硅电磁铸造装置转让专利

申请号 : CN201010197047.3

文献号 : CN101829767B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 金子恭二郎宋明生

申请人 : 丽达科技有限公司金子恭二郎

摘要 :

本发明公开了一种硅电磁铸造装置,包括炉体容器和设置在炉体容器内部的具导电性的坩埚以及安装在该坩埚外围的感应线圈。所述的炉体容器内设有一定压力的指定气体,该硅电磁铸造装置中的感应线圈通电后,使坩埚内的硅感应发热、熔解然后凝固。感应线圈由两个以上感应频率不同的线圈上下配置而成。本发明由于采用了两个以上的不同感应频率的感应线圈,根据各感应线圈上所负荷的感应频率以及感应输出功率的设定不同,在将各感应频率的感应线圈的端子电压设定在指定电压以下的同时,通过各感应线圈的组合能产生出很大的合计输出功率。采用此发明所述的硅电磁铸造装置,可以利用简单、切实可行的方法生产出具有高品质、较大体积的硅铸块。

权利要求 :

1.一种硅电磁铸造装置,包括炉体容器(100)和设置在炉体容器(100)内部的具导电性的坩埚(200)以及安装在该坩埚(200)外围的感应线圈(300);所述的炉体容器(100)内设有一定压力的指定气体,该硅电磁铸造装置中的感应线圈(300)通电后,使坩埚(200)内的硅感应发热、熔解,然后凝固;其特征在于:所述感应线圈(300)由两个以上具有不同感应频率的线圈上下配置而成,其中,下线圈的感应频率较高,下线圈的感应频率设置在

25kHz以上。

2.根据权利要求1所述的硅电磁铸造装置,其特征在于:所述的两个以上具有不同感应频率的上下线圈之间设置有磁屏蔽板(330)。

3.根据权利要求1或2所述的硅电磁铸造装置,其特征在于:所述的各感应线圈的端子负荷电压设置在900V以下。

4.根据权利要求3所述的硅电磁铸造装置,其特征在于:所述的各感应线圈的端子负荷电压设置在600V以下。

5.根据权利要求1所述的硅电磁铸造装置,其特征在于:坩埚(200)上方设置有等离子炬,用于对坩埚(200)内部熔解硅的加热。

说明书 :

