有支座沉降时基于混合监测的索系统的递进式健康监测方法转让专利

申请号 : CN201010127324.3

文献号 : CN101806664B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 韩玉林

申请人 : 东南大学

摘要 :

有支座沉降时基于混合监测的索系统的递进式健康监测方法基于混合监测、通过监测结构支座坐标来决定是否需要再次更新结构的力学计算基准模型,考虑到了被监测量的当前数值向量同被监测量的初始数值向量、单位损伤被监测量变化矩阵和当前名义损伤向量间的线性关系是近似的,为克服此缺陷,本发明给出了使用线性关系分段逼近非线性关系的方法,将大区间分割成连续的一个个小区间,在每一个小区间内上述线性关系都是足够准确的,在每一个小区间内可以利用多目标优化算法等合适的算法算出当前索损伤向量的非劣解,据此可以比较准确地确定受损索的位置及其损伤程度。

权利要求 :

1.一种有支座沉降时基于混合监测的索系统的递进式健康监测方法,其特征是该方法包括:a.设共有N根索,首先确定索的编号规则,按此规则将索结构中所有的索编号,该编号在后续步骤中将用于生成向量和矩阵;

b.确定混合监测时指定的将被监测索力的支承索,设索系统中共有N根索,结构的被监测的索力数据由结构上M1个指定索的M1个索力数据来描述,结构索力的变化就是所有指定索的索力的变化;每次共有M1个索力测量值或计算值来表征结构的索力信息;M1是一个不小于0的整数;确定混合监测时指定的将被监测应变的被测量点,结构的被监测的应变数据可由结构上K2个指定点的、及每个指定点的L2个指定方向的应变来描述,结构应变数据的变化就是K2个指定点的所有被测应变的变化;每次共有M2个应变测量值或计算值来表征结构应变,M2为K2和L2之积;M2是不小于0的整数;确定混合监测时指定的将被监测角度的被测量点,结构的被监测的角度数据由结构上K3个指定点的、过每个指定点的L3个指定直线的、每个指定直线的H3个角度坐标分量来描述,结构角度的变化就是所有指定点的、所有指定直线的、所有指定的角度坐标分量的变化;每次共有M3个角度坐标分量测量值或计算值来表征结构的角度信息,M3为K3、L3和H3之积;M3是一个不小于0的整数;确定混合监测时指定的将被监测的形状数据,结构的被监测的形状数据由结构上K4个指定点的、及每个指定点的L4个指定方向的空间坐标来描述,结构形状数据的变化就是K4个指定点的所有坐标分量的变化;每次共有M4个坐标测量值或计算值来表征结构形状,M4为K4和L4之积;M4是一个不小于0的整数;综合上述混合监测的被监测量,整个结构共有M个被监测量,M为M1、M2、M3和M4之和,定义参量K,K为M1、K2、K3和K4之和,K和M不得小于索的数量N;

由于M个被监测量是不同类型的,所以本方法称为“有支座沉降时的基于混合监测的索系统的递进式健康监测方法”;为方便起见,在本方法中将本步所列出的“混合监测时结构的被监测的所有参量”简称为“被监测量”;

1

c.利用索的无损检测数据建立索系统初始损伤向量do;如果没有索的无损检测数据1

及其他能够表达索的健康状态的数据时,或者认为结构初始状态为无损伤状态时,向量do1

的各元素数值取0;本步中do的上标1表示第一次循环,关于循环次数的表示方法在步骤f中具体说明;

1

d.在建立索系统初始损伤向量do的同时,直接测量计算得到索结构的所有指定的被

1 1

监测量,组成“被监测量的初始数值向量Co”;本步中Co的上标1表示第一次循环,关于循环次数的表示方法在步骤f中具体说明;

1 1

e.在建立索系统初始损伤向量do和被监测量的初始数值向量Co的同时,实测得到索结构的所有索的初始索力数据,实测得到索结构的初始几何数据;

f.建立索结构的初始力学计算基准模型Ao,建立初始索结构支座坐标向量Uo,建立第

1 1

一次循环开始时需要的索结构的力学计算基准模型A ;本步中A 的上标1表示第一次循环;依据索结构竣工之时的索结构的实测数据,该实测数据包括索结构形状数据、索力数据、拉杆拉力数据、索结构支座坐标数据、索结构模态数据、索的无损检测数据,依据设计图和竣工图,利用力学方法建立索结构的初始力学计算基准模型Ao;如果没有索结构竣工之时的结构的实测数据,那么就在建立健康监测系统前对该索结构进行实测,同样得到索结构的实测数据,根据此数据和索结构的设计图、竣工图,同样利用力学方法建立索结构的初始力学计算基准模型Ao;不论用何种方法获得Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,其间的差异不得大于5%;对应于Ao的索结构支座坐标数据组成初始索结构支座坐标向量Uo;Ao和Uo是不变的,只在第一次循环开始时建立;第i次循环开始时i建立的索结构的力学计算基准模型记为A,其中i表示循环次数;本方法中的字母i除了表示步骤编号的地方外,字母i仅表示循环次数,即第i次循环;因此第一次循环开始时建立

1 1

的索结构的力学计算基准模型记为A,本方法中A 就等于Ao;为叙述方便,命名“索结构当ti ti前力学计算基准模型A o”,在每一次循环中A o根据需要会不断更新,每一次循环开始时,ti i tiA o等于A ;同样为叙述方便,命名“索结构实测支座坐标向量U ”,在每一次循环中,不断实测获得索结构支座坐标当前数据,所有索结构支座坐标当前数据组成当前索结构实测支ti ti座坐标向量U ,向量U 的元素与向量Uo相同位置的元素表示相同支座的相同方向的坐标;

ti

为叙述方便起见,对于第i次循环,将上一次更新A o时的索结构支座坐标当前数据记为当ti t1 1 t1前索结构支座坐标向量U o;第一次循环开始时,A o等于A,U o等于Uo;

g.实测获得索结构支座坐标当前数据,所有索结构支座坐标当前数据组成当前索结构ti ti实测支座坐标向量U ,根据当前索结构实测支座坐标向量U ,在必要时更新索结构当前力ti ti学计算基准模型A o和当前索结构支座坐标向量U o;

ti

h.在索结构当前力学计算基准模型A o的基础上进行若干次力学计算,通过计算获得i i索结构单位损伤被监测量变化矩阵ΔC 和名义单位损伤向量Du;

i.实测得到索结构的所有指定被监测量的当前实测数值,组成“被监测量的当前数值i向量C”,给本步及本步之前出现的所有向量的元素编号时,应使用同一编号规则,这样可以保证本步及本步之前出现的各向量的、编号相同的元素,表示同一被监测量的、对应于该元素所属向量所定义的相关信息;

i i

j.定义索系统当前名义损伤向量dc和当前实际损伤向量d,损伤向量的元素个数等于索的数量,损伤向量的元素和索之间是一一对应关系,损伤向量的元素数值代表对应索的损伤程度或健康状态;

i i

k.依据“被监测量的当前数值向量C”同“被监测量的初始数值向量Co”、“单位损伤i i被监测量变化矩阵ΔC”和“当前名义损伤向量dc”间存在的近似线性关系,该近似线性关i系可表达为式1,式1中除dc外的其它量均为已知,求解式1就可以算出当前名义损伤向i量dc;

式1

l.利用式2表达的当前实际损伤向量di同初始损伤向量dio和当前名义损伤向量dic的元素间的关系,计算得到当前实际损伤向量di的所有元素;

式2

式2中j=1,2,3,……,N;

i

由于当前实际损伤向量d 的元素数值代表对应索的损伤程度,所以根据当前实际损i伤向量d 就能确定有哪些索受损及其损伤程度,即实现了索结构中索系统的健康监测;若当前实际损伤向量的某一元素的数值为0,表示该元素所对应的索是完好的,没有损伤的;

若其数值为100%,则表示该元素所对应的索已经完全丧失承载能力;若其数值介于0和

100%之间,则表示该索丧失了相应比例的承载能力;

i i i

m.在求得当前名义损伤向量dc后,按照式3建立标识向量F,式4给出了标识向量F的第j个元素的定义;

式3

式4

i i i i

式4中元素Fj是标识向量F 的第j个元素,Duj是名义单位损伤向量Du的第j个元i i素,dcj是索系统当前名义损伤向量dc的第j个元素,它们都表示第j根索的相关信息,式

