钻头转让专利

申请号 : CN201010224498.1

文献号 : CN101879622B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 小野濑淳也福岛宏之箱崎正浩野村重光绀野孝行

申请人 : 本田技研工业株式会社

摘要 :

一种钻头(10),包括:刀刃部分(12),所述刀刃部分(12)在其顶端处设置有切削刀刃(80a,82a);和柄部分(14),所述柄部分(14)与刀刃部分(12)的后端连续,当从所述钻头(10)的轴向方向观看时,所述刀刃部分(12)包括:着陆部分(80b,82b),所述着陆部分(80b,82b)与切削刀刃(80a,82a)连续;逃出部分(80c,82c),所述逃出部分(80c,82c)与着陆部分(80b,82b)连续并且在所述钻头(10)的径向方向上短于着陆部分(80b,82b);和垫部分(80d,82d),所述垫部分(80d,82d)与逃出部分(80c,82c)连续并且在所述径向方向上长于逃出部分(80c,82c)。

权利要求 :

1.一种钻头(10),包括:

刀刃部分(12),所述刀刃部分(12)在其顶端处设置有切削刀刃(80a,82a);和柄部分(14),所述柄部分(14)与刀刃部分(12)的后端连续,当从所述钻头(10)的轴向方向观看时,所述刀刃部分(12)包括:

着陆部分(80b,82b),所述着陆部分(80b,82b)与切削刀刃(80a,82a)连续;

逃出部分(80c,82c),所述逃出部分(80c,82c)与着陆部分(80b,82b)连续并且在所述钻头(10)的径向方向上短于着陆部分(80b,82b);和垫部分(80d,82d),所述垫部分(80d,82d)与逃出部分(80c,82c)连续并且在所述径向方向上长于逃出部分(80c,82c),其中当从所述钻头(10)的所述轴向方向观看时,所述着陆部分(80b,82b)在旋转方向上的宽度是所述钻头(10)的直径的3%或更小,并且当从与所述钻头(10)的所述轴向方向垂直的方向观看时,所述刀刃部分(12)的顶端处形成的角度为160°或更大。

2.根据权利要求1所述的钻头(10),其中,当从所述钻头(10)的所述轴向方向观看时,垫部分(80d,82d)在所述径向方向上的长度等于或小于着陆部分(80b,82b)在所述径向方向上的长度。

3.根据权利要求1所述的钻头(10),其中所述垫部分(80d,82d)在所述钻头(10)的旋转方向上的宽度大于着陆部分(80b,82b)在所述钻头(10)的旋转方向上的宽度。

4.根据权利要求2所述的钻头(10),其中所述垫部分(80d,82d)在所述钻头(10)的旋转方向上的宽度大于着陆部分(80b,82b)在所述钻头(10)的旋转方向上的宽度。

5.根据权利要求1所述的钻头(10),其中,当从所述钻头(10)的所述轴向方向观看时,所述着陆部分(80b,82b)在旋转方向上的宽度和所述垫部分在旋转方向上的宽度的总和为所述钻头(10)的直径的20%或更小。

说明书 :

钻头

[0001] 本申请是申请号为200810136117.7,发明名称为“钻头”,申请日为2008年7月9日的专利申请的分案申请。

技术领域

[0002] 本发明涉及一种钻头,例如,用于在发动机元件等上钻孔的钻头。

背景技术

[0003] 当制造需要切削深孔的铝铸发动机元件时,会在切削元件的钻头上施加大的负载。因此,在该切削过程中,传统上使用适用于切削深孔的钻头。
[0004] 日本实用新型公开公报No.53-038953公开一种适用于在金属上切削深孔的钻头,其中刀刃的全部或部分的扭转角连续地变化,并且末端侧的扭转角大于刀刃的后端侧的扭转角。上述文献中的结构提高了钻头的穿剌性和刚性。
[0005] 根据扭转角的大小,这种类型的钻头具有各种规格的强度(例如弯曲强度、刚度)、切削阻力(切削反作用力)、金属屑形状、和排屑性能。因此,钻头的寿命受到扭转角的设定条件的影响。特别地,起初工件上无孔,当在工件上钻孔时,钻深孔的钻头遭受极大的负载。此外,这种钻头难以把深孔的中心深处的金属屑排出。因此,钻头容易损坏并且容易被金属屑堵塞。
[0006] 另一方面,起初工具有孔,当沿孔钻削孔时,又产生另一个问题。
[0007] 例如,当制造铝铸发动机元件时,由于铸造精度的原因,发动机元件上通过铸造的孔(即,所谓的铸孔)的位置可能偏移。因此,当用钻头钻削这样的铸孔时,钻头的切削方向(切削位置)可能与铸孔不对准。这种不对准会导致在钻头上施加极大负载,因而降低工具的寿命和加工精度。
[0008] 有鉴于此,必须对用于加工深孔的钻头的扭转角的设定条件进行优化,以便避免损坏钻头和使加工精度恶化,或者即使当存在上述不对准时也能够避免损坏钻头和使加工精度恶化。

