基板和其制造方法转让专利

申请号 : CN200880119753.7

文献号 : CN101889332B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 伊藤顺一矢部淳司关口淳之辅伊森彻

申请人 : 日矿金属株式会社

摘要 :

本发明的目的在于提供一种高温加热时的阻挡性优异,带有具有阻挡能力和催化能力的防止铜扩散用阻挡膜的基板、和其制造方法。本发明提供了一种基板,其特征在于,在基材上具有防止铜扩散用阻挡膜,所述防止铜扩散用阻挡膜含有:选自钨、钼和铌中的一种以上金属元素,对钌、铑和铱等的化学镀具有催化能力的金属元素,以及以所述选自钨、钼和铌中的一种以上金属元素的氮化物的形式被含有的氮。所述防止铜扩散用阻挡膜是通过使用含有选自钨、钼和铌中的一种以上金属元素和选自上述对化学镀具有催化能力的金属元素中的一种以上金属元素的靶源,在氮气氛围中溅射,从而制造的。

权利要求 :

1.一种基板,其特征在于,是在基材上具有阻挡膜的基板,该阻挡膜含有同时具有阻挡能力和催化能力的单一层,并且该阻挡膜是防止铜扩散用阻挡膜,所述防止铜扩散用阻挡膜含有60~75原子%的选自钨、钼和铌中的一种以上金属元素和10~30原子%的对化学镀具有催化能力的金属元素,余量是以所述选自钨、钼和铌中的一种以上金属元素的氮化物的形式被含有的氮。

2.如权利要求1所述的基板,其特征在于,所述对化学镀具有催化能力的金属元素是选自钌、铑和铱中的一种以上的金属元素。

3.如权利要求1或2所述的基板,其特征在于,在所述防止铜扩散用阻挡膜上具有以所述具有催化能力的金属元素为催化剂、通过化学镀铜形成的铜籽晶层。

4.如权利要求1或2所述的基板,其特征在于,在所述防止铜扩散用阻挡膜上具有以所述具有催化能力的金属元素为催化剂、通过化学镀铜形成的铜籽晶层,进而在该铜籽晶层上形成有嵌入式铜布线。

5.一种基板的制造方法,其特征在于,使用含有选自钨、钼和铌中的一种以上金属元素和对化学镀具有催化能力的金属元素的靶源,在氮气氛围中溅射,从而在基材上形成含有单一层的防止铜扩散用阻挡膜,所述防止铜扩散用阻挡膜中含有60~75原子%的选自钨、钼和铌中的一种以上金属元素和10~30原子%的对化学镀具有催化能力的金属元素,余量是以所述选自钨、钼和铌中的一种以上金属元素的氮化物的形式被含有的氮。

6.如权利要求5所述的基板的制造方法,其特征在于,所述对化学镀具有催化能力的金属元素是选自钌、铑和铱中的一种以上的金属元素。

7.如权利要求5或6所述的基板的制造方法,其特征在于,以所述具有催化能力的金属元素为催化剂,通过化学镀铜在所述防止铜扩散用阻挡膜上形成铜籽晶层。

8.如权利要求5或6所述的基板的制造方法,其特征在于,以所述具有催化能力的金属元素为催化剂,通过化学镀铜在所述防止铜扩散用阻挡膜上形成铜籽晶层,进而在该铜籽晶层上形成嵌入式铜布线。

9.一种半导体晶片,使用了权利要求4所述的基板。

说明书 :