4中j=1,2,3,……,N;

i i

n.如果标识向量F 的元素全为0,则回到步骤g继续本次循环;如果标识向量F 的元素不全为0,则进入下一步、即步骤o;

i+1

o.根据式5计算得到下一次、即第i+1次循环所需的初始损伤向量d o的每一个元素i+1d oj;

式5

式5中Diuj是名义单位损伤向量Diu的第j个元素,dicj是索系统当前名义损伤向量dic的第j个元素,Fij是标识向量Fi的第j个元素,式5中j=1,2,3,……,N;

p.在索结构当前力学计算基准模型Atio的基础上,令索的健康状况为di+1o后更新得到下一次、即第i+1次循环所需的力学计算基准模型Ai+1,即对力学计算基准模型进行了更新;

q.通过对力学计算基准模型Ai+1的计算得到对应于模型Ai+1的结构的所有被监测量的数值,这些数值组成下一次、即第i+1次循环所需的被监测量的初始数值向量Ci+1o;

r.建立下一次、即第i+1次循环所需的索结构当前力学计算基准模型Ati+1o,即取Ati+1o等于Ai+1;

s.建立下一次、即第i+1次循环所需的当前索结构支座坐标向量Uti+1o,即取Uti+1o等于Utio;

t.回到步骤g,开始下一次循环;

在步骤g中,根据当前索结构实测支座坐标向量Uti,在必要时更新索结构当前力学计算基准模型Atio和当前索结构支座坐标向量Utio的具体方法为:g1.实测得到当前索结构实测支座坐标向量Uti后,比较Uti和Utio,如果Uti等于Utio,则不需要对Atio进行更新;

g2.实测得到当前索结构实测支座坐标向量Uti后,比较Uti和Utio,如果Uti不等于Utio,则需要对Atio进行更新,更新方法是:先计算Uti与Uo的差,Uti与Uo的差就是当前索结构支座关于在建立Ao时的索结构支座的当前支座位移,用当前支座位移向量V表示支座位移,当前支座位移向量V中的元素与支座位移分量之间是一一对应关系,当前支座位移向量V中一个元素的数值对应于一个指定支座的一个指定方向的位移,其中支座位移在重力方向的分量就是支座沉降量;更新Atio的方法是:在Ao的基础上令索的健康状况为索系统初始损伤向量dio,再进一步对Ao中的索结构支座施加当前支座位移约束,当前支座位移约束的数值就取自当前支座位移向量V中对应元素的数值,对Ao中的索结构支座施加当前支座位移约束后,最终得到的就是更新的当前力学计算基准模型Atio,更新Atio的同时,Utio所有元素数值也用Uti所有元素数值代替,即更新了Utio,这样就得到了正确地对应于Atio的Utio。

2.根据权利要求1所述的有支座沉降时基于混合监测的索系统的递进式健康监测方ti法,其特征在于在步骤h中,在索结构当前力学计算基准模型A o的基础上进行若干次力学i i计算,通过计算获得索结构单位损伤被监测量变化矩阵ΔC 和名义单位损伤向量Du的具体方法为:h1.在第i次循环开始时,直接按步骤h2至步骤h4所列方法获得索结构单位损伤被监i i ti测量变化矩阵ΔC 和名义单位损伤向量Du;在其它时刻,当步骤g中对A o进行更新后,必i须按步骤h2至步骤h4所列方法获得索结构单位损伤被监测量变化矩阵ΔC 和名义单位损i ti伤向量Du,如果在步骤g中没有对A o进行更新,则在此处直接转入步骤i进行后续工作;

ti

h2.在索结构当前力学计算基准模型A o的基础上进行若干次力学计算,计算次数数值上等于所有索的数量,有N根索就有N次计算,每一次计算假设索系统中只有一根索在原有损伤的基础上再增加单位损伤,每一次计算中出现损伤的索不同于其它次计算中出现损伤的索,并且每一次假定有损伤的索的单位损伤值可以不同于其他索的单位损伤值,用“名i义单位损伤向量Du”记录所有索的假定的单位损伤,每一次计算得到索结构中所有指定被监测量的当前数值,每一次计算得到的所有被监测量的当前数值组成一个“被监测量的计i算当前数值向量”;当假设第j根索有单位损伤时,可用Ctj表示对应的“被监测量的计算当前数值向量”;在本步骤中给各向量的元素编号时,应同本方法中其它向量使用同一编号规则,这样可以保证本步骤中各向量中的任意一个元素,同其它向量中的、编号相同的元素,表达了同一被监测量或同一对象的相关信息;

i

h3.每一次计算得到的那个“被监测量的计算当前数值向量Ctj”减去“被监测量的初i始数值向量Co”得到一个向量,再将该向量的每一个元素都除以本次计算中假定的单位损i伤值后得到一个“被监测量的数值变化向量δCj”;有N根索就有N个“被监测量的数值变化向量”;

h4.由这N个“被监测量的数值变化向量”依次组成有N列的“单位损伤被监测量变化i i矩阵ΔC”;“单位损伤被监测量变化矩阵ΔC”的每一列对应于一个“被监测量的数值变化i向量”;“单位损伤被监测量变化矩阵”的列的编号规则与当前名义损伤向量dc和当前实际i损伤向量d 的元素编号规则相同。

说明书 :

有支座沉降时基于混合监测的索系统的递进式健康监测方

技术领域

[0001] 斜拉桥、悬索桥、桁架结构等结构有一个共同点,就是它们有许多承受拉伸载荷的部件,如斜拉索、主缆、吊索、拉杆等等,该类结构的共同点是以索、缆或仅承受拉伸载荷的杆件为支承部件,为方便起见本发明将该类结构表述为“索结构”。在有支座沉降时,本发明公开了一种递进式方法、基于混合监测来识别索结构的支承系统(指所有承载索、及所有起支承作用的仅承受拉伸载荷的杆件,为方便起见,本专利将该类结构的全部支承部件统一称为“索系统”,但实际上索系统不仅仅指支承索,也包括仅承受拉伸载荷的杆件)中的受损索(对桁架结构就是指受损的仅承受拉伸载荷的杆件)的方法,属工程结构健康监测领域。

背景技术

[0002] 索系统通常是索结构的关键组成部分,它的失效常常带来整个结构的失效,基于结构健康监测技术来识别索结构的索系统中的受损索(如前所述也指仅承受拉伸载荷的杆件)是一种极具潜力的方法。索系统的健康状态发生变化后,会引起结构的可测量参数的变化,例如会引起索力的变化,会影响索结构的变形或应变,会影响索结构的形状或空间坐标,会引起过索结构的每一点的任意假想直线的角度坐标的变化(例如结构表面任意一点的切平面中的任意一根过该点的直线的角度坐标的变化,或者结构表面任意一点的法线的角度坐标的变化),所有的这些变化都包含了索系统的健康状态信息,因此可以通过对这些不同类型的结构的特征参量的变化的混合监测来判断结构的健康状态,本发明将所有被监测的结构特征参量统称为“被监测量”,由于此时被监测量是由结构的不同类型的可测量参数混合组成,本发明称此为混合监测,被监测量除了受索系统健康状态的影响外,还会受索结构支座沉降(常常会发生)的影响,目前还没有一种公开的、有效的健康监测系统和方法解决了此问题。
[0003] 在有支座沉降时,为了能对索结构的索系统的健康状态有可靠的监测和判断,必须有一个能够合理有效的建立索结构的被监测量的变化同索系统中所有索的健康状况间的关系的方法,基于该方法建立的健康监测系统可以给出更可信的索系统的健康评估。

