转角(5°CA)的各个频带f1-f4的积分值被乘上加权系数G1-G4以被合成,从而获得每个特定曲柄转角处的复合振动波形。
复合振动波形=f1×G1+f2×G2+f3×G3+f4×G4
在步骤108中,每个特定曲柄转角的复合振动波形(积分值)被标准化(canonicalized)。所述标准化表示复合振动波形(积分值)除以最高值P,以使得振动强度由无量纲数(例如无量纲数0-1)表示。所述最高值P为复合振动波形的积分值的最大值。所检测的复合振动波形可以通过标准化无关于振动强度地与预存储的理想爆震波形(爆震所特有的振动波形)相比较。因此,不必存储多个对应于振动强度的理想波形,由此理想的爆震
然后,程序进行到步骤109,在其中表示被标准化的复合振动波形和理想爆震波形之间的重合度的形状相关系数如下被计算。被标准化的复合振动波形的水平变成最大值时的时刻(最高位置)被设定为与理想爆震波形的振动强度变成最大值时的时刻重合。复合振动波形和理想爆震波形之间的差的绝对值AS(I)在每个特定曲柄转角(例如5°CA)处被计算。
然后,基于绝对值AS(I)的总和∑AS(I)和理想爆震波形的积分值S,形状相关系数K根据以下等式被计算。
K={S-∑AS(I)}/S
因此,被标准化的复合振动波形和理想爆震波形之间的重合度(相似性)被以数字表示,以客观地确定所述振动。通过将复合振动波形和理想爆震波形比较,基于例如为振动衰减趋势的振动特性,可以分析出其是否为爆震振动。
然后,程序进行到步骤110,在其中形状相关系数K大于特定值。当计算机在步骤110中确定形状相关系数K小于或等于所述特定值(即,在爆震确定范围中复合振动波形和理想爆震波形之间的重合度低)时,程序进行到步骤113,在其中计算机确定没有爆震发生以提前点火正时。
当计算机在步骤110中确定形状相关系数K大于所述特定值(即,在爆震确定范围中复合振动波形和理想爆震波形之间的重合度高)时,程序进行到步骤111,在其中通过使用每个特定曲柄转角处的复合振动波形积分值的最高值P、形状相关系数K、以及背景水平(background level)BGL而计算爆震强度N。
N=P×K/BGL
在以上等式中,背景水平BGL表示在没有爆震发生的情形下发动机11的振动强度。因此,基于复合振动波形和理想爆震波形之间的重合程度、以及振动强度,可以根据情况分析发动机11的振动是否由爆震引起。
然后,程序进行到步骤112,在其中爆震强度N大于爆震确定值。当爆震强度N小于或等于所述爆震确定值时,程序进行到步骤113,在其中计算机确定没有爆震发生以提前点火正时。
当计算机确定爆震强度N大于爆震确定值时,程序进行到步骤114,在其中计算机确定有爆震发生以延迟点火正时。因此,爆震的发生被限制。
根据本实施方式,爆震传感器28的输出信号通过第一到第四带通滤波器36-39被过滤,以提取第一到第四次频带f1-f4的振动波形分量。由于各个频带f1-f4的振动波形分量根据各个频带f1-f4的噪声强度的重合程度通过加权被合成,因此即使噪声被叠加到任意频带f1-f4的振动波形分量上,各个频带f1-f4的振动波形分量也可以被合成以降低噪声的影响,并且准确的爆震确定可以基于复合振动波形而作出。
此外,根据本实施方式,在将第一到第四次频带f1-f4的振动波形分量合成时,乘到各个频带f1-f4的振动波形分量上的加权系数G1-G4被设定为随着各个频带f1-f4的噪声强度增大而变小。因此,各个频带f1-f4的噪声强度的影响可以通过加权被减小到基本相同的水平,并且根据各个频带f1-f4的噪声强度可以作出恰当的加权。
在本实施方式中,四个频带f1-f4的振动波形分量从爆震传感器28的输出信号中被提取。备选地,可以是三个或更少的频带、或者五个或更多的频带的振动波形分量被提取。
本发明并不局限于如图1所示的直喷发动机,而是也可以应用到进气口喷射发动机上。本发明可以应用到设有例如为可变气门正时控制器的可变气门控制器的发动机上。本发明可以在不脱离发明精神的情况下以其它方式实施。
对相关申请的交叉引用
本申请以2007年8月8日提交的日本专利申请No.2007-206378为基础,其公开内容通过引用结合于此。