氟塑料层和聚酯层的粘结方法转让专利

申请号 : CN201010207083.3

文献号 : CN101879808B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李民

申请人 : 李民

摘要 :

本发明涉及一种氟塑料层和聚酯层的粘结方法,将氟塑料层和粘结层或者将氟塑料层、过渡层和粘结层多层共挤出并流延涂布到聚酯层上,从而使氟塑料层和聚酯层相粘结。氟塑料层可以是任意的氟塑料层,厚度任意。较佳地,粘结层是乙烯和极性树脂的共聚物形成的薄膜层,过渡层为聚丙烯酸酯类塑料层或者含偏氟乙烯的氟塑料和聚丙烯酸酯类塑料的混合物层。所有各层均可以含有添加剂、颜料或填料。本发明的氟塑料层和聚酯层的粘结方法构思独特,设计巧妙,无需使用溶剂,且粘结效果好,生产周期缩短,从而减少对环境的影响,提高生产效率,对以此基础生产太阳能电池背板有非常重要的意义,适于大规模推广应用。

权利要求 :

1.一种氟塑料层和聚酯层的粘结方法,其特征在于,将氟塑料层和粘结层或者将氟塑料层、过渡层和粘结层多层共挤出并流延涂布到聚酯层上,从而使所述氟塑料层和所述聚酯层相粘结,所述氟塑料层是含偏氟乙烯链段的氟塑料或者是含偏氟乙烯链段的氟塑料与颜料、无机填料、其它塑料混合而成的塑料合金形成的薄膜层,所述粘结层是乙烯和极性树脂的共聚物形成的薄膜层,所述过渡层为聚丙烯酸酯类塑料层或者含偏氟乙烯的氟塑料和聚丙烯酸酯类塑料的混合物层。

2.根据权利要求1所述的氟塑料层和聚酯层的粘结方法,其特征在于,所述氟塑料层中偏氟乙烯的总含量大于20%。

3.根据权利要求1所述的氟塑料层和聚酯层的粘结方法,其特征在于,所述聚酯层是聚对苯二酸乙二醇酯形成的薄膜层,或者是聚对苯二甲酸丁二醇酯形成的薄膜层,或者是聚对苯二甲酸丙二醇酯形成的薄膜层,或者是聚萘二甲酸乙二醇酯形成的薄膜层,或者是其中之一为主要成分的塑料合金形成的薄膜层。

说明书 :