发明内容

[0004] 技术问题:本发明的目的是在索结构支座有沉降时,针对索结构中索系统的健康监测问题,提供一种基于对多类参量的混合监测的、能够合理有效地监测索结构中索系统的有支座沉降时基于混合监测的索系统的递进式健康监测方法。
[0005] 技术方案:本发明由两大部分组成。分别是:一、建立索系统健康监测系统所需的知识库和参量的方法,以及基于知识库(含参量)和基于对多类参量的混合监测及实测索结构支座坐标的索系统递进式健康状态评估方法;二、健康监测系统的软件和硬件部分。
[0006] 本发明的第一部分:建立索系统健康监测系统所需的知识库和参量的方法,以及基于知识库(含参量)和基于对多类参量的混合监测及实测索结构支座坐标的索系统递进式健康状态评估方法。可按如下步骤依次循环往复地、递进式进行,以获得更准确的索系统的健康状态评估。
[0007] 第一步:每一次循环开始时,首先需要建立或已建立本次循环开始时的索系统初i始损伤向量do(i=1,2,3,…)、建立索结构的初始力学计算基准模型Ao(例如有限元基准ti
模型,在本发明中Ao是不变的)、建立索结构的当前力学计算基准模型A o(例如有限元基ti i
准模型,在每一次循环中A o是不断更新的)、建立索结构的力学计算基准模型A(例如有限元基准模型,i=1,2,3,…)。字母i除了明显地表示步骤编号的地方外,在本发明中字母i仅表示循环次数,即第i次循环。
[0008] 设索系统中共有N根索,第i次循环开始时需要的索系统初始损伤向量记为i i ido(如式(1)所示),用do 表示该次循环开始时索结构(用力学计算基准模型A 表示)的索系统的健康状态。
[0009]i
[0010] 式(1)中doj(i=1,2,3,…;j=1,2,3,.......,N)表示第i次循环开始时、力i i学计算基准模型A 中的索系统的第j根索的初始损伤值,doj为0时表示第j根索无损伤,为100%时表示该索彻底丧失承载能力,介于0与100%之间时表示第j根索丧失相应比例的承载能力。
1
[0011] 第一次循环开始时建立索系统初始损伤向量(依据式(1)记为do)时,利用索的1
无损检测数据等能够表达索的健康状态的数据建立索系统初始损伤向量do。如果没有索的无损检测数据及其他能够表达索的健康状态的数据时,或者可以认为结构初始状态为无
1
损伤状态时,向量do的各元素数值取0。
i
[0012] 第i次(i=2,3,4,5,6…)循环开始时需要的索系统初始损伤向量do,是在前一次(即第i-1次,i=2,3,4,5,6…)循环结束前计算获得的,具体方法在后文叙述。
[0013] 第i次循环开始时需要建立的力学计算基准模型或已建立的力学计算基准模型i记为A。
[0014] 根据索结构竣工之时的索结构的实测数据(包括索的无损检测数据等能够表达索的健康状态的数据、索结构形状数据、索力数据、拉杆拉力数据、索结构支座坐标数据、索结构模态数据等实测数据,对斜拉桥、悬索桥而言是桥的桥型数据、索力数据、桥的模态数据、)和设计图、竣工图,利用力学方法(例如有限元法)建立Ao;如果没有索结构竣工之时的结构的实测数据,那么就在建立健康监测系统前对结构进行实测,得到索结构的实测数据(包括索结构形状数据、索力数据、拉杆拉力数据、索结构支座坐标数据、索结构模态数据等实测数据,对斜拉桥、悬索桥而言是桥的桥型数据、索力数据、桥的模态数据、索的无损检测数据等能够表达索的健康状态的数据),根据此数据和索结构的设计图、竣工图,利用力学方法(例如有限元法)建立Ao。不论用何种方法获得Ao,基于Ao计算得到的索结构计算数据(对斜拉桥、悬索桥而言是桥的桥型数据、索力数据、桥的模态数据)必须非常接近其实测数据,误差一般不得大于5%。这样可保证利用Ao计算所得的模拟情况下的应变计算数据、索力计算数据、索结构形状计算数据和位移计算数据、索结构角度数据等,可靠地接近所模拟情况真实发生时的实测数据。对应于Ao的索结构支座坐标数据组成初始索结构支座坐标向量Uo。Ao和Uo是不变的,只在第一次循环开始时建立。
[0015] 第一次循环开始时建立的索结构的力学计算基准模型记为A1,A1就等于Ao。
[0016] 第i次(i=2,3,4,5,6…)循环开始时需要的力学计算基准模型Ai,是在前一次(即第i-1次,i=2,3,4,5,6…)循环结束前计算获得的,具体方法在后文叙述。
[0017] 已有力学计算基准模型A1和索系统初始损伤向量d1o后,模型A1中的各索的损伤1 1 1
由向量do表达。在A 的基础上,将所有索的损伤变更为0,力学模型A 更新为一个所有索
0 0
的损伤都为0的力学模型(记为A),力学模型A 实际上是完好无损的索结构对应的力学
0 0
模型。不妨称模型A 为索结构的无损伤模型A。
[0018] 被监测的多类参量可以包括:索力、应变、角度和空间坐标,分别叙述如下:
[0019] 设索系统中共有N根索,结构的被监测的索力数据由结构上M1个指定索的M1个索力数据来描述,结构索力的变化就是所有指定索的索力的变化。每次共有M1个索力测量值或计算值来表征结构的索力信息。M1是一个不小于0的整数。
[0020] 结构的被监测的应变数据可由结构上K2个指定点的、及每个指定点的L2个指定方向的应变来描述,结构应变数据的变化就是K2个指定点的所有被测应变的变化。每次共有M2(M2=K2×L2)个应变测量值或计算值来表征结构应变。M2是一个不小于0的整数。
[0021] 结构的被监测的角度数据由结构上K3个指定点的、过每个指定点的L3个指定直线的、每个指定直线的H3个角度坐标分量来描述,结构角度的变化就是所有指定点的、所有指定直线的、所有指定的角度坐标分量的变化。每次共有M3(M3=K3×L3×H3)个角度坐标分量测量值或计算值来表征结构的角度信息。M3是一个不小于0的整数。
[0022] 结构的被监测的形状数据由结构上K4个指定点的、及每个指定点的L4个指定方向的空间坐标来描述,结构形状数据的变化就是K4个指定点的所有坐标分量的变化。每次共有M4(M4=K4×L4)个坐标测量值或计算值来表征结构形状。M4是一个不小于0的整数。
[0023] 综合上述被监测量,整个结构共有M(M=M1+M2+M3+M4)个被监测量,定义参量K(K=M1+K2+K3+K4),K和M不得小于索的数量N。由于M个被监测量是不同类型的,所以本发明称为“基于混合监测来识别需调整索力的支承索的方法”。
[0024] 为方便起见,在本发明中将“结构的被监测的所有参量”简称为“被监测量”。
[0025] 本发明用“被监测量的初始数值向量Cio”(i=1,2,3,…)表示第i次(i=1,i2,3,4,5,6…)循环开始时所有指定的被监测量的初始值(参见式(2)),Co的全称为“第i次循环被监测量的初始数值向量”。
[0026]
[0027] 式(2)中Ciok(i=1,2,3,…;k=1,2,3,....,M;M≥N;)是第i次循环开始时、i索结构中第k个被监测量。向量Co是由前面定义的M个被监测量依据一定顺序排列而成,对此排列顺序并无特殊要求,只要求后面所有相关向量也按此顺序排列数据即可。
[0028] 第一次循环开始时,“第1次循环被监测量的初始数值向量C1o”(见式(2))由实1
测数据组成,由于根据模型A 计算所得被监测量的初始数值可靠地接近于相对应的实测数值,在后面的叙述中,将用同一符号来表示该计算值组成向量和实测值组成向量。
[0029] 第i次(i=2,3,4,5,6…)循环开始时需要的“第i次循环被监测量的初始数值i向量Co”,是在前一次(即第i-1次,i=2,3,4,5,6…)循环结束前计算获得的,具体方法在后文叙述。
[0030] 第二步:在索结构服役过程中,在每一次循环中,不断实测获得索结构支座坐标当ti ti前数据(所有数据组成当前索结构实测支座坐标向量U ,向量U 的定义方式与向量Uo相同)。为方便起见,对于第i次循环,将上一次更新当前力学计算基准模型时的索结构支座ti ti
坐标当前数据记为当前索结构支座坐标向量U o。建立和更新A o的方法是:在每一次循环ti i
的开始时刻,索结构的当前力学计算基准模型A o就等于A(i=1,2,3,4,5,6…)。在索结ti
构服役过程中,不断实测获得索结构支座坐标数据得到当前索结构实测支座坐标向量U ,ti ti ti ti ti ti
如果U 等于U o,则不需要对A o进行更新;如果U 不等于U o,则需要对A o进行更新,ti