硅电磁铸造装置

技术领域

[0001] 本发明涉及一种用于制造太阳能电池硅基板的硅铸块的硅电磁铸造装置。

背景技术

[0002] 作为改善全球环境问题的方法之一,太阳能电池目前逐渐普及,资源量丰富且光电转换效率高的硅晶体在太阳能电池中得到广泛应用,其中应用电磁铸造法制造的多结晶硅基板太阳能电池的产量也在增加。
[0003] 如图5所示,目前硅电磁铸造装置大致是由放置在炉体容器100内、内部装有冷却水循环系统的铜制坩埚200和设置在坩埚外围的感应线圈300’组成。将硅块S放置在坩埚200内,因电磁力作用漂浮熔解,随着硅块高度的持续下降,硅块向下结晶,就制造出硅铸块。在由水冷却的坩埚200内部,硅块S因电磁力作用漂浮熔解,因此熔解硅S’和坩埚200内部没有接触,不会受到来自坩埚的不纯物质的污染。同时,由于避免了接触,坩埚200也不会受到损伤,从而大大延长了坩埚的使用寿命。
[0004] 由上可知,硅电磁铸造法可以连续地制造长形、较大体积的硅铸块,该工艺效率高,铸造条件稳定,因此硅铸块的品质高且质地均匀,从而使硅电磁铸造法成为工业上一种广泛应用的制造方法。
[0005] 然而上述硅电磁铸造法存在着下述问题:如果为了提高生产效率,从而增加硅块S的体积,随着所需熔解的硅块的量的增加,所需输入电力也要增大。同时,铜制坩埚200以及感应线圈300’的体积都要增大。从而导致感应线圈300’的通电量增大,在保持同一感应频率的情形下,为了供给增加的所需电量,感应线圈300’的端子电压也会增大。例如,边长为20cm的硅块S在感应线圈300’为2匝的情况下,为了保持35kHz的感应频率来进行感应熔解,输出功率需达到250kW,感应线圈300’的端子电压需达到550V;然而,边长为35cm的硅块S在感应线圈300’同样为2匝的情况下,为了保持35kHz的感应频率来进行感应熔解,输出功率需达到450kW,感应线圈300’的端子电压需达到1000V。
[0006] 由此,也产生了相应的问题。在硅电磁铸造工艺中,为了防止熔解硅S’氧化,在炉体容器100中会充满1个大气压的非活性气体。氩气、氦气均可作为非活性气体加以应用,但是从经济的角度考虑,通常使用氩气。然而,由于氩气的电离电压很低,当充满了氩气的炉体容器100内部的导电体通电时,容易在导电体之间产生电弧放电现象。通常情况下,当感应熔解工业设备内部存在1个大气压以下的氩气时,在贴得很近的正对的导电体之间输入600V以上的电压就会产生电弧放电。随着电压的增高,电弧放电现象会愈加剧烈,产生放电的导电体会熔解并汽化。
[0007] 在电磁铸造装置中,当感应输出功率增加时,感应线圈300’的端子电压增高,电流增大,输出功率增大。感应线圈300’的端子负荷电压使感应线圈上产生电流,由于电磁感应作用,使已经冷却的坩埚200的表层产生电压以及电流;同样由于电磁感应作用,使置于铜制坩埚200内部的硅块S的表层产生电压。
[0008] 也就是说,在制造上述边长为35cm的硅铸块的情形下,感应线圈300’的端子电压要增高,由于电磁感应作用,坩埚200以及熔解硅S’的表层电压也会增高。如图6所示,相对的坩埚200的表层和熔解硅S’的表层之间会产生电弧放电A,水冷却之后的坩埚200会由于电弧放电A产生的热量熔解并且汽化从而在坩埚上造成深槽,久而久之,侵蚀会越来越严重。
[0009] 由于电弧放电A,坩埚200的表层熔解、汽化,坩埚表面的铜便熔解混入熔解硅S’当中,降低了硅铸块的纯度以及具有半导体性能的少数载体的扩散性,从而降低了太阳能电池的光电转换效率。
[0010] 与此同时,坩埚200由于电弧放电A引起的表层侵蚀越来越严重,随着平坦的表层上深槽的范围越来越大,在表面的微小区域内,正常的电磁作用会受到阻碍,从而造成电磁铸造过程当中的熔解、凝固异常现象。久而久之,甚至会造成铸造过程的中断。

发明内容

[0011] 发明目的:本发明的目的是为了克服现有技术的不足,提供一种能够采用简单、切实可行的方法制造出高品质的硅铸块的硅电磁铸造装置。
[0012] 技术方案:为了解决上述技术问题,本发明所述的硅电磁铸造装置包括炉体容器和设置在炉体容器内部的具导电性的坩埚以及安装在该坩埚外围的感应线圈。所述的炉体容器内设有一定压力的指定气体,该硅电磁铸造装置中的感应线圈通电后,使坩埚内的硅感应发热、熔解,然后在硅电池铸造装置内使之凝固。所述感应线圈由两个以上具有不同感应频率的线圈上下配置而成。采用两个以上的不同感应频率的感应线圈,根据各感应线圈上所负荷的感应频率以及感应输出功率的设定不同,在将不同感应频率的感应线圈的端子电压设置在指定电压以下(例如900V以下,600V以下更好)的同时,通过各感应线圈的组合也能产生出很大的合成感应输出功率。
[0013] 其中,优选地,在上述两种以上不同感应频率的感应线圈之中,最好是下线圈的感应频率较高。由此,感应频率的设定为制造出高品质的硅铸块提供了必要条件,也就是说,下线圈的感应频率应设定为既能够抑制熔解硅的搅拌、也能使固体铸块发热的必要高频率感应输出功率;上线圈由于离凝固界面较远,感应频率的效果难以影响到凝固界面,在抑制坩埚内部电弧放电的同时,能够有效增加各感应线圈的合成输出功率。
[0014] 其中,优选地,上述下线圈的感应频率最好设置在25~30kHz以上,从而,能够有效增加下方高频率感应线圈抑制熔解硅搅拌、致使固体铸块发热的必要高频率感应输出功率。在上述两种以上的不同频率的感应线圈之间,最好安上磁屏蔽板,这样可以防止各线圈之间不必要的磁作用。
[0015] 其中,优选地,各感应线圈的端子负荷电压最好设置在900V以下,这样由于感应效率的关系,熔解硅表层电压可以控制在600V以下。
[0016] 其中,进一步优选地,各感应线圈的端子负荷电压如果能设置在600V以下更佳,这样熔解硅表层电压就一定在600V以下。
[0017] 其中,优选地,在上述坩埚上方设置等离子炬,用于对坩埚内部熔解硅的加热,这样可以有效地对坩埚内的硅块提供使之熔解的热量。
[0018] 有益效果:与现有技术相比,本发明由于采用了两个以上的不同感应频率的感应线圈,根据各感应线圈上所负荷的感应频率以及感应输出功率的设定不同,在将各感应频率的感应线圈的端子电压设定在指定电压以下(例如900V以下,600V以下更好)的同时,通过各感应线圈的组合能产生出很大的合成输出功率。采用此发明所述的硅电磁铸造装置,使利用简单、切实可行的方法生产出具有高品质、较大体积的硅铸块成为可能。