发明内容

[0009] 鉴于上述缺点,提出了本发明。本发明的目的是提供一种钻头,例如当钻深孔时其能够减小施加在钻头上的负载,因此延长工具寿命,并且确保金属屑能够顺利地排出。
[0010] 根据本发明的一个方面,提供一种钻头,包括:刀刃部分,所述刀刃部分设置有螺旋切削刀刃,所述螺旋切削刀刃沿切削方向从刀刃部分的顶端到后端;和柄部分,所述柄部分与刀刃部分的后端连续。所述刀刃部分包括:末端侧切削刀刃,所述末端侧切削刀刃从刀刃部分的顶端沿切削方向以恒定的第一扭转角形成;中间槽,所述中间槽沿切削方向与末端侧切削刀刃连续地形成,并且所述中间槽使它的扭转角沿切削方向从第一扭转角逐渐变化到第二扭转角;和后侧槽,所述后侧槽沿切削方向以第二扭转角与中间槽连续,其中,后侧槽在切削方向上占据的长度大于末端侧切削刀刃在切削方向上占据的长度。
[0011] 根据上述结构,当在工件上钻深孔时,金属屑能够有效地从深孔的深处排出。因此,能够有效地防止金属屑堵塞在钻孔的中间,并且施加在钻头上的负载能够被减小,从而能够延长工具的寿命。此外,由于后侧槽处的排出速度提高,因此能够防止金属屑堵塞导致的阻力增加,后侧槽长于末端侧切削刀刃。
[0012] 在本发明的上述方面中,优选地,在所述刀刃部分的顶端上设置金刚石,因为排屑性能进一步提高,因而刀刃顶端的磨损阻力也提高。
[0013] 当钻头设置有油路时,所述油路从所述钻头的顶端到后端轴向地穿过所述钻头,所述油路由单通道构成,所述单通道从柄部分延伸到形成有中间槽的部分,并且所述单通道在形成有中间槽的部分处分支成两个通道,以便在所述刀刃部分的顶面的两个位置处开口,因为仅油路的单通道穿过钻头的轴向中心,因此能够降低油路中的切削油的流程阻力。
[0014] 此外,当后侧槽的长度和扭转角设定成大于刀刃部分的末端侧切削刀刃的长度和扭转角时,能够减小末端侧切削刀刃产生的金属屑的尺寸,该金属屑能够在后侧槽处有效地排出。因此,当在工件中钻深孔时,由于金属屑能够有效地从深孔的深处排出,因此能够有效地防止钻孔时金属屑堵塞在孔的中间,并且能够降低施加到钻头上的负载,从而能够延长工具寿命。
[0015] 另一方面,当末端侧切削刀刃的扭转角设置成大于后侧槽的扭转角时,钻头能够切削到工件中,同时具有低切削阻力。因此,当钻削形成在工件上的铸孔时,即使钻头的轴向方向与铸孔的轴向方向不对准,钻头能够沿钻头的轴向方向直线地进入,并且钻头基本不受铸孔的取向影响。因此,即使当铸孔的铸造精度低,也能够在期望的位置处可靠地进行钻孔,因而能够高加工精度。此外,能够有效地防止钻头由于位置偏差而倾斜进入铸孔中,因为位置偏差容易导致钻头弯曲和损坏。
[0016] 当结合附图、根据下面的说明,本发明的上述和其它目标特征和优点将变得更加清楚,其中附图以示意实例的方式显示本发明的优选实施例。

附图说明

[0017] 图1是显示本发明的实施例的钻头的立体图;
[0018] 图2A是图1所示的钻头的侧视图;
[0019] 图2B是显示图1所示的钻头的刀刃部分的扭转角的变化的示意图;
[0020] 图3A是图2所示的钻头的前视图;
[0021] 图3B是显示图2所示的钻头的末端侧的局部放大侧视图;
[0022] 图3C是显示图2所示的钻头的末端侧的局部放大立体图;
[0023] 图4是显示本发明的另一实施例的钻头的立体图;
[0024] 图5A是图4所示的钻头的侧视图;
[0025] 图5B是显示图4所示的钻头的刀刃的扭转角的变化的示意图;
[0026] 图6A是图5所示的钻头的前视图;
[0027] 图6B是显示图5所示的钻头的末端侧的局部放大侧视图;
[0028] 图6C是显示图5所示的钻头的末端侧的局部放大立体图;
[0029] 图7是显示图4所示的钻头如何切削工件W中的铸孔的示意图;
[0030] 图8是显示本发明的另一实施例的钻头的侧视图;
[0031] 图9是图8所示的钻头的前视图;
[0032] 图10是沿图8的线VIIIB-BIIIB的剖视图;和
[0033] 图11是显示图8所示的钻头如何钻削工件中的铸孔的示意图。