此时U 与Uo的差就是索结构支座关于初始位置(对应于Ao)的支座位移(用支座位移向ti
量V表示支座位移,在重力方向的位移就是支座沉降)。更新A o的方法是:在Ao的基础上i
令索的健康状况为索系统初始损伤向量do,再进一步对Ao中的索结构支座施加当前支座位移约束,当前支座位移约束的数值就取自当前支座位移向量V中对应元素的数值,对Ao中的索结构支座施加当前支座位移约束后,最终得到的就是更新的当前力学计算基准模型ti ti ti ti ti
A o,更新A o的同时,U o所有元素数值也用U 所有元素数值代替,即更新了U o,这样就得ti ti
到了正确地对应于A o的U o。
[0031] 第三步:每一次循环需建立“单位损伤被监测量变化矩阵”和“名义单位损伤向i量”,第i次循环建立的“单位损伤被监测量变化矩阵”记为ΔC(i=1,2,3,…)。第i次i i i
循环建立的“名义单位损伤向量”记为Du。在每一次循环中ΔC 和Du是不断更新的,即在ti i
更新当前力学计算基准模型A o的同时,更新索结构单位损伤被监测量变化矩阵ΔC 和名i
义单位损伤向量”记为Du。
[0032] 建立和更新更新索结构单位损伤被监测量变化矩阵ΔCi和名义单位损伤向量”记i为Du的过程如下:
[0033] 在索结构的当前力学计算基准模型Atio的基础上进行若干次计算,计算次数数值上等于所有索的数量。每一次计算假设索系统中只有一根索在原有损伤(原有损伤可以为0,也可以不为0)的基础上再增加单位损伤(例如取5%、10%、20%或30%等损伤为单位损伤)。为方便计算,每一次循环中设定单位损伤时可以都是把该次循环开始时的结构健康状态当成是完全健康的,并在此基础上设定单位损伤(在后续步骤中、计算出的、索的损i
伤数值---称为名义损伤dc(i=1,2,3,…),都是相对于将该次循环开始时的、将索的健康状态当成是完全健康而言的,因此必须依据后文给出的公式将计算出的名义损伤换算成真实损伤。)。同一次循环的每一次计算中出现损伤的索不同于其它次计算中出现损伤的索,并且每一次假定有损伤的索的单位损伤值可以不同于其他索的单位损伤值,用“名义单i
位损伤向量Du”(如式(3)所示)记录各次循环中所有索的假定的单位损伤,第一次循环
1
时记为Du,每一次计算都利用力学方法(例如有限元法)计算索结构的、在前面已指定的M个被监测量的当前计算值,每一次计算所得M个被监测量的当前计算值组成一个“被监测量的计算当前数值向量”(当假设第j根索有单位损伤时,可用式(4)表示所有指定的M个
1
被监测量的计算当前数值向量Ctj);每一次计算得到的被监测量的计算当前数值向量减去
1
被监测量的初始数值向量Co,所得向量就是此条件下(以有单位损伤的索的位置或编号等
1
为标记)的“被监测量的数值变化向量”(当第j根索有单位损伤时,用δCj表示被监测量
1
的数值变化向量,δCj的定义见式(5)、式(6)和式(7),式(5)为式(4)减去式(2)后再
1 1
除以向量Du的第j个元素Duj所得),被监测量的数值变化向量δCj的每一元素表示由于计算时假定有单位损伤的那根索(例如第j根索)的单位损伤(例如Duj),而引起的该元素所对应的被监测量的数值改变量相对于假定的单位损伤Duj的变化率;有N根索就有N个“被监测量的数值变化向量”,每个被监测量的数值变化向量有M(一般的,M≥N)个元素,由这N个“被监测量的数值变化向量”依次组成有M×N个元素的“单位损伤被监测量变化矩
1 1 1 1
阵ΔC”(M行N列),每一个向量δCj(j=1,2,3,.......,N)是矩阵ΔC 的一列,ΔC的定义如式(8)所示。
[0034]
[0035] 式(3)中名义单位损伤向量Diu的元素Diuj(i=1,2,3,…;j=1,2,3,.......,iN)表示第i次循环中假定的第j根索的单位损伤数值,向量Du中的各元素的数值可以相同也可以不同。
[0036]
[0037] 式(4)中元素Citjk(i=1,2,3,...;j=1,2,3,.......,N;k=1,2,3,.......,M;M≥N)表示第i次循环由于第j根索有单位损伤时,依据编号规则所对应的第k个指定的被监测量的计算当前数值。
[0038]
[0039] 式(5)中各量的上标i(i=1,2,3,...)表示第i次循环,下标j(j=1,2,i i i3,.......,N)表示第j根索有单位损伤,式中Duj是向量Du中的第j个元素。向量δCji i
的定义如式(6)所示,δCj的第k(k=1,2,3,.......,M;M≥N)个元素δCjk表示第ii
次循环中,建立矩阵ΔC 时,假定第j根索有单位损伤时计算所得第k个被监测量的改变i
量相对于假定的单位损伤Duj的变化率,其定义如式(7)所示。
[0040]
[0041]
[0042] 式(7)中各量的定义已在前面叙述过。
[0043]
[0044] 式(8)中向量δCij(i=1,2,3,.......,,j=1,2,3,.......,N)表示第i次循i i环中,由于第j根索有单位损伤Duj而引起的、所有被监测量的相对数值变化。矩阵ΔC 的i
列(下标j)的编号规则与前面向量do的元素的下标j的编号规则相同。
[0045] 在索结构服役过程中,在每一次循环中,不断实测获得索结构支座坐标当前数据,ti ti ti ti一旦监测到U 不等于U o,则需要回到第二步对A o进行更新,对A o进行更新后再进入本i i
步对ΔC 进行更新。实际上在每一次循环中ΔC 是不断更新的,即在更新当前力学计算基ti i
准模型A o之后,更新索结构单位损伤被监测量变化矩阵ΔC。
[0046] 第四步:识别索系统的当前健康状态。具体过程如下。
[0047] 第i(i=1,2,3,...)次循环中,索系统“被监测量的当前(计算或实测)数值向i i i量C”同“被监测量的初始数值向量Co”、“单位损伤被监测量变化矩阵ΔC”和“当前名义i
损伤向量dc”间的近似线性关系,如式(9)或式(10)所示。
[0048]
[0049]
[0050] 式(9)和式(10)中被监测量的当前(计算或实测)数值向量Ci的定义类似于被监测量的初始数值向量Cio的定义,见式(11);索系统当前名义损伤向量dic的定义见式(12)。
[0051]i
[0052] 式(11)中元素Ck(i=1,2,3,.......;k=1,2,3,.......,M;M≥N)是第i次循环时索结构的、依据编号规则所对应的编号为k的被监测量的当前数值。
[0053]
[0054] 式(12)中dicj(i=1,2,3,.......;j=1,2,3,.......,N)是第i次循环中索系统第j根索的当前名义损伤值,向量dic的元素的下标j的编号规则与矩阵ΔCi的列的编号规则相同。
[0055] 当索实际损伤不太大时,由于索结构材料仍然处在线弹性阶段,索结构的变形也较小,式(9)或式(10)所表示的这样一种线性关系同实际情况的误差较小,误差可用误差向量ei(式(13))定义,表示式(9)或式(10)所示线性关系的误差。
[0056]
[0057] 式(13)中abs()是取绝对值函数,对括号内求得的向量的每一个元素取绝对值。
[0058] 由于式(9)或式(10)所表示的线性关系存在一定误差,因此不能简单根据式(9)i或式(10)和“被监测量的当前(实测)数值向量C”来直接求解得到索当前名义损伤向量i i
dc。如果这样做了,得到的损伤向量dc中的元素甚至会出现较大的负值,也就是负损伤,这i
明显是不合理的。因此获得索损伤向量dc的可接受的解(即带有合理误差,但可以比较准确的从索系统中确定受损索的位置及其损伤程度)成为一个合理的解决方法,可用式(14)来表达这一方法。
[0059]
[0060] 式(14)中abs()是取绝对值函数,向量gi描述偏离理想线性关系(式(9)或式(10))的合理偏差,由式(15)定义。
[0061]
[0062] 式(15)中gik(i=1,2,3,.......;k=1,2,3,.......,M)描述了第i次循环中i偏离式(9)或式(10)所示的理想线性关系的最大允许偏差。向量g 可根据式(13)定义i
的误差向量e 试算选定。
[0063] 在被监测量的初始数值向量Cio(实测或计算得到)、索结构单位损伤被监测量变i i化矩阵ΔC(计算得到)和被监测量的当前数值向量C(实测得到)已知时,可以利用合适i