附图说明

[0019] 图1为与第一实施形态相关的该装置的构成概略图。
[0020] 图2为该装置的主体部分放大图。
[0021] 图3为图2III-III部分的截面图。
[0022] 图4为与第二实施形态相关的该装置的主体部分放大图。
[0023] 图5为现阶段该装置的构成概略图。
[0024] 图6为现阶段该装置中产生电弧放电现象的状态图。
[0025] 符号说明
[0026] 1 本装置
[0027] 100 炉体容器
[0028] 200 坩埚容器
[0029] 300 感应线圈
[0030] 310 上方侧的感应线圈
[0031] 320 下方侧的感应线圈
[0032] 330 磁屏蔽板
[0033] 400 石墨台
[0034] 500 上下移动装置
[0035] 600 控温炉
[0036] 700 原料供给器

具体实施方式

[0037] 下面参照图1至图3,对本发明的第一实施形态进行说明。
[0038] [实施形态1]
[0039] <整体构成>
[0040] 图1是与本发明的第一实施形态相关的硅电磁铸造装置(以下称为本装置1)的构成概略图。图2是本装置1的主体部分放大图。图3是图2III-III部分的截面图。
[0041] 本装置1由炉体容器100、安装在炉体容器100内部的坩埚200、设置在坩埚200外周的感应线圈300、放置硅块S的石墨台400、使石墨台400上下移动的上下移动装置500、控制熔解硅S’凝固结晶的控温炉600以及坩埚200上方的原料供给器700这些部分构成。构成各部分的材料,除了感应线圈之外,均与现阶段该装置的构成所需材料相同。
[0042] 关于硅,加热前的状态称之为“硅块S”,加热熔解后的状态称之为“熔解硅S’”,冷却后的凝固状态称为“硅铸块”。
[0043] <炉体容器的构成>
[0044] 上述炉体容器100是指:将坩埚200和感应线圈300等囊括在内的密闭容器。
[0045] 炉体容器100的上部有送气口110,下部有排气口120。铸造时,使用真空泵(图示略)使炉体容器100内气压减压到0.1托之后,从送气口110送入指定的气体(例如:氩气),使之达到大气压的水平。
[0046] 此外,炉体容器100的底壁130上穿设有插通孔130a,上述的上下移动装置500便插通在这里。为了使炉体容器100成为密封容器,该插通孔130a上最好采用橡胶等成分构成的密封材料140。
[0047] <坩埚的构成>
[0048] 上述坩埚容器200是铜制品,坩埚内部设有冷却循环水冷却坩埚侧壁。
[0049] 另外,如图3所示,因为坩埚200在圆周方向对电绝缘,从而圆周被分割为多个区域,最好在坩埚200的圆周被分割的各区域间插入云母等对电绝缘的材料。
[0050] <感应线圈的构成>
[0051] 上述感应线圈300通电后,置于上述坩埚200内部的硅块S便感应发热熔解。感应线圈300由两个感应频率不同的感应线圈310、320上下装置而成。上述两个不同频率的感应线圈310和320之间,设有阻断相互磁作用的磁屏蔽板330。
[0052] 各感应线圈310、320的端子负载电压最好在900V以下,600V以下更好,理由如下:
[0053] 通常情况下,在使用了水冷却之后的铜制坩埚200的电磁铸造装置中,输入感应线圈310、320中的电力以坩埚200为媒介,将60~65%的电力传入坩埚中的熔解硅S’当中,意即,感应功率为60~65%。据此,感应线圈310、320端子负载电压为900V时,熔解硅S’表层电压为600V左右。又如上所述,当电磁铸造装置内部存在1个大气压以下的氩气时,在贴得很近的相对的导电体之间输入600V以上的电压就会产生电弧放电。因此,为了完全抑制感应熔解时的电弧放电现象,感应线圈端子电压最好设置在600V以下;如果只是想抑制铜制坩埚200的表层与熔解硅S’的表层之间的电弧放电现象的话,感应线圈端子电压设置在900V亦可。