基板和其制造方法

技术领域

[0001] 本发明涉及具有防止铜扩散用阻挡膜的基板,所述防止铜扩散用阻挡膜是在基材上形成的,作为超大规模集成电路(ULSI)微细铜布线的阻挡兼催化剂层使用的。 背景技术
[0002] 作为ULSI微细铜布线(嵌入(damascene)式铜布线)的铜的成膜方法,已知通过化学镀(electroless plating)铜设置籽晶层,通过电镀铜形成铜膜的方法。
[0003] 以往当在半导体晶片(semiconductor wafer)那样的镜面上进行化学镀铜时,析出的镀膜难以得到充分的附着性。此外,镀敷的反应性低,难以在整个基板上均匀镀敷。以往在例如氮化钽等的阻挡金属层上通过化学镀法形成铜籽晶层时,存在难以形成均匀镀层,附着力不充分的问题。
[0004] 本发明人已发现:通过在化学镀铜液中添加作为添加剂的、重均分子量(Mw)较小的水溶性含氮聚合物,另一方面在被镀物的基板上在浸渍在镀液之前附着催化剂金属,或者通过预先在最表面上形成催化剂金属膜,然后浸渍在镀液中,使聚合物介由氮原子吸附在该催化剂金属上,可以抑制镀敷的析出速度,并使晶体非常微细化,可以在晶片(wafer)那样的镜片上形成膜厚15nm以下的均匀薄膜(专利文献1)。此外,本发明人公开了,在上述发明的实施例中,通过预先在最表面上形成催化剂金属膜,然后浸渍在镀液中,介由氮原子使聚合物吸附在该催化剂金属上,可以抑制镀敷的析出速度,可以在晶片那样的镜面上形成晶体非常微细化、膜厚6nm以下的均匀膜。
[0005] 这种方法即在嵌入式铜布线形成中,在形成催化剂金属膜后要通过化学镀设置铜籽晶层时,需要与催化剂金属层分开地、预先形成用于防治铜扩散的阻挡层,因此,在形成铜籽晶层之前已经形成阻挡层和催化剂金属层两层,现已判明该方法存在在膜厚不能过厚的超微细布线中难以使用的问题。
[0006] 为了克服在形成这样的铜籽晶层之前要形成两层的繁杂步骤,本发明人发现通过形成同时具有阻挡能力和催化能力的特定的合金薄膜的单一层,并进而将化学镀与置换镀和还原镀并用,可以在上述层上形成膜厚度薄且均匀的铜籽晶层,并提交了专利申请(专利文献2、专利文献3)。但这些同时具有阻挡能力和催化能力的合金薄膜在加热到500℃左右的高温时阻挡性不充分,而在半导体器件中使用时、特别是长时间使用时要求具有更高的可靠性。
[0007] 此外,专利文献4中记载了具有阻挡层的传导性材料的制造方法,所述阻挡层中含有选自钽、氮化钽、氮化钽硅、钛、氮化钛、氮化钛硅、钌、钨、氮化钨、它们的合金、衍生物、和它们的组合中的金属。在上述文献中在该阻挡层上通过PVD法设置了籽晶层,但关于阻挡层的组成,特别是组合带来的效果和组成却没有说明。
[0008] 专利文献1:特开2008-223100号公报
[0009] 专利文献2:PCT/JP2008/063023
[0010] 专利文献3:PCT/JP2008/063024
[0011] 专利文献4:WO2006/102182A2