的算法(例如多目标优化算法)求解式(14),获得索系统当前名义损伤向量dc的可接受i
的解,索系统当前实际损伤向量d(定义见式(16))的元素可以根据式(17)计算得到,也i i
就是得到了索当前实际损伤向量d,从而可由d 确定损索的位置和损伤程度,也就是实现了索系统的健康监测。
[0064]i
[0065] 式(16)中dj(j=1,2,3,…;j=1,2,3,.......,N)表示第i次循环中第j根i索的实际损伤值,其定义见式(17),dj为0时表示第j根索无损伤,为100%时表示该索彻i
底丧失承载能力,介于0与100%之间时表示第j根索丧失相应比例的承载能力,向量d 的i
元素的编号规则与式(1)中向量do的元素的编号规则相同。
[0066]i i
[0067] 式(17)中doj(i=1,2,3,4,…;j=1,2,3,.......,N)是向量do的第j个元i i素,dcj是向量dc的第j个元素。
[0068] 第五步:判断是否结束本次(第i次)循环,如果是,则完成本次循环结束前的收尾工作,为下一次(即第i+1次,i=1,2,3,4,…)循环准备力学计算基准模型和必要的向量。具体过程如下。i
[0069] 在本次(第i次)循环中求得当前名义损伤向量dc后,首先,按照式(18)建立i i i标识向量F,式(19)给出了标识向量F 的第j个元素的定义;如果标识向量F 的元素全i
为0,则在本次循环中继续对索系统的健康监测和计算;如果标识向量F 的元素不全为0,则完成后续步骤后,进入下一次循环。所谓的后续步骤为:首先,根据式(20)计算得到下一i+1 i+1
次(即第i+1次,i=1,2,3,4,…)循环所需的初始损伤向量d o的每一个元素d oj;第i 0
二,在力学计算基准模型A(i=1,2,3,4,…)或索结构的无损伤模型A 的基础上,令索i+1
的健康状况状况为d o后更新得到下一次(第i+1次,i=1,2,3,4,…)循环所需的力学i+1 i+1
计算基准模型A ;最后,通过对力学计算基准模型A 的计算得到被监测量的初始数值,由其组成下一次(即第i+1次,i=1,2,3,4,…)循环所需的“被监测量的初始数值向量i-1
C o”(i=1,2,3,4,…)。
[0070]
[0071] 式(18)中标识向量Fi的上标i表示第i次循环,其元素Fij(j=1,2,3,…,N)的下标j表示第j根索的损伤特征,只能取0和1两个量,具体取值规则见式(19)。
[0072]
[0073] 式(19)中元素Fij是标识向量Fi的第j个元素,Diuj是名义单位损伤向量Diu的第i ij个元素(见式(3)),dcj是索系统当前名义损伤向量dc的第j个元素(见式(12)),它们都表示第j根索的相关信息。
[0074]i i i
[0075] 式(20)中Duj是名义单位损伤向量Du的第j个元素(见式(3)),dcj是索系统i当前名义损伤向量dc的第j个元素(见式(12))。
[0076] 本发明的第二部分:健康监测系统的软件和硬件部分。
[0077] 硬件部分包括监测系统(包括被监测量监测系统、索结构支座坐标监测系统)、信号采集器和计算机等。要求实时或准实时监测每一个被监测量,要求实时或准实时监测每一个索结构支座坐标。
[0078] 软件部分应当能够完成本发明的第一部分所设定的过程,即完成本发明中所需要的、可以用计算机实现的监测、记录、控制、存储、计算、通知、报警等功能。
[0079] 本发明方法具体包括:
[0080] a.设共有N根索,首先确定索的编号规则,按此规则将索结构中所有的索编号,该编号在后续步骤中将用于生成向量和矩阵;
[0081] b.确定混合监测时指定的将被监测索力的支承索,设索系统中共有N根索,结构的被监测的索力数据由结构上M1个指定索的M1个索力数据来描述,结构索力的变化就是所有指定索的索力的变化;每次共有M1个索力测量值或计算值来表征结构的索力信息;M1是一个不小于0的整数;确定混合监测时指定的将被监测应变的被测量点,结构的被监测的应变数据可由结构上K2个指定点的、及每个指定点的L2个指定方向的应变来描述,结构应变数据的变化就是K2个指定点的所有被测应变的变化;每次共有M2个应变测量值或计算值来表征结构应变,M2为K2和L2之积;M2是不小于0的整数;确定混合监测时指定的将被监测角度的被测量点,结构的被监测的角度数据由结构上K3个指定点的、过每个指定点的L3个指定直线的、每个指定直线的H3个角度坐标分量来描述,结构角度的变化就是所有指定点的、所有指定直线的、所有指定的角度坐标分量的变化;每次共有M3个角度坐标分量测量值或计算值来表征结构的角度信息,M3为K3、L3和H3之积;M3是一个不小于0的整数;确定混合监测时指定的将被监测的形状数据,结构的被监测的形状数据由结构上K4个指定点的、及每个指定点的L4个指定方向的空间坐标来描述,结构形状数据的变化就是K4个指定点的所有坐标分量的变化;每次共有M4个坐标测量值或计算值来表征结构形状,M4为K4和L4之积;M4是一个不小于0的整数;综合上述混合监测的被监测量,整个结构共有M个被监测量,M为M1、M2、M3和M4之和,定义参量K,K为M1、K2、K3和K4之和,K和M不得小于索的数量N;由于M个被监测量是不同类型的,所以本发明称为“有支座沉降时的基于混合监测的索系统的健康监测方法”;为方便起见,在本发明中将本步所列出的“混合监测时结构的被监测的所有参量”简称为“被监测量”;
[0082] c.利用索的无损检测数据等能够表达索的健康状态的数据建立索系统初始损伤1
向量do;如果没有索的无损检测数据及其他能够表达索的健康状态的数据时,或者可以认
1
为结构初始状态为无损伤状态时,向量do的各元素数值取0;
[0083] d.在建立索系统初始损伤向量d1o的同时,直接测量计算得到索结构的所有指定1
的被监测量,组成“被监测量的初始数值向量Co”;
[0084] e.在建立索系统初始损伤向量d1o和被监测量的初始数值向量C1o的同时,实测得到索结构的所有索的初始索力数据,实测得到索结构的初始几何数据;
[0085] f.建立索结构的初始力学计算基准模型Ao,建立初始索结构支座坐标向量Uo,建1
立第一次循环开始时需要的索结构的力学计算基准模型A ;依据索结构竣工之时的索结构的实测数据,该实测数据包括索结构形状数据、索力数据、拉杆拉力数据、索结构支座坐标数据、索结构模态数据等实测数据,索的无损检测数据等能够表达索的健康状态的数据,依据设计图和竣工图,利用力学方法建立索结构的初始力学计算基准模型Ao;如果没有索结构竣工之时的结构的实测数据,那么就在建立健康监测系统前对该索结构进行实测,同样得到索结构的实测数据,根据此数据和索结构的设计图、竣工图,同样利用力学方法建立索结构的初始力学计算基准模型Ao;不论用何种方法获得Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,其间的差异不得大于5%;对应于Ao的索结构支座坐标数据组成初始索结构支座坐标向量Uo;Ao和Uo是不变的,只在第一次循环开始时建立;第i次i
循环开始时建立的索结构的力学计算基准模型记为A,其中i表示循环次数;本发明的申请书中字母i除了明显地表示步骤编号的地方外,字母i仅表示循环次数,即第i次循环;
1 1
因此第一次循环开始时建立的索结构的力学计算基准模型记为A,本发明中A 就等于Ao;
ti ti
为叙述方便,命名“索结构当前力学计算基准模型A o”,在每一次循环中A o根据需要会不ti i
断更新,每一次循环开始时,A o等于A ;同样为叙述方便,命名“索结构实测支座坐标向量ti
U ”,在每一次循环中,不断实测获得索结构支座坐标当前数据,所有索结构支座坐标当前ti ti
数据组成当前索结构实测支座坐标向量U ,向量U 的元素与向量Uo相同位置的元素表示ti
相同支座的相同方向的坐标;为叙述方便起见,对于第i次循环,将上一次更新A o时的索ti t1 1
结构支座坐标当前数据记为当前索结构支座坐标向量U o;第一次循环开始时,A o等于A,t1
U o等于Uo;
[0086] g.每一次循环开始时,令Atio等于Ai;实测获得索结构支座坐标当前数据,所有索ti结构支座坐标当前数据组成当前索结构实测支座坐标向量U ,根据当前索结构实测支座ti ti