具体实施方式

[0034] 下面将参考附图,详细说明本发明的钻头的优选实施例。
[0035] 图1是显示本发明的第一实施例的钻头10的立体图。图2A是图1所示的钻头10的侧视图。图2B是显示图1所示的钻头10的刀刃的扭转角变化的示意图。本发明的钻头10适用于在金属元件(工件)上钻深孔。例如,工件为气缸体(铝铸发动机元件)。这里的深孔是指深度为钻头的外直径的五倍或更大的孔,在一些情况下,孔相当深,其深度是钻头的外直径的三十倍或更大。切削这种孔需要在钻头(切削工具)上施加极大的负载。另外,应当理解的是,除了能够钻这种深孔,钻头10还适用于钻相对浅的铸孔等。
[0036] 如图1和2A所示,本实施例的钻头10包括用于切削工件的刀刃部分12和设置在刀刃部分12的后侧的柄部分14。柄部分14被旋转驱动源的轧头等保持,当使用钻头10时该旋转驱动源设置在机床(未图示)上。
[0037] 刀刃部分12设置有第一切削刀刃16(16a,16b,16c)和第二切削刀刃18(18a,18b,18c),该第一切削刀刃16和第二切削刀刃18沿切削方向(轴向方向)从钻头10的末端侧向后侧以螺旋形延伸。如图1,3A和3C所示,切削刀刃16和18相对于钻头10的轴向方向以对称方式从末端侧向后侧以螺旋形式延伸。第一切削刀刃16包括:刀刃边缘17a,其位于钻头10的旋转方向(图3A中的箭头A的方向)的前侧;凸出表面17b,凸出表面17b与刀刃边缘17a的后侧连续,因而限定钻头10的外直径表面;第一和第二倾斜表面17c和17d,第一和第二倾斜表面17c和17d与凸出表面17b连续;和壁表面17e,壁表面17e桥接第二倾斜表面17d和第二切削刀刃18的刀刃边缘19a。相似地,第二切削刀刃18设置有刀刃边缘19a、凸出表面19b、第一倾斜表面19c、第二倾斜表面19d、和壁表面19e。另外,根据图3A可以清楚看出,在切削刀刃16和18中,在进入工件的刀刃边缘17a和19a上设置有前角(rake angle)。
[0038] 刀刃部分12的顶面20形成为围绕顶点(凿点)20a的金字塔形,顶点20a位于钻头10的前边缘(参见图3B和3C)上,当从图3B的侧视图观看时,钻头10的前边缘限定围绕顶点20a的预定中心角θ(例如140°)的扇形。当中心角θ钝形地设置时,钻头10的旋转方向上的切削反作用力(径向反作用力)能够被减小。从图3A和3B可以看出,顶面20包括:第一顶部倾斜表面22a、第二顶部倾斜表面22b和第三顶部倾斜表面22c,其从顶点20a倾斜向第一切削刀刃16;以及第一顶部倾斜表面24a、第二顶部倾斜表面24b和第三顶部倾斜表面24c,其倾斜向第二切削刀刃18,以便限定上述金字塔形。顶部倾斜表面22a-22c和24a-24c分别以预定角度与切削刀刃16和18连续。
[0039] 开口26a和26b设置在第二顶部倾斜表面22b和24b上,对称地设置在顶面20上,并且把顶点20a夹在之间(参见图3A和3C)。开口26a和26b形成油路28的顶部开口,该油路28从钻头的顶端轴向地穿到后侧。更具体地,如图2A所示,油路28从柄部分14的后端上的开口轴向地穿过钻头10,并且在顶端附近的分支点28a处分支成两个通路(即,具有Y形),而该两个通路与开口26a和26b连通。
[0040] 此外,排屑槽30、32设置在切削刀刃16和18之间并且在刀刃部分12上以螺旋形式延伸,该排屑槽30、32用于把切削刀刃16和18的切削边缘17a和19a切削的工件的金属屑传送向刀刃部分12的后侧的柄部分14。具体地,如图3A所示,排屑槽30由切削刀刃16的刀刃边缘17a和切削刀刃18的壁表面19e限定,以便排出主要由切削边缘17a切削的金属屑。排屑槽32由切削刀刃18的刀刃边缘19a和切削刀刃16的壁表面17e限定,以便排出主要由切削边缘19a切削的金属屑。
[0041] 另外,如上所讨论,切削刀刃16(18)相对于钻头10的轴向方向的倾斜角(即,所谓的扭转角)影响钻头的强度(刚度,例如弯曲强度)、屑形状(尺寸)、和钻头10的排屑性能。具体地,当扭转角小时,例如0°-15°(这里也称作“脆弱角”),尽管钻头具有大刚度,但是切削阻力增加。此外,尽管金属屑尺寸小,但是排屑性能降低。另一方面,当扭转角大时,例如25°-45°(这里也称作“强角”),尽管钻头具有小刚度,但是切削阻力降低。此外,尽管金属屑尺寸大,但是排屑性能提高。
[0042] 因此,如图2A和2B所示,本实施例的钻头10包括:末端侧切削刀刃16a和18a,其沿切削方向从刀刃部分12的顶端开始在距离L1内的部分具有恒定的第一扭转角α1;中间槽16b和18b,中间槽16b和18b设置在末端侧切削刀刃16a和18a的后侧附近的距离L2内,其具有可变的扭转角ax,该可变的扭转角ax从第一扭转角α1逐渐变化到第二扭转角α2(第二扭转角α2不同于第一扭转角α1);和后侧槽16c和18c,后侧槽16c和18c设置在中间槽16b和18b的后侧附近的距离L3内,其具有恒定的第二扭转角α2。另外,从图2A可以看出,后侧槽16c和18c限定刀刃部分12的后端,其与柄部分14连续。因此,切削刀刃16由末端侧切削刀刃16a、后侧槽16c和中间槽16b构成,末端侧切削刀刃16a具有恒定的第一扭转角α1,后侧槽16c具有恒定的第二扭转角α2,中间槽16b连接末端侧切削刀刃16a和后侧槽16c并具有可变的扭转角ax。切削刀刃18以相似方式设置。