[0054] 另外,下感应线圈320的频率较高为好,且这个高频率最好在25~30kHz以上,理由如下:
[0055] 通常,基于电磁感应作用产生的熔解硅S’在加热时,熔解硅S’的表层相当于磁力渗透深度的范围内,由于磁通量密度和电流密度的关系,会对熔解硅S’产生向内的推力,由于这个推力的影响,熔解硅S’在浮游熔解的同时,也在进行搅拌。相对而言,低频率周围的搅拌力度大使得熔解硅S’能够得到充分搅拌,高频率周围搅拌作用逐渐减小,直到维持在相对静止的熔解状态。
[0056] 熔解硅S’表层相当于磁力渗透深度的区域,在低频率周围,电流能够通过的表层深度增大,由表及里很深范围很大的一个区域会被加热。而在高频率周围,电流能够通过的表层深度减小,表层被加热的区域范围亦减少。因此,在施加了相同的感应加热量的情况下,对于低频率周围的表层范围很大的加热区域中,单位体积的加热强度相对较小,而对于高频率周围的表层较小的加热区域中,单位体积的加热强度相对较大,因此,使用高频率可以对表层进行强制加热。
[0057] 至于感应线圈的感应频率的选定,应以25~30kHz为界,低频率周围的熔解硅S’搅拌强度大,促进了熔解硅S’的对流热移动,为了向凝固界面导热,凝固界面向下方扩张加深。随着凝固界面的加深,硅凝固也在照常进行,凝固的硅铸块内部与表层产生温差,铸块内部产生应力。
[0058] 因为低频率周围的铸块表层的加热强度低,一旦对铸块表层的温度维持不充分,就很容易冷却下来,表层与内部温差增大。也就是说,在低频率周围,由于对熔解硅S’较强的搅拌作用以及对凝固固体铸块表层较弱的加热强度,凝固界面加深。扩张到下方的凝固界面增大了凝固硅铸块的内部应力,产生结晶,结果减弱了少数载体的扩散性,降低了多结晶硅半导体的品质。
[0059] 另一方面,在25~30kHz以上的高频率周围,熔解硅S’搅拌强度弱,能够维持在一个相对静止的熔解状态,与凝固界面的对流热移动少,凝固界面难以向下方扩张,形成较浅的凝固界面。同时,凝固了的硅铸块表层由于高频率的缘故,加热强度高,表面不易冷却,铸块内部与表面温差很小。就这样,硅铸块在高频率周围,凝固界面不会向下方扩张,形成较浅的凝固界面,铸块内部与表面温差很小,内部应力的产生率低。由此,铸块中不易产生结晶,能够增强多结晶硅半导体中少数载体的扩散性,提高太阳能电池的品质。
[0060] 因此,硅电磁铸造法中,要使硅铸块的体积增大,提高生产效率,就有必要增大感应输出功率,尤其是将下感应线圈的频率设置为高频率为佳。如果想让作为太阳能电池的半导体的品质超群的话,最好将感应频率设置为25~30kHz以上。
[0061] <其他部件的构成>
[0062] 上述温控炉600,可以缓慢地冷却熔解硅S’,并使其凝固。一般来说,通过从上到下保持指定的温度差,最终使熔解硅S’在指定温度下缓慢冷却。
[0063] 上述石墨台400是由石墨构成的台座。铸造硅时,由上下移动装置500将石墨台400移动到与下感应线圈相当的高度之后,将装入的硅块S放置在石墨台上。然后,上下移动装置沿着炉体容器100内的中心线下降,溶解硅S’在下降的同时逐渐凝固。
[0064] 上述上下移动装置500可以使石墨台400沿着炉体容器100的中心线上下移动。与其他的驱动装置(图示略)相比,这样上下的移动更适合铸造条件。
[0065] 上述原料供给容器700的作用是:把作为原料的硅块S与石墨块从上方装入坩埚200内。首先装入规定重量的硅块S之后,再在硅块之上装入石墨块。石墨块是用来辅助原料硅发热的。感应线圈通电后,首先是石墨块发热升温,然后下方的硅块S受到石墨的辐射热的影响升温。当硅块S的温度上升到一定温度之后,电阻值下降,感应电流增加,开始自己发热。当硅块S开始自己发热的同时,上方的石墨块将会从坩埚200的上方抽出。
[0066] 本实施形态中的感应线圈300是由上下两个线圈310、320构成,使用3个以上的线圈构成亦可。