坐标向量U ,在必要时更新索结构当前力学计算基准模型A o和当前索结构支座坐标向量ti
U o;
[0087] h.在索结构当前力学计算基准模型Atio的基础上进行若干次力学计算,通过计算i i获得索结构单位损伤被监测量变化矩阵ΔC 和名义单位损伤向量Du;
[0088] i.实测得到索结构的所有指定被监测量的当前实测数值,组成“被监测量的当前i数值向量C”。给本步及本步之前出现的所有向量的元素编号时,应使用同一编号规则,这样可以保证本步及本步之前出现的各向量的、编号相同的元素,表示同一被监测量的、对应于该元素所属向量所定义的相关信息;
[0089] j.定义索系统当前名义损伤向量dic和当前实际损伤向量di,损伤向量的元素个数等于索的数量,损伤向量的元素和索之间是一一对应关系,损伤向量的元素数值代表对应索的损伤程度或健康状态;
[0090] k.依据“被监测量的当前数值向量Ci”同“被监测量的初始数值向量Cio”、“单位i i损伤被监测量变化矩阵ΔC”和“当前名义损伤向量dc”间存在的近似线性关系,该近似线i
性关系可表达为式1,式1中除dc外的其它量均为已知,求解式1就可以算出当前名义损i
伤向量dc;
[0091] 式1
[0092] 1.利用式2表达的当前实际损伤向量di同初始损伤向量dio和当前名义损伤向量dic的元素间的关系,计算得到当前实际损伤向量di的所有元素。
[0093] 式2
[0094] 式2中j=1,2,3,……,N。
[0095] 由于当前实际损伤向量di的元素数值代表对应索的损伤程度,所以根据当前实际损伤向量di就能确定有哪些索受损及其损伤程度,即实现了索结构中索系统的健康监测;若当前实际损伤向量的某一元素的数值为0,表示该元素所对应的索是完好的,没有损伤的;若其数值为100%,则表示该元素所对应的索已经完全丧失承载能力;若其数值介于0和100%之间,则表示该索丧失了相应比例的承载能力。
[0096] m.在求得当前名义损伤向量dic后,按照式3建立标识向量Fi,式4给出了标识向量fi的第j个元素的定义;
[0097] 式3
[0098] 式4
[0099] 式4中元素Fij是标识向量Fi的第j个元素,Diuj是名义单位损伤向量Diu的第j个元素,dicj是索系统当前名义损伤向量dic的第j个元素,它们都表示第j根索的相关信息。式4中j=1,2,3,……,N。
[0100] n.如果标识向量Fi的元素全为0,则回到步骤g继续本次循环;如果标识向量Fi的元素不全为0,则进入下一步、即步骤o。
[0101] o.根据式5计算得到下一次、即第i+1次循环所需的初始损伤向量di+1o的每一个元素di+1oj;
[0102] 式5
[0103] 式5中Diuj是名义单位损伤向量Diu的第j个元素,dicj是索系统当前名义损伤向i i i量dc的第j个元素,Fj是标识向量F 的第j个元素。式5中j=1,2,3,……,N。
[0104] p.在索结构当前力学计算基准模型Atio的基础上,令索的健康状况为di+1o后更新i+1得到下一次、即第i+1次循环所需的力学计算基准模型A ,即对力学计算基准模型进行了更新;
[0105] q.通过对力学计算基准模型Ai+1的计算得到对应于模型Ai+1的结构的所有被监测i+1量的数值,这些数值组成下一次、即第i+1次循环所需的被监测量的初始数值向量C o;
[0106] r.建立下一次、即第i+1次循环所需的索结构当前力学计算基准模型Ati+1o,即取ti+1 i+1A o等于A ;
[0107] s.建立下一次、即第i+1次循环所需的当前索结构支座坐标向量Uti+1o,即取Uti+1oti等于U o;
[0108] t.回到步骤g,开始下一次循环。
[0109] 在步骤g中,根据当前索结构实测支座坐标向量Uti,在必要时更新索结构当前力ti ti学计算基准模型A o和当前索结构支座坐标向量U o的具体方法为:
[0110] g1.实测得到当前索结构实测支座坐标向量Uti后,比较Uti和Utio,如果Uti等于ti tiu o,则不需要对A o进行更新;
[0111] g2.实测得到当前索结构实测支座坐标向量Uti后,比较Uti和Utio,如果Uti不等于ti ti ti tiU o,则需要对A o进行更新,更新方法是:先计算U 与Uo的差,U 与Uo的差就是当前索结构支座关于在建立Ao时的索结构支座的当前支座位移,用当前支座位移向量V表示支座位移,当前支座位移向量V中的元素与支座位移分量之间是一一对应关系,当前支座位移向量V中一个元素的数值对应于一个指定支座的一个指定方向的位移,其中支座位移在重力ti
方向的分量就是支座沉降量;更新A o的方法是:在Ao的基础上令索的健康状况为索系统i
初始损伤向量do,再进一步对Ao中的索结构支座施加当前支座位移约束,当前支座位移约束的数值就取自当前支座位移向量V中对应元素的数值,对Ao中的索结构支座施加当前支ti ti ti
座位移约束后,最终得到的就是更新的当前力学计算基准模型A o,更新A o的同时,U o所ti ti ti
有元素数值也用U 所有元素数值代替,即更新了U o,这样就得到了正确地对应于A o的ti
U o。
[0112] 在步骤h中,在索结构当前力学计算基准模型Atio的基础上进行若干次力学计算,i i通过计算获得索结构单位损伤被监测量变化矩阵ΔC 和名义单位损伤向量Du的具体方法为:
[0113] h1.在第i次循环开始时,直接按步骤h2至步骤h4所列方法获得索结构单位损伤i i ti被监测量变化矩阵ΔC 和名义单位损伤向量Du;在其它时刻,当步骤g中对A o进行更新i
后,必须按步骤h2至步骤h4所列方法获得索结构单位损伤被监测量变化矩阵ΔC 和名义i ti
单位损伤向量Du,如果在步骤g中没有对A o进行更新,则在此处直接转入步骤i进行后续工作;
[0114] h2.在索结构当前力学计算基准模型Atio的基础上进行若干次力学计算,计算次数数值上等于所有索的数量,有N根索就有N次计算,每一次计算假设索系统中只有一根索在原有损伤的基础上再增加单位损伤,每一次计算中出现损伤的索不同于其它次计算中出现损伤的索,并且每一次假定有损伤的索的单位损伤值可以不同于其他索的单位损伤值,i用“名义单位损伤向量Du”记录所有索的假定的单位损伤,每一次计算得到索结构中所有指定被监测量的当前数值,每一次计算得到的所有被监测量的当前数值组成一个“被监测i
量的计算当前数值向量”;当假设第j根索有单位损伤时,可用Ctj表示对应的“被监测量的计算当前数值向量”;在本步骤中给各向量的元素编号时,应同本发明中其它向量使用同一编号规则,这样可以保证本步骤中各向量中的任意一个元素,同其它向量中的、编号相同的元素,表达了同一被监测量或同一对象的相关信息;
[0115] h3.每一次计算得到的那个“被监测量的计算当前数值向量Citj”减去“被监测量i的初始数值向量Co”得到一个向量,再将该向量的每一个元素都除以本次计算中假定的单i
位损伤值后得到一个“被监测量的数值变化向量δCj”;有N根索就有N个“被监测量的数值变化向量”;
[0116] h4.由这N个“被监测量的数值变化向量”依次组成有N列的“单位损伤被监测量i i变化矩阵ΔC”;“单位损伤被监测量变化矩阵ΔC”的每一列对应于一个“被监测量的数值i
变化向量”;“单位损伤被监测量变化矩阵”的列的编号规则与当前名义损伤向量dc和当前i
实际损伤向量d 的元素编号规则相同。
[0117] 有益效果:本发明公开的系统和方法在索结构支座出现沉降的情况下、在有较多的索同步受损的条件下可以非常准确地监测评估出索系统的健康状态(包括所有受损索i的位置和损伤程度)。这是由于“被监测量的当前数值向量C”同“被监测量的初始数值向i i i
量Co”、“单位损伤被监测量变化矩阵ΔC”和“当前名义损伤向量dc”间的线性关系是近似的,实际上是非线性的关系,特别是在受损索较多或受损程度较大时,上述量之间的关系的非线性特征更加明显,为克服此障碍,本发明公开了一种在索结构支座出现沉降的情况下、在小区间内用线性关系逼近该非线性关系的健康监测方法。本发明实际上使用了用线性关系分段逼近非线性关系的方法,将大区间分割成一个个小区间,在每一个小区间内线性关系都是足够准确的,依据其判断得到的索系统的健康状态也是可靠的。因此,在索结构支座出现沉降的情况下,本发明公开的系统和方法对索系统的有效健康监测是非常有益的。