发明内容

[0012] 本发明的目的在于提供具有防止铜扩散用阻挡膜的基板,所述防止铜扩散用阻挡膜比同时具有上述阻挡能力和催化能力的合金薄膜的高温加热时的阻挡性优异,具有阻挡能力和催化能力。
[0013] 进而,本发明的目的在于提供一种高温加热时的阻挡性优异,在长期使用时可靠性高的半导体晶片。
[0014] 本发明人进行了深入研究,结果发现,在通过使对化学镀具有催化能力的金属、和具有阻挡能力且可与化学镀液中的金属置换的金属合金化来形成同时具有阻挡能力和催化能力的单一层时,进一步以与具有阻挡能力的金属的氮化物的形式含有氮,可以进一步提高阻挡能力,从而完成本发明。
[0015] 即本发明内容如下。
[0016] (1).一种基板,其特征在于,是在基材上具有阻挡膜的基板,该阻挡膜含有同时具有阻挡能力和催化能力的单一层,并且该阻挡膜是防止铜扩散用阻挡膜,所述防止铜扩散用阻挡膜含有:选自钨、钼和铌中的一种以上金属元素,对化学镀具有催化能力的金属元素,以及以所述选自钨、钼和铌中的一种以上金属元素的氮化物的形式被含有的氮。 [0017] (2).如(1)所述的基板,其特征在于,所述对化学镀具有催化能力的金属元素是选自钌、铑和铱中的一种以上。
[0018] (3).如(1)或(2)所述的基板,其特征在于,所述防止铜扩散用阻挡膜含有10~30原子%的对化学镀具有催化能力的金属元素和60~75原子%的选自钨、钼和铌中的一种以上金属元素,余量是氮。
[0019] (4).如(1)~(3)的任一项所述的基板,其特征在于,在所述防止铜扩散用阻挡膜上具有以所述具有催化能力的金属元素为催化剂、通过化学镀铜形成的铜籽晶层。 [0020] (5).如(1)~(4)的任一项所述的基板,其特征在于,在所述防止铜扩散用阻挡膜上具有以所述具有催化能力的金属元素为催化剂、通过化学镀铜形成的铜籽晶层,进而在该铜籽晶层上形成有嵌入式铜布线。
[0021] (6).一种基板的制造方法,其特征在于,使用含有选自钨、钼和铌中的一种以上金属元素和对化学镀具有催化能力的金属元素的靶源,在氮气氛围中溅射,从而在基材上形成含有单一层的防止铜扩散用阻挡膜,所述防止铜扩散用阻挡膜中含有:选自钨、钼和铌中的一种以上金属元素,对化学镀具有催化能力的金属元素,以及以所述选自钨、钼和铌中的一种以上金属元素的氮化物的形式被含有的氮。
[0022] (7).如(6)所述的基板的制造方法,其特征在于,所述对化学镀具 有催化能力的金属元素是选自钌、铑和铱中的一种以上。
[0023] (8).如(6)或(7)所述的基板的制造方法,其特征在于,所述防止铜扩散用阻挡膜含有10~30原子%的对化学镀具有催化能力的金属元素和60~75原子%的选自钨、钼和铌中的一种以上金属元素,余量是氮。
[0024] (9).如(6)~(8)的任一项所述的基板的制造方法,其特征在于,以所述具有催化能力的金属元素为催化剂,通过化学镀铜在所述防止铜扩散用阻挡膜上形成铜籽晶层。 [0025] (10).如(6)~(9)的任一项所述的基板的制造方法,其特征在于,以所述具有催化能力的金属元素为催化剂,通过化学镀铜在所述防止铜扩散用阻挡膜上形成铜籽晶层,进而在该铜籽晶层上形成嵌入式铜布线。
[0026] (11).一种半导体晶片,使用了(5)所述的基板。
[0027] 本发明通过在基材上形成防止铜扩散用阻挡膜,提高了高温加热时的阻挡性,所述防止铜扩散用阻挡膜中含有选自钨、钼和铌中的一种以上金属元素、和钌、铑和铱等对化学镀具有催化能力的金属元素,并以选自钨、钼和铌中的一种以上金属元素的氮化物的形态含有氮。通过提高高温加热时的阻挡能力,可以进一步提高本发明的基板在长期作为半导体晶片使用时的可靠性。进而通过使选自钨、钼和铌中的一种以上金属元素氮化,在通过溅射来形成防止铜扩散用阻挡膜时,可以降低作为溅射靶源中的昂贵贵金属的钌、铑和铱等催化剂金属成分的比率,降低生产成本。
[0028] 此外,通过形成本发明的防止铜扩散用阻挡膜,可以在通过无电解置换(electroless displacement)和还原镀来形成铜等的金属薄膜时,可以在不侵蚀作为基底的上述防止铜扩散用阻挡膜表面的情况下使在其上形成的铜等的金属薄膜层的膜厚充分薄,形成均匀且附着性优异的膜。此外,可以使上述防止铜扩散用阻挡膜和其上的化学镀层的界面呈实质上不含氧的状态。