[0067] 下面参照图4对本发明的第二实施形态进行说明。
[0068] [实施形态2]
[0069] 图4是与本实施形态有关的本装置的主体部分放大图。
[0070] 本实施形态中,在炉体容器100内部、坩埚200的上方设置了等离子炬800。等离子炬800在对硅进行铸造时用于加速加热。例如直径为10cm的筒状的等离子炬,内部负极电极以及炬整体可以水冷却,可以上下左右移动。
[0071] 铸造时,等离子炬800的顶端下移以接近硅块S,将氩气等指定气体送入等离子炬800,将直流等离子在等离子炬800的阴极与熔解硅S’的阳极之间点燃。然后,通过逐渐增加感应线圈310、320的输入电力,能够加速硅块的加热。
[0072] 其余部分所用的材料以及符号均与第一实施形态(图1至图3)相同,这里不再赘述。
[0073] 实施例1:
[0074] 本装置1中,采用了两个具有不同感应频率的感应线圈310、320,通过垂直方向绝缘、且内部装有冷却水循环的导电坩埚200与设置在坩埚200外围上的感应线圈300相互作用使硅块S熔解、下降的同时凝固。使用本装置1进行硅电磁铸造时,步骤如下:
[0075] 在本例中,如图1所示,在可控内压的炉体容器100中设有坩埚200以及上下安装在该坩埚200外围的感应线圈310、320。在坩埚正下方,设置用于使硅块S凝固的控制温度的控温炉600以及使石墨台400上下移动的上下移动装置500,使硅块S能够持续下降。
[0076] 在炉体容器100的上方,设置有供应硅块S与石墨块等的原料供给器700。石墨块是在硅块S熔解初期,从上方投入并使之位于与坩埚200内的感应线圈300的高度相当的位置,感应发热并辅助硅块S加热的。
[0077] 本例中,硅块S在铸造方向的横断面为正方形,边长35cm;水平方向的横断面为正方形的坩埚200的内边长为35cm,外边长为41.6cm。把坩埚200的垂直方向的绝缘分割区域数定为60,被分割为60个区域的坩埚200的各区域的长度为70cm。加工时内部有冷却循环水,各区域间插入了电绝缘材料云母。坩埚200内部的冷却水每分钟流量合计为500升。
[0078] 另外,两个感应线圈310、320上下配置。上感应线圈310为正方形的2匝,内径42.6cm,高15cm,连接在最大输出功率为350kw的感应电源上,感应频率设定为10KHz。下感应线圈320与上感应线圈310形状相同,连接在最大输出功率为150kw的感应电源上,感应频率设定为35KHz。感应线圈310、320并列设置在坩埚200的高度方向的中心位置,两感应线圈310、320之间设置有厚3mm的铜制磁屏蔽板330,磁屏蔽板330外周上设有水管以实现水冷却。
[0079] 本例的操作顺序如下所示:首先在下降方向上,为了使横断面为正方形、边长为35cm的石墨台400的上方与下感应线圈320的下端位置保持在同一高度,石墨台400搭乘上下移动装置500上升,从下方插入坩埚200中。在石墨台400上装入50kg的硅块S,在硅块S上方2cm处,把边长30cm,高7cm,横断面为正方形的石墨块从坩埚200的上方插入。
[0080] 然后,由真空泵把炉体容器100里的气压减压到0.1托后,送入氩气,使炉体容器100内气压到达大气压。然后,把频率为10KHz的上感应线圈310的感应输出功率逐步增加到200kw,频率为35KHz的下感应线圈320的感应输出功率逐步增加到100kw。在上述情形下,上感应线圈310的端子电压为170V,下感应线圈320的端子电压为280V。
[0081] 就这样,将两个感应线圈310、320通电后,首先插在硅块S上方的石墨块就会感应发热、升温并变红。在变红的石墨块的辐射热量的作用下,硅块S开始升温。当硅块S的温度达到500℃时,电阻值会下降,感应电流增加,开始自己发热。硅块S自己开始发热的同时,上述石墨块就被从冷却坩埚200上方抽出。