氟塑料层和聚酯层的粘结方法

技术领域

[0001] 本发明涉及多层塑料生产技术领域,特别涉及塑料层粘结技术领域,具体是指一种氟塑料层和聚酯层的粘结方法。

背景技术

[0002] 多层共挤是一种常用的塑料薄膜生产方法,近年来发展迅速,成为食品包装、药品包装薄膜的重要生产方式之一。目前常见的食品包装袋基本是多层挤出,如三层共挤的CPP膜。其通过将不同的塑料熔化后进入同一个模具并同时被挤出而成为有多层结构的薄膜,各层间相互粘连在一起。由于多层挤出的技术生产速度快,薄膜各层间粘结强度高,使用此技术生产的薄膜正越来越多的替代原来使用复合技术生产的薄膜。流延涂布也是一种常用的塑料生产技术,其用挤出机将塑料熔融后挤出淋涂在基材上。较常见的基材有铝板、无纺布、玻璃纤维布以及塑料膜。
[0003] 氟塑料由于含氟,所以有很好的耐候性,表面能低,有自清洁性,非常不容易粘结。如果需要粘结氟塑料,需要对其表面进行处理,如等离子、电晕、化学腐蚀等。常见的含偏氟乙烯(VDF)基团的氟塑料有PVDF(聚偏氟乙烯)、THV(四氟乙烯-六氟丙烯-偏氟乙烯共聚物)、偏氟乙烯和三氟氯乙烯共聚物、偏氟乙烯和氟乙烯共聚物等。PVDF和丙烯酸酯类的塑料有非常好好的相容性,比如PVDF可以和PMMA(聚甲基丙烯酸甲酯)可按不同比例混合成需要的塑料合金。PVDF可以和其它氟塑料在一定的条件下混合。PVDF的供应商有中国的三爱富、巨化、东岳等,国外的有阿科玛、苏威、大金、吴羽等,THV的供应商是3M。
[0004] 粘结性树脂通常指乙烯和极性聚合物单体的共聚物,比如乙烯同醋酸乙烯酯、乙烯同丙烯酸及其酯类、乙烯同顺丁烯二酸或顺丁烯二酸酐的共聚物、以及乙烯的马来酸酐接枝物等。粘结性树脂顾名思义,是指有较高粘结性的树脂,其在熔融状态下可以将需要粘合的两层塑料薄膜粘结在一起。其大量的被使用在多层共挤膜的生产中作为粘结各层的胶层存在。常用的粘结性树脂的供应商有美国杜邦(Bynel和Surlyn)、陶氏化学(Primacor)、欧洲的阿科玛、日本的三菱、宇部,另外中国的一些厂家也能生产。
[0005] 将氟塑料薄膜粘结到聚酯薄膜表面是生产太阳能电池用的背板的重要工序。在已公开的专利中使用的方法都是将不同的氟塑料薄膜、聚酯薄膜通过干式复合的方法粘合在一起,即将聚氨酯胶、丙烯酸酯胶或环氧胶等胶均匀涂布在聚酯或氟塑料表面,烘干胶中的溶剂,然后和另一薄膜压合在一起而得到的复合膜。通常在干式复合后,需要经过40-80摄氏度的熟化过程才可以使用,时间一般要48小时以上。最常见的背板的是将杜邦公司的聚氟乙烯(PVF)薄膜(商品名Tedlar)复合到聚对苯二甲酸乙二醇酯(PET)薄膜的两侧,即TPT结构的背板。另一种常见的背板是TPE结构,美国的Madico公司已申请专利(见专利申请WO2004/091901 A2)。其将PVF复合到PET表面,而在PET的另一面复合EVA薄膜。在3M申请的专利(见专利申请US2006/0280922 A1)中,3M将THV复合到PET表面。日本的东洋铝业则将PVDF薄膜复合到PET表面而得到背板。所有的生产过程均采用了干式复合技术。干式复合技术是大量使用在柔性线路板、印刷用薄膜、包装纸等产品生产的成熟技术,即使用干式复合机将含溶剂的胶涂布在一层薄膜上,挥发掉溶剂后将另一层薄膜压合在此层上而形成复合膜。此技术的优点是适用范围广,可以复合塑料薄膜、铝箔、纸张,但由于生产过程中使用了溶剂,所以对环境有一定的影响,而且由于需要熟化过程,而导致生产周期长。
[0006] 因此,需要提供一种氟塑料层和聚酯层的粘结方法,其无需使用溶剂,且粘结效果好,生产周期缩短,从而减少对环境的影响,提高生产效率。