[0043] 具体地,根据图2显示的本发明的实施例的钻头10的扭转角的变化,可以看出,第一扭转角α1设定成大约为0°-15°的脆弱角(在本实施例中为10°),第二扭转角α2设定成大约为25°-45°的强角(在本实施例中为35°),扭转角ax设定成可变角,该扭转角ax在大约0°-45°(在本实施例中为10°-35°)的范围内变化。此外,钻头10的末端侧切削刀刃16a和18a的距离L1,中间槽16b和18b的距离L2,和后侧槽16c和18c的距离L3满足关系:L1<L2<L3,其中,例如,距离L2是距离L1的两至三倍和更长,并且距离L3大约是距离L1的十五倍。
[0044] 另外,如图2A所示,例如,油路28的分支点28a设置在距离L2的区域中,在距离L2的区域内形成中间槽16b和18b。应当可以理解的是,分支点28a还可设置在距离L1的区域中或者设置在任意的其它区域,在距离L1的区域内设置末端侧切削刀刃16a和18a。此外,从顶端到后端可连续地设置单个油路28和两个油路28。
[0045] 下面将说明以上述方式构造的本发明的实施例的钻头10的功能和效果。
[0046] 首先,工件(未显示,例如,铝铸缸体)安装在机床(未显示)上,并且钻头10的柄部分14经夹紧机构刚性地附接到机床的旋转驱动源上。然后,旋转驱动源驱动钻头10沿图3A所示的箭头A的方向以高速旋转。随后,钻头10的顶面20与工件上的深孔切削点接触,钻头10沿钻头的轴向方向移动,从而使得刀刃部分12开始切削到工件中。
[0047] 本实施例的钻头10的刀刃部分12上设置的切削刀刃16和18通过末端侧上设置的末端侧切削刀刃16a和18a开始钻削深孔。根据切削过程,钻头10的中间槽16b和18b和后侧槽16c和18c逐渐进入工件中。
[0048] 此时,钻头10的末端侧切削刀刃16a和18a以恒定的第一扭转角α1(脆弱角)弯角。因此,末端侧切削刀刃16a和18a具有高刚性和优良的进入性能,即使在缺少铸孔等引导孔的情况下,因此切削刀刃能够可靠地和稳定地进入工件中。此外,末端侧切削刀刃16a和18a切削产生的金属屑的尺寸充分地小。因此,即使钻头10逐渐到达孔的深处,由于扭转角功能,末端侧切削刀刃16a和18a切削产生的金属屑被强制地排出到孔的外部,扭转角从中间槽16b和18b向后侧槽16c和18c变大。这是由于扭转角的尺寸提高了排屑性能。
[0049] 具体地,由于脆弱的第一扭转角α1,钻头10的末端侧切削刀刃16a和18a能够减小金属屑的尺寸,因此金属屑能够容易地和有效地排出到深孔的外部,即使从深孔的深处,因为具有可变的扭转角αx的中间槽16b和18b和具有强第二扭转角α2的后侧槽16c和18c的协作具有高排屑效果。具体地,当没有铸孔等引导孔,在工件上钻深孔时,因为产生大量的金属屑,因此能够适当地使用本实施例的钻头10。此外,因为通过钻头10提高了排屑效果,因此能够有效防止金属屑堵塞在孔中间(这会损坏钻头)。因此,能够减少钻头10上的负载并且能够延长工具的寿命。
[0050] 在本实施例的钻头10中,后侧槽16c和18c所在的距离L3充分地大于末端侧切削刀刃16a和18a所在的距离L1。因此,即使当钻深孔时伴随产生大量金属屑时,金属屑能够被可靠地传送到钻头10的后侧(朝向柄部分14)。尽管切削深孔,这是因为实际上仅在刀刃部分12的末端侧的部分处进行大量切削,同时,钻头10的大部分(即,除了末端侧部分外)需要高的排屑性能,以便把金属屑顺利地传送到深孔的出口。
[0051] 此外,由于在末端侧切削刀刃16a和18a和中间槽16b和18b钻到一定程度之后后侧槽16c和18c插入到孔中,因此不会损坏后侧槽16c和18c,只要保证它们具有适当的刚性。此外,后侧槽16c和18c的强第二扭转角α2提高了排屑速度,这防止金属屑堵塞导致阻力增加。此外,设置后侧槽16c和18c的距离L3充分地大于设置末端侧切削刀刃16a和18A的距离L1,这样能够更可靠地防止金属屑堵塞导致上述阻力增加。
[0052] 中间槽16b和18b的扭转角αx连续地变化,从而使得末端侧切削刀刃16a和18a的第一扭转角α1和后侧槽16c和18c的第二扭转角α2之间的角度差逐渐地消除(参见图2B)。因此,由于扭转角的差,有效地限制刀刃部分12沿轴向方向的特性快速变化。结果,钻孔期间施加到钻头10上的负载能够被减小,并且能够进一步地延长钻头10的工具寿命。
[0053] 另外,在多次切削、和切削硬材料之后,钻头10的刀刃部分12的末端侧需要研磨。在该情况下,由于构成切削刀刃16和18的末端侧切削刀刃16a和18a在充分长的距离L1上以第一扭转角α1的恒定脆弱角构造,因此能够有效地防止在再研磨后末端侧切削刀刃