[0082] 然后,将上感应线圈310的感应输出功率增至350kw,下感应线圈320的感应输出功率增至150kw,以加速原料硅的熔解。已开始自己发热的硅块S进一步升温,不一会就完全熔解。在坩埚200的内面壁和侧面的电磁力的影响下,溶解硅S’与冷却坩埚200处于非接触状态。在上述感应输出功率增大的情形中,上感应线圈310的最大端子电压为280V,下感应线圈320的最大端子电压为490V。
[0083] 待初次装入的原料硅完全熔解、保持稳定后,将设置在坩埚200正下方的硅铸块控温炉600升温,使之顺着硅铸块下降方向保持温度以约35℃/cm递减。
[0084] 之后,通过上方的原料供给器700,将大小为1mm到20mm的原料硅颗粒连续装入坩埚200中,并使载着溶解硅S’的上下移动装置500下降,开始铸造。上下移动装置500开始下降后,溶解硅S’自下降到下感应线圈320下端的位置之后,受到的电磁力逐渐减少,开始冷却凝固。而此时,凝固的硅铸块的表层由于与下感应线圈320在距离上相对接近,仍然受到下线圈320的感应作用发红发热,不会立即冷却。
[0085] 就这样,在连续供给原料硅的同时,铸块连续地凝固,从而实现了连续铸造。在本操作例中,铸造的速度为每分2.0mm。关于稳定铸造时的感应电源输出功率,上感应线圈310为约260kw,下感应线圈320为约80kw。关于310、320端子电压,上线圈310为约200V,下线圈320为约250V。当铸块全长达到200cm时,铸造停止。
[0086] 待按照上述顺序铸造的铸块冷却到室温后,从炉内取出,检测坩埚200的内边。检测结果:完全没有发生过电弧放电的痕迹,坩埚200的内边与之前一样平坦。
[0087] 为了测试该硅铸块的实际使用性能,将该硅铸块制作成了太阳能电池用基板,并且对使用该太阳能电池基板的太阳能电池的性能也做了试验。首先用金刚石切割机切下横截面为边长15cm的正方形、长40cm的硅铸块,然后采用电锯切片法将它加工成厚200微米的多结晶硅基板。抽出100块这样的多结晶硅基板进行了太阳能电池的试生产。太阳能电池试生产过程中利用氢钝化技术可得知100块多晶硅电池转换效率平均值为15.1%。至此,基于本发明制造出的硅铸块能够提供高品质的太阳能电池基板在本实施例中得到了确认。
[0088] 实施例2:
[0089] 本装置1中,不仅采用了两个具有不同感应频率的感应线圈310、320,还设置了等离子炬800,通过垂直方向绝缘、且内部装有冷却水循环的可导电坩埚200与设置在坩埚200外围上的感应线圈300相互作用使硅块S熔解、下降的同时凝固。使用本装置1进行硅电磁铸造时,步骤如下:
[0090] 在本例中,如图4所示,在可控内压的炉体容器100中设有坩埚200以及上下安装在该坩埚200外围的感应线圈310、320。在坩埚正下方,设置用于使硅块S凝固的控制温度的控温炉600以及使石墨台400上下移动的上下移动装置500,使硅块S能够持续下降。
[0091] 在炉体容器100的上方,设置有供应硅块S和石墨块等的原料供给器700。石墨块是在硅块S熔解初期,从上方投入并使之位于与坩埚200内的感应线圈300的高度相当的位置,感应发热并辅助硅块S加热的。
[0092] 等离子炬800安装在坩埚200的正上方,用于从上方给熔解硅S’附加加热。
[0093] 本例中,硅铸块S铸造方向的横断面为正方形,边长51cm。水平方向的横断面为正方形的坩埚200的内边长为51cm,外边长为57cm。把坩埚200的垂直方向的绝缘分割区域数定为84,被分割为84个区域的坩埚200的各区域的长度为80cm。加工时内部有冷却循环水,各区域间插入了电绝缘材料云母。坩埚200内部的冷却水每分钟流量合计为700升。
[0094] 两个感应线圈310、320上下配置。上感应线圈310为正方形的2匝,内径58cm,高15cm,连接在最大输出功率为550kw的感应电源上,感应频率设定为10KHz。下感应线圈320与上感应线圈310形状相同,连接在最大输出功率为200kw的感应电源上,感应频率设定为35KHz。感应线圈310、320并列设置在坩埚200的高度方向的中心位置,两感应线圈