发明内容

[0007] 本发明的目的是克服了上述现有技术中的缺点,提供了一种氟塑料层和聚酯层的粘结方法,该粘结方法构思独特,设计巧妙,无需使用溶剂,且粘结效果好,生产周期缩短,从而减少对环境的影响,提高生产效率,对以此基础生产太阳能电池背板有非常重要的意义,适于大规模推广应用。
[0008] 为了实现上述目的,本发明的氟塑料层和聚酯层的粘结方法采用了如下的技术方案:
[0009] 该氟塑料层和聚酯层的粘结方法,其特点是,将氟塑料层和粘结层或者将氟塑料层、过渡层和粘结层多层共挤出并流延涂布到聚酯层上,从而使所述氟塑料层和所述聚酯层相粘结。
[0010] 具体方法是使用挤出机将氟塑料、形成粘结层的粘结树脂分别融化,或者是将氟塑料、形成过渡层的塑料、形成粘结层的粘结树脂分别融化,通过分配器进入同一个模具中,从模具口挤出双层或三层的薄膜,将是粘结树脂的一侧流延到聚酯薄膜上,而使其在熔融状态下粘结到聚酯薄膜上而达到将氟塑料和聚酯粘合在一起的目的。流延涂布的速度随着设备精度的不同而有不同,从0到每分钟几百米都可以。
[0011] 所述氟塑料层可以是任意的氟塑料层。较佳地,所述氟塑料层是含偏氟乙烯(VDF)链段的氟塑料或者是含偏氟乙烯链段的氟塑料与颜料、无机填料、其它塑料混合而成的塑料合金形成的薄膜层。
[0012] 所述氟塑料层中偏氟乙烯的总含量可以任意。但是,较佳地,所述氟塑料层中偏氟乙烯的总含量大于20%。
[0013] 氟塑料层的厚度可以按需要是任意厚度,只要模具可以挤出成膜。
[0014] 例如,氟塑料可以使用聚偏氟乙烯(PVDF),PVDF可以是均聚的或是共聚的。均聚的PVDF是指只含VDF基团,共聚的PVDF指除VDF基团外还含有少量的其它塑料基团,常见的有带氯基团的烯烃或带支链的烯烃。PVDF可以按需要是透明的或是有颜色的。为提高成膜性,PVDF中也可以少量含有丙烯酸酯类塑料,含量不超过30%。
[0015] 所述粘结层可以采用任何合适的材料。较佳地,所述粘结层是乙烯和极性树脂的共聚物形成的薄膜层。如乙烯同醋酸乙烯酯、乙烯同丙烯酸及其酯类、乙烯同顺丁烯二酸或顺丁烯二酸酐的共聚物、以及乙烯的马来酸酐接枝物等。
[0016] 更佳地,所述粘结层还可以包括含偏氟乙烯的氟塑料。即粘结层中可以混入少量的含偏氟乙烯(VDF)的氟塑料以提高和氟塑料的粘结性,但VDF总量不超过20%。
[0017] 粘结层的厚度可以按需要是任意厚度,只要模具可以挤出成膜。较佳的,粘结树脂层的厚度为1~60μm。
[0018] 过渡层用于进一步提高粘结强度。使氟塑料层和粘结层成为实际上的一体,无法剥离。所述过渡层可以采用任何合适的塑料。较佳地,所述过渡层为聚丙烯酸酯类塑料层或者含偏氟乙烯的氟塑料和聚丙烯酸酯类塑料的混合物层。
[0019] 更佳地,所述的含偏氟乙烯的氟塑料是聚偏氟乙烯(PVDF)。则过渡层为聚丙烯酸类塑料和PVDF的混合物层。
[0020] 过渡层的厚度可以按需要是任意厚度,只要模具可以挤出成膜。较佳的,过渡层的厚度为1~60μm。
[0021] 为提高抗老化性能、对应不同颜色的需求,上述各层中都可以按需要加入抗老化剂、颜料和无机填料。
[0022] 所述聚酯层可以采用任何合适的聚酯。较佳地,所述聚酯层是聚对苯二酸乙二醇酯(PET)形成的薄膜层、或者是聚对苯二甲酸丁二醇酯(PBT)形成的薄膜层、或者是聚对苯二甲酸丙二醇酯(PTT)形成的薄膜层、或者是聚萘二甲酸乙二醇酯(PEN)形成的薄膜层、或者是以上述聚酯其中之一为主要成分的塑料合金形成的薄膜层。例如,聚酯层为双向拉伸的PET薄膜层。聚酯层的厚度可以从几个微米到几厘米,而且只要表面是聚酯,都可以用这个办法来粘结。为提高粘结强度,所述聚酯层表面可以在流延涂布前进行表面处理,如电晕、等离子、火焰和底涂等。
[0023] 本发明的有益效果具体如下:本发明通过将氟塑料层和粘结层或者将氟塑料层、过渡层和粘结层多层共挤出并流延涂布到聚酯层上,从而使所述氟塑料层和所述聚酯层相粘结,构思独特,设计巧妙,粘结效果好,避免使用带溶剂的胶,从而减少对环境的影响,同时无需干复工艺中必须的熟化过程,从而缩短了生产时间,提高了生产效率,对以此基础生产太阳能电池背板有非常重要的意义,适于大规模推广应用。