16a和18a的特性发生变化,即钻孔时产生的金属屑的形状和尺寸,从而能够稳定地保持稳定的切削特性。
[0054] 此外,如上所述,钻头10的油路28设置有分支点28a,分支点28a位于中间槽16b和18b部分中。换言之,油路28以单油路形式设置在钻头10的轴向中心,沿轴向方向延伸过钻头10的大部分,即,包括柄部分14、后侧槽16c和18c、和中间槽16b和18b的一部分。因此,油路28内的切削油的流路阻力(通路阻力)能够被降低,能够消除对形成后侧槽16c和18c(具有强的第二扭转角α2)的扭转形状的限制,因此允许它的扭转自由地确定。此外,由于末端侧切削刀刃16a和18a具有脆弱的第一扭转角α1,能够容易地形成从分支点
28a到末端的油路28的Y形构造。此外,如上所述,由于分支点28a设置在中间槽16b和
18b所在的位置处,因此不需要改变油路28的末端上的开口26a和26b的位置,即使在再研磨之后,因此有效地防止从开口26a和26b到切削部分的油供应特性的变化,因而提高稳定切削性能。
[0055] 钻头10的末端侧切削刀刃16a和18a可附接有切削刀刃34(切削刀刃34由金刚石颗粒形成),或者切削刀刃16a和18a可涂覆有金刚石涂层36。根据这样的结构,能够进一步地提高排屑性能,能够改善刀刃边缘的磨损阻力。
[0056] 接下来,将参考图4-7来说明本发明的另一优选实施例的钻头。
[0057] 例如,本实施例的钻头40适用于钻铸造元件(工件)中设置的铸孔。例如,工件可以是缸体(铝铸发动机元件)。可以理解的是,钻头40不仅适用于切削铸孔,而且适用于切削起初未设置孔的金属元件。
[0058] 如图4和5A所示,本实施例的钻头40包括用于切削工件的刀刃部分42和设置在刀刃部分42的后侧的柄部分44。
[0059] 刀刃部分42设置有第一切削刀刃46(46a,46b,46c)和第二切削刀刃48(48a,48b,48c),该第一切削刀刃46和第二切削刀刃48沿切削方向(轴向方向)从钻头40的末端侧向后侧以螺旋形式延伸(在本实施例中,大致直线地通过刀刃部分42的中部)。如图4,6A和6C所示,切削刀刃46和48相对于钻头40的轴向方向以对称方式从末端侧向后侧延伸。
第一切削刀刃46包括:刀刃边缘47a,其位于钻头40的旋转方向(图6A中的箭头A的方向)的前侧;凸出表面47b,凸出表面47b与刀刃边缘47a的后侧连续,因而限定钻头40的外直径表面;第一倾斜表面47c,其与凸出表面47b连续;第二倾斜表面47d,其与第一倾斜表面47c连续以便与凸出表面47b一起限定钻头40的外直径表面;和壁表面47e,壁表面
47e桥接第二倾斜表面47d和第二切削刀刃48的刀刃边缘49a。相似地,第二切削刀刃48设置有刀刃边缘49a、凸出表面49b、第一倾斜表面49c、第二倾斜表面49d、和壁表面49e。
[0060] 另外,根据图6A可以清楚,在切削刀刃46和48中,在实际进入工件的刀刃边缘47a和49a上设置前角(rake angle)。此外,钻头40的凸出表面47b和49b的圆周宽度(所谓的刃带宽(margin width))设定成比传统宽度小,因此减小了沿钻头40的旋转方向(图6A中的箭头A的方向)产生的切削阻力(切削力矩)。此外,由于第二倾斜表面47d和49d用作第二刃带部分(margin portion),其与凸出表面47b和49b连续,因此提高钻头
40的直线运行可靠性。
[0061] 刀刃部分42的顶面50形成为围绕顶点(凿点)50a的金字塔形,顶点50a位于钻头40的前边缘(参见图6B和6C)上,当从图6B的侧视图观看时,钻头40的前边缘限定围绕顶点50a的具有预定中心角θ(例如166°)的扇形。当中心角θ钝形地设置时,钻头40的旋转方向上的切削反作用力(径向反作用力)能够被减小。从图6A和6B可以看出,顶面50包括:第一和第二顶部倾斜表面52a、52b,其从顶点50a倾斜向第一切削刀刃46;以及第一和第二顶部倾斜表面54a、54b,其倾斜向第二切削刀刃48,以便限定上述金字塔形。
顶部倾斜表面52a、52b、54a、54b分别以预定角度与切削刀刃46和48连续。
[0062] 对称开口56a和56b设置在顶面50上的第一顶部倾斜表面52a和54a上,并且把顶点50a夹在之间(参见图6A和6C)。开口56a和56b形成油路58的顶部开口,该油路58从钻头的顶端轴向地穿到后侧。更具体地,如图5A所示,油路58从柄部分44的后端上的开口轴向地穿过钻头40,并且在顶端附近的分支点58a处分支成两个通路(即,具有Y形),而该两个通路与开口56a和56b连通。