具体实施方式

[0118] 在有支座沉降时,针对索结构的索系统的健康监测,本发明公开了一种能够合理有效地监测索结构的索系统的每一根索的健康状况的系统和方法。本发明的实施例的下面说明实质上仅仅是示例性的,并且目的绝不在于限制本发明的应用或使用。
[0119] 在索结构支座出现沉降的情况下,本发明采用的算法用于监测索结构中的索系统的健康状态。具体实施时,下列步骤是可采取的各种步骤中的一种。
[0120] 第一步:确定被监测量的类型、位置和数量,并编号。具体过程为:
[0121] 设共有N根索,首先确定索的编号规则,按此规则将索结构中所有的索编号,该编号在后续步骤中将用于生成向量和矩阵。
[0122] 确定混合监测时指定的将被监测索力的支承索,设索系统中共有N根索,结构的被监测的索力数据由结构上M1个指定索的M1个索力数据来描述,结构索力的变化就是所有指定索的索力的变化。每次共有M1个索力测量值或计算值来表征结构的索力信息。M1是一个不小于0的整数。实际选定被监测索力的索时,可以选择那些索力易于测量的索为被监测索。
[0123] 确定混合监测时指定的将被监测应变的被测量点,结构的被监测的应变数据可由结构上K2个指定点的、及每个指定点的L2个指定方向的应变来描述,结构应变数据的变化就是K2个指定点的所有被测应变的变化。每次共有M2个应变测量值或计算值来表征结构应变,M2为K2和L2之积。M2是一个不小于0的整数。每一个将被监测应变的被测量点可以就是每一根索的固定端点(例如是斜拉桥的拉索在桥梁上的固定端)附近的一个点,该点一般不应当是应力集中点,以避免出现过大的应变测量值,这些点一般也不应当全部是混合监测时指定的被监测索力的索的固定端点或在其附近。
[0124] 确定混合监测时指定的将被监测角度的被测量点,结构的被监测的角度数据由结构上K3个指定点的、过每个指定点的L3个指定直线的、每个指定直线的H3个角度坐标分量来描述,结构角度的变化就是所有指定点的、所有指定直线的、所有指定的角度坐标分量的变化。每次共有M3个角度坐标分量测量值或计算值来表征结构的角度信息,M3为K3、L3和H3之积。M3是一个不小于0的整数。每一个指定点可以就是每一根索的固定端点(例如是斜拉桥的拉索在桥面上的固定端)或其附近的一个点,被监测角度数据的点一般不应该全部选择为“混合监测中指定的被监测索力的索的固定端点或在其附近的点”和“混合监测中指定的被监测应变的点或在其附近的点”;在每一指定点可以仅仅测量一个指定直线的一个角度坐标,例如测量过指定点的结构表面法线或切线相对于重力加速度方向的角度坐标,这里实际上就是倾角测量。
[0125] 确定混合监测时指定的将被监测的形状数据,结构的被监测的形状数据由结构上K4个指定点的、及每个指定点的L4个指定方向的空间坐标来描述,结构形状数据的变化就是K4个指定点的所有坐标分量的变化。每次共有M4个坐标测量值或计算值来表征结构形状,M4为K4和L4之积。M4是一个不小于0的整数。每一个指定点可以就是每一根索的固定端点(例如是斜拉桥的拉索在桥梁上的固定端);这里选定的被监测点不应该全部选用“混合监测中指定的被监测索力的索的固定端点或在其附近的点”、“混合监测中指定的被监测应变的点或在其附近的点”和“混合监测中指定的被监测角度数据的点或在其附近的点”。
[0126] 综合上述被监测量,整个结构就混合监测而言共有M个被监测量,M为M1、M2、M3和M4之和,定义参量K,K为M1、K2、K3和K4之和,K和M不得小于索的数量N。由于M个被监测量是不同类型的,所以本发明称为“基于混合监测来识别需调整索力的支承索的方法”。为方便起见,在本发明中将本步所列出的“混合监测时结构的被监测的所有参量”简称为“被监测量”。
[0127] 第二步:利用索的无损检测数据等能够表达索的健康状态的数据建立索系统初始1
损伤向量do。如果没有索的无损检测数据及其他能够表达索的健康状态的数据时,或者可
1
以认为结构初始状态为无损伤状态时,向量do的各元素数值取0。
[0128] 第三步:在建立索系统初始损伤向量d1o的同时,直接测量计算得到索结构的所有1
指定的被监测量,组成“被监测量的初始数值向量Co”。
[0129] 第四步:在建立索系统初始损伤向量d1o和被监测量的初始数值向量C1o的同时,可以采用成熟的测量方法进行索力测量、应变测量、角度测量和空间坐标测量。同时,直接测量或测量后计算得到索结构的所有索的初始索力和索结构初始几何形状数据(对于斜拉桥就是其初始桥型数据),索结构的初始几何形状数据可以是所有索的端点的空间坐标数据加上结构上一系列的点的空间坐标数据,目的在于根据这些坐标数据就可以确定索结构的几何特征。对斜拉桥而言,初始几何形状数据可以是所有索的端点的空间坐标数据加上桥梁两端上若干点的空间坐标数据,这就是所谓的桥型数据。
[0130] 建立索结构的初始力学计算基准模型Ao,建立初始索结构支座坐标向量Uo,建立1
第一次循环开始时需要的索结构的力学计算基准模型A ;依据索结构竣工之时的索结构的实测数据,该实测数据包括索结构形状数据、索力数据、拉杆拉力数据、索结构支座坐标数据、索结构模态数据等实测数据,索的无损检测数据等能够表达索的健康状态的数据,依据设计图和竣工图,利用力学方法建立索结构的初始力学计算基准模型Ao;如果没有索结构竣工之时的结构的实测数据,那么就在建立健康监测系统前对该索结构进行实测,同样得到索结构的实测数据,根据此数据和索结构的设计图、竣工图,同样利用力学方法建立索结构的初始力学计算基准模型Ao;不论用何种方法获得Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,其间的差异一般不得大于5%;对应于Ao的索结构支座坐标数据组成初始索结构支座坐标向量Uo;Ao和Uo是不变的,只在第一次循环开始时建立;第i次i
循环开始时建立的索结构的力学计算基准模型记为A,其中i表示循环次数;本发明的申请书中字母i除了明显地表示步骤编号的地方外,字母i仅表示循环次数,即第i次循环;
1 1
因此第一次循环开始时建立的索结构的力学计算基准模型记为A,本发明中A 就等于Ao;
ti ti
为叙述方便,命名“索结构当前力学计算基准模型A o”,在每一次循环中A o根据需要会不ti i
断更新,每一次循环开始时,A o等于A ;同样为叙述方便,命名“索结构实测支座坐标向量ti
U ”,在每一次循环中,不断实测获得索结构支座坐标当前数据,所有索结构支座坐标当前ti ti
数据组成当前索结构实测支座坐标向量U ,向量U 的元素与向量Uo相同位置的元素表示ti
相同支座的相同方向的坐标;为叙述方便起见,对于第i次循环,将上一次更新A o时的索ti t1 1
结构支座坐标当前数据记为当前索结构支座坐标向量U o;第一次循环开始时,A o等于A,t1
U o等于Uo。
[0131] 第五步:安装索结构健康监测系统的硬件部分。硬件部分至少包括:被监测量监测系统(例如含角度测量分系统、索力测量分系统、应变测量分系统、空间坐标测量分系统、信号调理器等)、信号(数据)采集器、计算机和通信报警设备。每一个被监测量、每一个索结构的支座坐标都必须被监测系统监测到,监测系统将监测到的信号传输到信号(数据)采集器;信号经信号采集器传递到计算机;计算机则负责运行索结构的索系统的健康监测软件,包括记录信号采集器传递来的信号;当监测到索有损伤时,计算机控制通信报警设备向监控人员、业主和(或)指定的人员报警。