附图说明

[0024] 图1是本发明的一个具体实施的结构示意图。
[0025] 图2是本发明的另一个具体实施的结构示意图。

具体实施方式

[0026] 为了能够更清楚地理解本发明的技术内容,特举以下实施例详细说明。其中相同的部件采用相同的附图标记。
[0027] 实施例1
[0028] 请参见图1所示,氟塑料层1为PVDF层,粘结层2为粘结树脂层,聚酯层3为PET层。该结构通过以下过程制成:挤出机通过模具挤出双层结构的薄膜,然后流延到PET层表面。双层结构为PVDF层和粘结树脂层,与PET层表面接触的是粘结树脂层。其中PVDF层为白色,厚度为20μm。粘结树脂层为乙烯的马来酸酐接枝物层,厚度为60μm。PET层为双向拉伸的PET层,厚度为100μm。经拉拔力检测,粘结树脂层与PET层的粘结强度为22牛顿/厘米。
[0029] 实施例2
[0030] 请参见图2所示,氟塑料层1为PVDF层,过渡层4为PVDF和PMMA的混合物层,粘结层2为粘结树脂层,聚酯层3为PET层。该结构通过以下过程制成:挤出机通过模具挤出三层结构的薄膜,然后流延到PET层表面。三层结构为PVDF层、PVDF和PMMA的混合物层、以及粘结树脂层,与PET层接触的是粘结树脂层。其中PVDF层为白色,厚度为5μm。过渡层4中PVDF含量为20%、PMMA含量为80%,厚度为10μm。粘结树脂层为EMA,厚度为10μm。PET层为双向拉伸的PET层,厚度为250μm。经拉拔检测,粘结树脂层与PET层的粘结强度为25牛顿/厘米。
[0031] 实施例3
[0032] 氟塑料层1为PVDF层,粘结层2为粘结树脂层,聚酯层3为PET层。该结构通过以下过程制成:挤出机通过模具挤出双层结构的薄膜,然后流延到PET层表面,PET层表面预先进行电晕处理。双层结构为PVDF层和粘结树脂层,与PET层表面接触的是粘结树脂层。其中PVDF层为白色,厚度为20μm。粘结层2为EMA与PVDF的混合物,其中EMA含量为95%、PVDF含量为5%,厚度为60μm。PET层为双向拉伸的PET层,厚度为100μm。经拉拔力检测,粘结树脂层与PET层的粘结强度为25牛顿/厘米。
[0033] 实施例4
[0034] 氟塑料层1为PVDF层,过渡层4为PVDF和PMMA的混合物层,粘结层2为粘结树脂层,聚酯层3为PET层。该结构通过以下过程制成:挤出机通过模具挤出三层结构的薄膜,然后流延到PET层表面,PET层表面预先进行等离子处理。三层结构为PVDF层、PVDF和PMMA的混合物层、以及粘结树脂层,与PET层接触的是粘结树脂层。其中PVDF层为白色,厚度为5μm。过渡层4中PVDF含量为20%、PMMA含量为80%,厚度为10μm。粘结树脂层为EMA,厚度为10μm。PET层为双向拉伸的PET层,厚度为250μm。经拉拔力检测,粘结树脂层与PET层的粘结强度为28牛顿/厘米。
[0035] 从上述实施例1-4可以看出,粘结树脂层和PET层的粘结效果是:粘结树脂层和PET层的粘结强度大于20牛顿/厘米,而氟塑料层/粘结树脂层或者氟塑料层/过渡层/粘结树脂层的各层间的粘结强度大于氟塑料层自身的断裂强度,因此,PVDF层和PET层的粘结强度大于20牛顿/厘米,而PET层表面进行处理还可以进一步提高粘结强度,粘结效果大大优于干复工艺,因为干复工艺(用聚氨酯胶)一般在4-10牛顿/厘米。而且,流延结束后不再需要任何其它过程,也不再需要熟化,总生产时间大大缩短。
[0036] 本发明采用了多层共挤和流延涂布相结合的方法,将氟塑料层和粘结树脂层共挤出并流延到聚酯薄膜上,或者将氟塑料层、过渡层和粘结树脂层共挤出并流延到聚酯薄膜上,使氟塑料和聚酯粘结。粘结效果好,避免使用带溶剂的胶,同时大幅度缩短了干复工艺中必须的熟化过程,从而缩短了生产时间。
[0037] 综上,本发明的氟塑料层和聚酯层的粘结方法构思独特,设计巧妙,无需使用溶剂,且粘结效果好,生产周期缩短,从而减少对环境的影响,提高生产效率,对以此基础生产太阳能电池背板有非常重要的意义,适于大规模推广应用。
[0038] 在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以做出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。