具体实施方式

[0029] 本发明涉及基材上具有防止铜扩散用阻挡膜的基板,该防止铜扩散用阻挡膜中含有选自钨、钼和铌中的一种以上金属元素、和对化学镀具有催化能力的金属元素,并且以选自上述钨、钼和铌中的一种以上金属元素的氮化物的形式含有氮。
[0030] 钨、钼、和铌是可与化学镀铜液所含的铜进行置换镀的金属,对铜具有阻挡能力。防止铜扩散用阻挡膜中使用选自钨、钼、和铌中的一种以上金属,特别是,更优选钨。 [0031] 此外,与钽、钛相比,钨、钼、铌难以形成牢固的氧化膜,所以当在防止铜扩散用阻挡膜上进行化学镀时,在与镀膜的界面上不会残留氧化层。当在界面存在氧时会有不良影响如,布线的电阻会提高,阻挡能力降低等。
[0032] 作为对化学镀具有催化能力的金属,可以列举出钌、铑、铱等,优选使用选自这些金属中的一种以上金属,其中更优选使用钌。此外,还可以使用含有2种以上具有催化能力的金属的合金。本发明中的上述具有化学镀的催化能力是指对使化学镀液中的铜等的金属离子还原、形成镀膜的反应具有催化能力。
[0033] 因此,当通过化学镀铜在上述防止铜扩散用阻挡膜上形成铜籽晶层时,可以通过无电解置换和还原镀进行均匀的化学镀,形成膜厚充分薄、具有优异附着性的籽晶层。 [0034] 为了发挥高温阻挡性,优选在防止铜扩散用阻挡膜中含有60~75原子%的钨、钼、和铌。当少于60原子%时,有时高温阻挡性降低,而且具有催化能力的金属比率变多,混入到镀膜中,电阻值变高,有时会造成信号延迟。此外,存在膜成本高的问题。此外,当多于75原子%时,有时不仅高温阻挡性降低,而且当在其上通过化学镀设置铜籽晶层时,镀液的置换反应比还原反应更具有优势,会侵蚀被镀材料,有时不能形成均匀薄膜。此时会造成阻挡能力降低。
[0035] 为了发挥高温阻挡性,优选在防止铜扩散用阻挡膜中含有10~30 原子%的上述具有催化能力的金属。当上述具有催化能力的金属少于10原子%时,高温阻挡性降低,而且当在通过化学镀在防止铜扩散用阻挡膜上设置铜籽晶层时,有时镀液的置换反应比还原反应更具有优势,被镀材料会受到侵蚀,不能形成均匀薄膜。这种情况会进而使阻挡能力降低。此外,当上述具有催化能力的金属多于30原子%时,有时不仅高温阻挡性降低,而且具有催化能力的金属比率变多,混入到镀膜中,使电阻值变高,造成信号延迟。此外,存在膜成本增高的问题。
[0036] 进而,本发明的防止铜扩散用阻挡膜,为了发挥高温阻挡性,还以钨、钼、铌的氮化物的形式含有氮,该防止铜扩散用阻挡膜中含有上述具有阻挡能力的金属成分和具有催化能力的金属成分,余量是氮。在防止铜扩散用阻挡膜中优选至少含有3原子%以上的氮,更优选为5~20原子%的氮。
[0037] 防止铜扩散用阻挡膜中的组成是将俄歇能谱深度剖析的强度比转换成组成比,从而求出的。本发明中的俄歇能谱深度剖析的测定是使用测定装置:PHI 700俄歇电子能谱仪(Scanning AugerNanoprobe)ULVAC-PHI,INC.制,使用装置附带的软件将能谱强度比转换成组成比。转换系数是使用程序中存储的数值求出的,但根据需要也可以以一级标准(primary standard)计算。
[0038] 防止铜扩散用阻挡膜优选通过溅射形成,作为此时的溅射靶源使用选自钨、钼和铌中的一种以上金属元素、和对上述化学镀具有催化能力的金属元素,通过在氮气氛围中溅射使钨、钼、铌被氮化成氮化物,在膜中含有。
[0039] 通常的溅射,以低压引入惰性气体来进行,但在本发明中使惰性气体中含有氮气,在氮气氛围中进行,使钨、钼、铌氮化。
[0040] 当在氮气氛围中进行溅射时,仅钨、钼、或铌的成膜速度逐渐变慢,但钌等具有催化能力的金属在基板上的成膜速度不变慢,具有催化能力的金属在膜中比率相对逐渐变高,由此可以断定以钨、钼、或 铌的氮化物的形式含有氮。
[0041] 上述防止铜扩散用阻挡膜的组成,可以根据溅射靶源的金属的组成、和氮气氛围中中的氮气的分压等来进行调节。
[0042] 通过使具有阻挡能力的钨、钼、铌被氮化,会使阻挡能力变高。通过变成氮化物,高温加热时的阻挡性从400℃提高到500℃。