[0063] 此外,排屑槽60、62设置在切削刀刃46和48之间并且在刀刃部分42上以螺旋形式延伸,该排屑槽60、62用于把切削刀刃46和48的切削边缘47a和49a切削的工件的金属屑传送向刀刃部分42的后侧的柄部分44。具体地,如图6A所示,排屑槽60由切削刀刃46的刀刃边缘47a和切削刀刃48的壁表面49e限定,以便排出主要由切削边缘47a切削的金属屑。排屑槽62由切削刀刃48的刀刃边缘49a和切削刀刃46的壁表面47e限定,以便排出主要由切削边缘49a切削的金属屑。
[0064] 另外,如上所述,切削刀刃46(48)相对于钻头40的轴向方向的倾斜角(即,所谓的扭转角)影响钻头的强度(刚度,例如弯曲强度)、屑形状(尺寸)、和钻头40的排屑性能。具体地,当扭转角小时,例如0°-15°(这里也称作“脆弱角”),尽管钻头具有大刚度,但是切削阻力增加。此外,尽管金属屑尺寸小,但是排屑性能降低。另一方面,当扭转角大时,例如25°-45°(这里也称作“强角”),尽管钻头具有小刚度,但是切削阻力降低。此外,尽管金属屑尺寸大,但是排屑性能提高。
[0065] 因此,如图5A和5B所示,本实施例的钻头40包括:末端侧切削刀刃46a和48a,其沿切削方向从刀刃部分42的顶端开始在距离L1内的部分具有恒定的第一扭转角α1;中间槽46b和48b,中间槽46b和48b设置在末端侧切削刀刃46a和48a的后侧附近,延伸过距离L2,其具有可变的扭转角αx,该可变的扭转角αx从第一扭转角α1逐渐变化到第二扭转角α2(第二扭转角α2不同于第一扭转角α1);和后侧槽46c和48c,后侧槽46c和48c设置在中间槽46b和48b的后侧附近,延伸过距离L3,其具有恒定的第二扭转角α2。
另外,从图5A可以看出,后侧槽46c和48c限定刀刃部分42的后端,其与柄部分44连续。
因此,切削刀刃46由末端侧切削刀刃46a、后侧槽46c和中间槽46b构成,末端侧切削刀刃
46a具有恒定的第一扭转角α1,后侧槽46c具有恒定的第二扭转角α2,中间槽46b连接末端侧切削刀刃46a和后侧槽46c并具有可变的扭转角ax。切削刀刃48以相似方式设置。
[0066] 具体地,根据图5B显示的本发明的实施例的钻头40的扭转角的变化,可以看出,第一扭转角α1设定成大约为25°-45°的强角(在本实施例中为35°),第二扭转角α2设定成大约为0°-15°的脆弱角(在本实施例中为0°),扭转角αx设定成可变角,该扭转角αx在大约45°-0°(在本实施例中为35°-0°)的范围内变化。此外,钻头40的末端侧切削刀刃46a和48a的距离L1,中间槽46b和48b的距离L2,和后侧槽46c和48c的距离L3满足关系:L1<L2<L3,其中,例如,距离L2是距离L1的两至三倍和更长,并且距离L3大约是距离L1的十五倍。
[0067] 另外,如图5A所示,例如,油路58的分支点58a设置在距离L2的区域中,在距离L2的区域内形成中间槽46b和48b。应当可以理解的是,分支点58a还可设置在距离L1的区域中或者设置在任意的其它区域,在距离L1的区域内设置末端侧切削刀刃46a和48a。此外,从顶端到后端可连续地设置单个油路58和两个油路58。
[0068] 下面将说明以上述方式构造的本发明的实施例的钻头40的功能和效果。
[0069] 首先,如图7所示,工件W(例如,铝铸缸体)安装在机床(未显示)上,并且钻头40的柄部分44经夹紧机构刚性地附接到机床的旋转驱动源70上。然后,旋转驱动源70驱动钻头40沿图6A所示的箭头A的方向以高速旋转。随后,钻头40的顶面50与工件W上的铸孔72接触,钻头40沿钻头的轴向方向移动,从而使得刀刃部分42开始切削到工件W中。
[0070] 一旦中间槽46b和48b和后侧槽46c和48c沿围绕铸孔72以预定直径形成的孔插入到工件W中时,本实施例的钻头40的刀刃部分42上设置的切削刀刃46和48通过钻头40的末端侧上设置的末端侧切削刀刃46a和48a开始钻削铸孔72。
[0071] 此时,钻头40的末端侧切削刀刃46a和48a以恒定的第一扭转角α1(强角)弯角并且设置有给定的前角,因此,末端侧切削刀刃46a和48a能够以低切削阻力可靠地和稳定地进入铸孔72中。因此,如图7所示,即使当钻头40的轴向方向D与铸孔72的轴向方向H不对准,轴向方向D和轴向方向H之间的位置偏差G在容许范围内,钻头40仍能够沿铸孔72的轴向方向H直线地进入工件,而不会受到铸孔72的取向的显著影响。因此,即使当铸孔72的铸造精度低时,也能够在所需位置处执行钻孔,因而获得高加工精度(位置精度)。此外,能够有效地防止钻头40倾斜进入铸孔72中,因为上述位置偏差G容易导致钻头弯曲和损坏。
[0072] 另一方面,如上所述,尽管具有强的第一扭转角α1的末端侧切削刀刃46a和48a所切削的工件W的金属屑容易变得相对长和大,但是因为当切削预先设置的铸孔72时仅产生少量的金属屑,因此,由于中间槽的高排屑性能,金属屑能够容易地传送到中间槽46b和48b,从而使金属屑能够可靠地从末端侧切削刀刃46a和48a排到孔的外部。