[0132] 第六步:编制并在监控计算机上安装索结构的索系统健康监测系统软件。在每一次循环时都运行该软件,或者说此软件始终在运行。该软件将完成本发明“有支座沉降时基于混合监测的索系统的递进式健康监测方法”任务所需要的监测、记录、控制、存储、计算、通知、报警等功能(即本具体实施方法中所有可以用计算机完成的工作),并能定期或由人员操作健康监测系统生成索系统健康情况报表,还能依据设定的条件(例如损伤达到某一值),自动通知或提示监控人员通知特定的技术人员完成必要的计算工作。
[0133] 第七步:由此步开始循环运作,为叙述方便记为第i次循环,其中i=1,2,3,4,5,...。实测(例如用全站仪进行测量)获得索结构支座坐标当前数据,所有索结构支座坐ti ti
标当前数据组成当前索结构实测支座坐标向量U ,根据当前索结构实测支座坐标向量U ,ti ti
在必要时更新索结构当前力学计算基准模型A o和当前索结构支座坐标向量U o。具体方法为:
[0134] 实测得到当前索结构实测支座坐标向量Uti后,比较Uti和Utio,如果Uti等于Utio,ti则不需要对A o进行更新;
[0135] 实测得到当前索结构实测支座坐标向量Uti后,比较Uti和Utio,如果Uti不等于Utio,ti ti ti则需要对A o进行更新,更新方法是:先计算U 与Uo的差,U 与Uo的差就是当前索结构支座关于在建立Ao时的索结构支座的当前支座位移,用当前支座位移向量V表示支座位移,当前支座位移向量V中的元素与支座位移分量之间是一一对应关系,当前支座位移向量V中一个元素的数值对应于一个指定支座的一个指定方向的位移,其中支座位移在重力方向ti
的分量就是支座沉降量;更新A o的方法是:在Ao的基础上令索的健康状况为索系统初始i
损伤向量do,再进一步对Ao中的索结构支座施加当前支座位移约束,当前支座位移约束的数值就取自当前支座位移向量V中对应元素的数值,对Ao中的索结构支座施加当前支座位ti ti ti
移约束后,最终得到的就是更新的当前力学计算基准模型A o,更新A o的同时,U o所有元ti ti ti ti
素数值也用U 所有元素数值代替,即更新了U o,这样就得到了正确地对应于A o的U o。
[0136] 第八步:在索结构当前力学计算基准模型Atio的基础上进行若干次力学计算,通i i过计算获得索结构单位损伤被监测量变化矩阵ΔC 和名义单位损伤向量Du。具体方法为:
[0137] a.在第i次循环开始时或当第七步中对Atio进行更新后,直接按步骤b至步骤di i所列方法获得索结构单位损伤被监测量变化矩阵ΔC 和名义单位损伤向量Du;在其它时ti
刻,如果在步骤g中没有对A o进行更新,则在此处直接转入第九步进行后续工作;
[0138] b.在索结构当前力学计算基准模型Atio的基础上进行若干次力学计算,计算次数数值上等于所有索的数量,有N根索就有N次计算,每一次计算假设索系统中只有一根索在原有损伤的基础上再增加单位损伤,每一次计算中出现损伤的索不同于其它次计算中出现损伤的索,并且每一次假定有损伤的索的单位损伤值可以不同于其他索的单位损伤值,用i“名义单位损伤向量Du”记录所有索的假定的单位损伤,每一次计算得到索结构中所有指定被监测量的当前数值,每一次计算得到的所有被监测量的当前数值组成一个“被监测量的i
计算当前数值向量”;当假设第j根索有单位损伤时,可用Ctj表示对应的“被监测量的计算当前数值向量”;在本步骤中给各向量的元素编号时,应同本发明中其它向量使用同一编号规则,这样可以保证本步骤中各向量中的任意一个元素,同其它向量中的、编号相同的元素,表达了同一被监测量或同一对象的相关信息。
[0139] c.每一次计算得到的那个“被监测量的计算当前数值向量Citj”减去“被监测量的i初始数值向量Co”得到一个向量,再将该向量的每一个元素都除以本次计算中假定的单位i
损伤值后得到一个“被监测量的数值变化向量δCj”;有N根索就有N个“被监测量的数值i
变化向量δCj”(j=1,2,3,…,N)。
[0140] d.由这N个“被监测量的数值变化向量”依次组成有N列的“单位损伤被监测量i i变化矩阵ΔC”;“单位损伤被监测量变化矩阵ΔC”的每一列对应于一个“被监测量的数值i
变化向量”;“单位损伤被监测量变化矩阵”的列的编号规则与当前名义损伤向量dc和当前i
实际损伤向量d 的元素编号规则相同。
[0141] 在本步骤中及其后给各向量的元素编号时,应同本发明中其它向量使用同一编号规则,这样可以保证本步骤中各向量中的任意一个元素,同其它向量中的、编号相同的元素,表达了同一被监测量或同一对象的相关信息。
[0142] 第九步:建立线性关系误差向量ei和向量gi。利用前面的数据(“被监测量的初i i始数值向量Co”、“单位损伤被监测量变化矩阵ΔC”),在第八步进行每一次计算的同时,即在每一次计算中假设索系统中只有一根索在原有损伤的基础上再增加单位损伤的同时,每i i i
一次计算组成一个损伤向量dt,损伤向量dt的元素个数等于索的数量,向量dt的所有元i
素中只有一个元素的数值取每一次计算中假设增加单位损伤的索的单位损伤值,dt的其它元素的数值取0,那个不为0的元素的编号与假定增加单位损伤的索的对应关系、同其他向i i i i
量的同编号的元素同该索的对应关系是相同的;将Ctj、Co、ΔC、dt带入式(13),得到一个i i
线性关系误差向量e,每一次计算得到一个线性关系误差向量e ;有N根索就有N次计算,i i
就有N个线性关系误差向量e,将这N个线性关系误差向量e 相加后得到一个向量,将此i i
向量的每一个元素除以N后得到的新向量就是最终的线性关系误差向量e。向量g 等于i i
最终的误差向量e。将向量g 保存在运行健康监测系统软件的计算机硬盘上,供健康监测系统软件使用。
[0143] 第十步:将“被监测量的初始数值向量Cio”和“单位损伤被监测量变化矩阵ΔCi”等参数以数据文件的方式保存在运行健康监测系统软件的计算机硬盘上。实测得到索结构i的所有指定被监测量的当前实测数值,组成“被监测量的当前数值向量C”。
[0144] 第十一步:依据“被监测量的当前数值向量Ci”同“被监测量的初始数值向量Cio”、i i“单位损伤被监测量变化矩阵ΔC”和“当前名义损伤向量dc”间存在的近似线性关系(式i
(9)),按照多目标优化算法计算索系统当前名义损伤向量dc的非劣解。
[0145] 可以采用的多目标优化算法有很多种,例如:基于遗传算法的多目标优化、基于人工神经网络的多目标优化、基于粒子群的多目标优化算法、基于蚁群算法的多目标优化、约束法(Constrain Method)、加权法(Weighted Sum Method)、目标规划法(Goal Attainment Method)等等。由于各种多目标优化算法都是常规算法,可以方便地实现,本实施步骤仅以i目标规划法为例给出求解当前名义损伤向量dc的过程,其它算法的具体实现过程可根据其具体算法的要求以类似的方式实现。
[0146] 按照目标规划法,式(9)可以转化成式(21)和式(22)所示的多目标优化问题,式i i(21)中γ 是一个实数,R是实数域,空间区域Ω限制了向量dc的每一个元素的取值范围i
(本实施例要求向量dc的每一个元素不小于0,不大于1)。式(21)的意思是寻找一个绝i i
对值最小的实数γ,使得式(22)得到满足。式(22)中G(dc)由式(23)定义,式(22)中i i i i i
加权向量W 与γ 的积表示式(22)中G(dc)与向量g 之间允许的偏差,g 的定义参见式