[0043] 此外,通过使上述具有阻挡能力的金属变成氮化物,在使用相同组成的溅射靶源时,得到的防止铜扩散用阻挡膜中的具有催化能力的金属比没有变成氮化物的情况中的浓度高。这可以认为是由于:溅射中作为阻挡成分的钨、钼、或铌金属元素的一部分被氮化成氮化钨、氮化钼、或氮化铌,但该氮化钨、氮化钼、或氮化铌的成膜速度慢,所以未被氮化的催化剂金属元素与氮化钨、氮化钼、或氮化铌相比,成膜速度相对变快的缘故。因此通过氮化,可以降低作为昂贵贵金属的催化剂金属成分在靶源中的成分比,降低生产成本。 [0044] 上述防止铜扩散用阻挡膜的膜厚优选为3~20nm,更优选为5~15nm。 [0045] 本发明中的形成上述铜扩散防止阻挡膜的基材优选为硅基板,可以通过进行酸处理、碱处理、表面活性剂处理、超声波洗净,或它们的组合处理来实现基材的清洁、提高润湿性。
[0046] 在本发明的上述防止铜扩散用阻挡膜上,可以以上述具有催化能力的金属元素为催化剂,通过化学镀铜设置铜籽晶层。该化学镀铜是无电解置换镀和还原镀。 [0047] 在使用本发明的防止铜扩散用阻挡膜进行无电解置换和还原镀时,作为使用的化学镀铜的方法,可以使用一般的方法。同样,使用的铜镀液也可以使用一般的镀液。 [0048] 化学镀铜液通常含有铜离子、铜离子的络合剂、还原剂、和pH调节剂等。 [0049] 作为化学镀铜液的还原剂,考虑到福尔马林对人体、环境的不良影响,优选使用乙醛酸。此外,化学镀铜液优选不含有钠,其是在半 导体用途中要避免的杂质。 [0050] 乙醛酸的浓度优选在镀液中为0.005~0.5mol/L,更优选为0.01~0.2mol/L。当浓度小于0.005mol/L时,不会发生镀敷反应,当大于0.5mol/L时,镀液会不稳定而分解。 [0051] 作为本发明中的化学镀铜液的铜离子源,可以使用通常使用的所有铜离子源,可以列举出例如硫酸铜、氯化铜、硝酸铜等。此外,作为铜离子的络合剂,也可以使用通常使用的所有络合剂,可以列举出例如乙二胺四乙酸、酒石酸等。
[0052] 作为其它添加剂,可以使用镀液中通常使用的添加剂例如2,2’-联吡啶、聚乙二醇、亚铁氰化钾等。
[0053] 此外,本发明中的化学镀铜液优选以pH值为10~14而被使用,更优选以pH值为12~13而被使用。作为pH调节剂,可以使用通常使用的氢氧化钠、氢氧化钾等,但在半导体用途要避免钠、钾等的碱金属的情况中,使用氢氧化四甲基铵为宜。
[0054] 此外,本发明中的化学镀铜液在浴温40~90℃下使用,这从浴液稳定性和铜的析出速度方面考虑是优选的。
[0055] 在使用本发明的化学镀铜液进行镀敷时,将被镀材料浸渍在镀浴中。被镀材料是通过在上述基材上形成防止铜扩散用阻挡膜而得到的。
[0056] 通过本发明的无电解置换和还原镀制作的铜薄膜的厚度更优选为1~10nm。 [0057] 通过本发明的无电解置换和还原镀制作的铜薄膜,镀膜薄,膜厚均匀。因此,在作为嵌入式铜布线用籽晶层使用时,即使在布线宽度为100nm以下的微细层间通道和布线沟(via and trench)内也可以形成膜厚均匀的薄膜籽晶层,结果可以得到不会产生空隙和接缝(void andseem)等缺陷的半导体晶片。
[0058] 本发明的基板,还可以在通过化学镀形成的铜薄膜上通过镀敷进一步设置布线部。镀敷可以使用电镀或化学镀。
[0059] 布线部优选是铜或以铜为主成分的合金,更优选嵌入式铜布线。 电镀铜液只要具有通常嵌入式铜布线埋入时使用的组成即可,没有特殊限定,例如可以使用含有作为主成分的硫酸铜和硫酸、作为微量成分的氯、聚乙二醇、3,3′-二硫代双(1-丙磺酸钠盐)、由烷基叔胺和聚环氧氯丙烷形成的季铵盐加成物(第四环氧氯丙烷)等的溶液。此外,作为埋入时使用的化学镀铜液,可以使用例如WO2005-038086号公报中记载的铜布线埋入用镀液。
[0060] 实施例
[0061] 下面将通过实施例来说明本发明,但本发明并不受这些实施例限定。 [0062] 实施例1
[0063] 使用各种组成比的钨和钌的溅射合金靶源,改变溅射时溅射室内的氩气和氮气的压力比,在最表面带有SiO2膜的硅基板上制作膜厚10nm的氮化钨/钌合金膜,然后在上面形成膜厚5~8nm的化学镀铜膜。