[0073] 换言之,后侧槽46c和48c设置有脆弱的第二扭转角α2,其与具有高排屑性能的末端侧切削刀刃46a和48a相比显得脆弱,这导致后侧槽46c和48c具有差的排屑性能。然而,铸孔72产生更少量的金属屑,因此金属屑不会堵塞孔,并且金属屑能够可靠地排到孔的外部。此外,末端侧切削刀刃46a和48a的排屑性能高,因此能够有效防止金属屑在孔深处堵塞(否则这会损坏钻头40),从而能够减小施加到钻头40上的负载,并且能够进一步地延长工具寿命。
[0074] 此外,后侧槽46c和48c设置有恒定的脆弱的第二扭转角α2,在本实施例中为0°。因此,后侧槽46c和48c提供了所谓的直槽扩孔钻(straight fluted drill),其具有高刚度。因此,即使当切削铸孔72时产生位置偏差G,也能够有效地防止钻头40的基部(即后侧槽46c和48c)与孔的开口周围的工件W碰撞,否则在切削期间这会导致变形和损坏。这是因为,尽管主要通过末端侧切削刀刃46a和48a来切削铸孔72,但是当孔变深时孔的大部分仍与后侧槽46c和48c接触。
[0075] 中间槽46b和48b的扭转角αx连续地变化,从而使得末端侧切削刀刃46a和48a的第一扭转角α1和后侧槽46c和48c的第二扭转角α2之间的角度差逐渐地消除(参见图5B)。因此,由于扭转角的差,有效地限制刀刃部分42沿轴向方向的特性快速变化。结果,钻孔期间施加到钻头40上的负载能够被减小,并且能够进一步地延长钻头40的工具寿命。
[0076] 另外,在多次切削、和切削硬材料之后,钻头40的刀刃部分42的末端侧需要研磨。在该情况下,由于构成切削刀刃46和48的末端侧切削刀刃46a和48a在充分长的距离L1上以恒定的第一扭转角α1构造,因此能够有效地防止在再研磨后末端侧切削刀刃46a和
48a的特性发生变化,例如钻孔时产生的切削阻力和金属屑的形状,从而能够稳定地保持稳定的切削特性。
[0077] 此外,如上所述,钻头40的油路58设置有分支点58a,分支点58a位于中间槽46b和48b部分中。换言之,油路58以单油路形式设置在钻头40的轴向中心,沿轴向方向延伸过钻头40的大部分,即,包括柄部分44、后侧槽46c和48c、和中间槽46b和48b的一部分。因此,油路58内的切削油的流路阻力(通路阻力)能够被降低,能够消除对形成后侧槽46c和48c(具有第二扭转角α2)的扭转形状的限制,因此允许它的扭转自由地确定。此外,如上所述,因为分支点58a设置在中间槽46b和48b所在的位置处,因此不需要改变油路58的末端侧上的开口56a和56b的位置,即使在再研磨之后,因此有效地防止从开口56a和56b到切削部分的油供应特性的变化,因而提高稳定切削性能。
[0078] 钻头40的末端侧切削刀刃46a和48a可附接有金刚石切削刀刃,或者切削刀刃46a和48a可涂覆有金刚石涂层。根据这样的结构,能够进一步地提高排屑性能,能够改善刀刃边缘的磨损阻力。
[0079] 下面将参考图8-10来说明本发明的钻头的另一优选实施例。使用相同参考标记来表示与上述实例性实施例中描述的相同元件,并省略它们的详细说明。
[0080] 第一切削刀刃16包括:切削刀刃(刀刃边缘)80a,其位于钻头10的旋转方向(图9中的箭头A的方向)的前侧;着陆部分(land portion)(刃带部分)80b,着陆部分80b与切削刀刃80a连续,因而限定钻头10的外直径表面;小直径逃出部分(escape portion)80c,其与着陆部分80b连续,并且在钻头10的径向方向上短于着陆部分80b;垫部分80d,其与逃出部分80c连续,并且在径向方向上大于逃出部分80c;弧形部分80e,其与垫部分80d连续,并且在径向方向上具有与逃出部分80c大致相同的长度;和壁表面80f,其从弧形部分80e延伸到第二切削刀刃18的切削刀刃(切削边缘)82a。相似地,第二切削刀刃18设置有切削刀刃82a、着陆(刃带)部分82b、逃出部分82c、垫部分82d、弧形部分82e、和壁表面82f。如图9所示,垫部分80d(82d)与着陆部分80b(82b)偏移预定角度θ1(例如35°-55°,在本实施例中为45°)。此外,垫部分80d(82d)在径向上的尺寸等于或小于着陆部分80b(82b)。这是因为,如果垫部分80d(82d)相对于着陆部分80b(82b)凸向钻头10的外部,那么垫部分80d(82d)就碰撞工件,这容易导致切削失败。
[0081] 刀刃部分12的顶面84设置成围绕切削刀刃边缘(切凿边缘)84b的金字塔形,切削刀刃边缘84b包括顶点(凿点)84a并作为钻头10的前边缘(参见图8和9),当从图8的侧视图观看时,钻头10的前边缘限定围绕顶点84a的具有预定中心角θ2(在本实施例中为166°)的扇形。当中心角θ2钝形地设置时,钻头10的旋转方向上的切削反作用力(径向反作用力)能够被减小。因此,例如,优选地,角度θ2设定为160°或更大。
[0082] 如图9所示,顶面84包括:第一顶部倾斜表面86a、第二顶部倾斜表面86b和第三顶部倾斜表面86c,其从顶点84a(切削刀刃边缘84b)倾斜向第一切削刀刃16;以及第一顶部倾斜表面88a、第二顶部倾斜表面88b和第三顶部倾斜表面88c,其倾斜向第二切削刀刃18,以便限定上述金字塔形。