310、320之间设置有厚3mm的铜制磁屏蔽板330,磁屏蔽板330外周上设有水管以实现水冷却。
[0095] 为了能从上方给熔解硅S’进行附加等离子喷射加热,以熔解硅S’为阳极,将等离子炬800接上100kW的直流电。等离子炬800为直径10cm的筒状,内部负极电极以及炬整体可以水冷却,等离子炬800可以上下左右移动。
[0096] 本例的操作顺序如下所示:首先在下降方向上,为了使横断面为正方形、边长为51cm的石墨台400的上方与下感应线圈320的下端位置保持在同一高度,石墨台400搭乘上下移动装置500上升,从下方插入坩埚200中。在石墨台400上装入110kg的硅块S。
[0097] 下降等离子炬800以使其顶端接近放置在石墨台上的硅块S,接着以每分钟250升的速度向等离子炬中送入氩气,将等离子在等离子炬800的阴极与硅块S的阳极之间点燃。确认等离子点燃之后,感应线圈310、320开始通电。
[0098] 以等离子炬点火和感应线圈的通电为开端,逐渐增大输入电力,加速硅块的熔解。等离子炬的输出电流为700安培,输出电压一直上升到125V。上线圈310的感应频率为
10kHz,感应输出功率为550kW,端子电压380V;下线圈320的感应频率为35kHz,感应输出功率为200kW,端子负荷最高电压为560V。
[0099] 硅块S升温、熔解加速,不久,硅块S就完全熔解。继续通过原料供给器700投入原料硅直到熔解硅S’的量达到180kg为止。因为受到等离子炬800的照射,且坩埚200内被感应熔解的熔解硅S’的熔解状态稳定,在坩埚200的内面壁和侧面的电磁力的影响下,溶解硅S’与冷却坩埚200处于非接触状态。
[0100] 待硅块S初步熔解、熔解硅S’保持稳定后,将设置在坩埚200正下方的硅铸块控温炉600升温,使之顺着硅铸块下降方向保持温度以约35℃/cm递减。
[0101] 然后,从上方的原料供给器700将大小为1mm到20mm的原料硅颗粒连续装入坩埚200中,并使载着溶解硅S’的上下移动装置500下降,开始铸造。上下移动装置500开始下降,溶解硅S’自下降到下感应线圈320下端的位置之后,受到的电磁力逐渐减少,开始冷却凝固。而此时,凝固的硅铸块的表层由于与下感应线圈320在距离上相对接近,仍然受到下线圈320的感应作用发红发热,不会立即冷却。
[0102] 这样,在连续地供给原料硅的同时,铸块连续地凝固,从而实现了连续铸造。在本操作例中,铸造的速度为每分1.7mm,关于稳定铸造时的感应电源输出功率,等离子炬为约80kw,上感应线圈310为约350kw,下感应线圈320为约150kw。关于310、320端子电压,上线圈310为约250V,下线圈320为约470V。当铸块全长达到200cm时,铸造停止。
[0103] 待按照上述顺序铸造的铸块冷却到室温后,检测坩埚200的内边。检测结果:完全没有发生过电弧放电的痕迹,坩埚200的内边与之前一样平坦。
[0104] 为了测试该硅铸块的实际使用性能,将该硅铸块制作成了太阳能电池用基板,并且对使用该太阳能电池基板的太阳能电池的性能也做了试验。将硅铸块加工成断面为15cm的正方形、厚200微米的多结晶硅基板,用于太阳能电池进行了试生产。太阳能电池的试生产采用了100块这样的基板进行,得知100块多结晶硅电池转换效率的平均值为15.2%。至此,基于本发明制造出的硅铸块能够提供高品质的太阳能电池基板在本实施例中得到了确认。
[0105] 本发明可制造用于太阳能电池硅基板的高品质硅铸块,适用于根据原料硅感应发热而熔解,从而制造硅铸块的硅电磁铸造。
[0106] 以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。