[0064] 溅射成膜时使用3英寸RF溅射装置(ANELVA制SPF-332HS)。氮化钨/钌合金膜-5的制作中,先使用冷凝泵(cryopump)使溅射室内为5×10 Pa的压力,然后导入一定比率的氮气和氩气的混合气体至总压为0.8Pa,以50W的功率产生等离子体,进行15分钟的预溅射,然后进行本成膜。
[0065] 通过化学镀形成铜膜时,使用具有以下组成的镀液,在pH12.5、50℃的条件下进行30秒钟。
[0066] (化学镀液和镀敷条件)
[0067] 硫酸铜:0.02mol/L
[0068] 乙二胺四乙酸盐:0.21mol/L
[0069] 乙醛酸:0.03mol/L
[0070] 2,2’-联吡啶:20mg/L
[0071] pH12.5(氢氧化四甲基铵)
[0072] 对所得的形成了化学镀膜的基板进行以下评价。
[0073] 通过俄歇能谱深度剖析测定来确定在500℃下真空退火(annealing)处理30分钟后的阻挡性。将没有看到铜扩散到氮化钨/钌合金膜中,也没有看到与其相反的现象的情况记作“○”,将看到了其中任一种现象的情况记作“×”。
[0074] 镀膜均匀性的评价是使用FESEM装置(日本电子制JSM-6700F)观察膜表面,来确认有无 1nm以上的未被化学镀的部分。将没有未被化学镀的部分的情况记作“○”,将确认有未被化学镀的部分的情况记作“×”。
[0075] 通过俄歇能谱深度剖析测定来确定镀敷时的铜膜和钨合金膜的界面的氧化状态。将在镀膜和钨合金膜的界面没有发现氧的情况记作“○”,将发现有氧的情况记作“×”。 [0076] 镀膜附着性评价中,使用透明胶带(“CT24”,ニチバン制)进行胶带剥离试验,用指肚使透明胶带与镀面密合,然后剥离胶带,确认有无膜剥离。将镀膜没有剥离的情况记作“○,将发现剥离的情况记作“×”。
[0077] 此外,在对带有线宽为90nm、高宽比为4的布线沟图案的半导体基板形成上述溅射合金薄膜、和化学镀铜薄膜之后,将其作为籽晶层,通过电镀铜埋入布线。 [0078] 另外,布线的埋入是使用具有以下组成的镀液,在25℃、电流密度1A/dm2的条件下进行60秒钟。
[0079] 硫酸铜0.25mol/L
[0080] 硫酸1.8mol/L
[0081] 盐酸10mmol/L
[0082] 微量添加剂(聚乙二醇、3,3′-二硫代双(1-丙磺酸钠盐)、健那绿(janus green))
[0083] 通过TEM观察所得的铜镀膜的截面,评价线宽90nm的布线沟部的埋入性。判断有无空隙和接缝,“○”是无空隙和接缝,“×”是有空隙和接缝。
[0084] 将这些结果一并示于表1中。
[0085] 综合评价中,将阻挡性、镀膜均匀性、耐氧化性、镀膜附着性、埋入性的5个评价均是“○”的情况记作“○”,将4个项目是“○”的情况记作“△”,将3项以下是“○”的情况记作“×”。
[0086] [表1]
[0087]
[0088] 在没有导入氮气时,没有发现同时具有阻挡性、镀膜均匀性、耐 氧化性、镀膜附着性、和埋入性的组成(综合评价○),但通过导入适量的氮气,在膜中钌组成比为12~28原子%、膜中钨组成比为62~72原子%、膜中氮组成比为10~16原子%时发现了的合适条件。
[0089] 实施例2
[0090] 使用具有各种组成比的钼和铑的溅射合金靶源,改变溅射时溅射室内的氩气和氮气的压力比,在最表面带有SiO2膜的硅基板上制作膜厚10nm的氮化钼/铑合金膜,然后在上面形成膜厚5~8nm的化学镀铜膜。溅射成膜、化学镀的条件与实施例1相同。 [0091] 此外,以与实施例1同样的方法评价阻挡性、镀膜均匀性、耐氧化性、镀膜附着性、埋入性、和综合评价。
[0092] 结果一并示于表2中。
[0093] [表2]
[0094]
[0095] 在没有导入氮气时,没有发现同时具有阻挡性、镀膜均匀性、耐氧化性、镀膜附着性、和埋入性的组成(综合评价○),但通过导入适量的氮气,在膜中铑组成比为14~29原子%、膜中钼组成比为61~74原子%、膜中氮组成比为10~12原子%时发现了的合适条件。
[0096] 实施例3
[0097] 使用具有各种组成比的铌和铱的溅射合金靶源,改变溅射时溅射室内的氩气和氮气的压力比,在最表面带有SiO2膜的硅基板上制作膜 厚10nm的氮化铌/铱合金膜,然后