[0083] 此外,排屑槽90、92设置在切削刀刃16和18之间并且在刀刃部分12上以螺旋形式延伸,该排屑槽90、92用于把切削刀刃16和18的刀刃边缘80a和82a切削的工件的金属屑传送向刀刃部分12的后侧的柄部分14。具体地,如图10所示,排屑槽90由切削刀刃16的刀刃边缘80a和切削刀刃18的壁表面82f限定,以便排出主要由切削边缘80a切削的金属屑。排屑槽92由切削刀刃18的刀刃边缘82a和切削刀刃16的壁表面80f限定,以便排出主要由刀刃边缘82a切削的金属屑。
[0084] 在本实施例的钻头10中,当从图9所示的前视图观看时,刃带宽W1(即,着陆部分80b(82b)在旋转方向上的宽度)被最小化(例如,大约是钻头10的直径的3%或更小),并且当从图8所示的侧视图观看时,围绕顶面84的顶点84a的角度θ2为160°或更大,以便提高钻头10的加工精度和工具寿命。另外,着陆部分80b(82b)的刃带宽W1与垫部分
80d(82d)的宽度W3之间的关系被确定成,例如,刃带宽W1和宽度W3的总和为钻头10的总直径的20%或更小。换言之,垫部分80d(82d)的宽度W3设定成大于着陆部分80b(82b)的刃带宽W1。
[0085] 下面将说明以前述方式设置的本实施例的钻头10的功能和效果。
[0086] 另外,如图11所示,钻头10的柄部分14经夹紧机构刚性地附接到机床的旋转驱动源70上。然后,驱动旋转驱动源70以便使钻头10沿图9所示的箭头A的方向以高速旋转。随后,钻头10的顶面84引导向工件W上设置的铸孔72,钻头10沿钻头的轴向方向移动,开始切削工件W。具体地,一旦刀刃部分12从顶端前进到工件W中,刀刃部分12上设置的切削刀刃16和18开始切削铸孔72,同时围绕铸孔72钻出具有预定直径的孔。
[0087] 在本实施例的钻头10中,因为构成切削刀刃16和18的着陆部分80b和82b的刃带宽W1设定成非常小,因此能够有效减小铸孔72的侧壁导致的阻力(反作用力),并且能够限制切削工件时钻头10的倾斜。另外,钻头10上设置有垫部分80d和82d,从着陆部分80b和82b延伸,并把逃出部分80c和82c夹在之间。换言之,垫部分80d和82d用作第二着陆部分,设置在着陆部分80b和82b之后。因此,钻头10能够沿铸孔72的侧壁定位在至少四个部分(着陆部分80b和82b,和垫部分80d和82d),当开始切削时,这显著地提高平直度。
[0088] 具体地,在本实施例的钻头10中,因为与切削刀刃80a和82a连续的着陆部分80b和82b的刃带宽W1设置成非常狭窄,因此孔的侧壁导致的阻力能够在逃出部分80c和82c解除。另外,因为钻头10设置有与逃出部分80c和82c连续的垫部分80d和82d,因此一旦开始切削时,切削方向很少偏移,从而使得钻头10能够切削工件,而且保持直的切削方向。此时,因为垫部分80d(82d)的宽度W3设定成大于着陆部分80b(82b)的刃带宽W1,因此,钻头10能够通过具有宽度W3的垫部分80d(82d)沿铸孔72的侧壁可靠地定位,同时利用具有小刃带宽W1的着陆部分80b(82b)能够有效减小铸孔72的侧部导致的阻力(反作用力),因而进一步提高开始切削时的直线运行稳定性。
[0089] 此外,由于顶面80的角度θ2设定成160°或更大的钝角,因此能够有效减小旋转方向上的切削反作用力(径向反作用力),并且能够提高切削时沿切削方向的直线运行稳定性(所谓的自动定心性能)。因此,钻头10能够更可靠和稳定地进入铸孔72中。
[0090] 因此,如图11所示,即使钻头10的轴向方向D与铸孔72的轴向方向H不对准,轴向方向D和轴向方向H之间的位置偏差G在容许范围内,钻头10能够沿轴向方向D直线地进入工件,而不会受到铸孔72的取向的显著影响。因此,即使当铸孔72的铸造精度低时,也能够在所需位置处执行钻孔,因而能够切削具有高加工精度(位置精度)的孔72a(图11中双点划线所示)。换言之,能够可靠地限制中心距离(加工孔72a与期望的加工位置之间的误差),从而使任何误差都落入标准值范围内。此外,能够有效地防止钻头10倾斜进入铸孔72中,因为上述位置偏差G容易导致钻头弯曲和损坏,从而能够延长工具的寿命。
[0091] 另外,本实施例的钻头10可设置成具有刃带宽W2,该刃带宽W2小于顶端的刃带宽W1,该刃带宽W2设置在朝向后端与刀刃部分12的顶端分离的部分处(参见图10)。这是因为刀刃部分12的后端仅稍微用于切削,其上不需要设置着陆部分80b(82b),以便提高和稳定直线运行性能。根据该结构,当钻头10倾斜时,也能够防止钻头10损坏。因此,着陆部分80b和82b没有必要靠近柄部分14设置。可选地,刃带宽W1和W1可设置成彼此相等。
[0092] 尽管本发明已经说明了多个实例性实施例,但是,应当理解的是,在不脱离本发明的保护范围的情况下,能够有各种变化例。