溅射离子泵用电源设备转让专利

申请号 : CN200910085553.0

文献号 : CN101902126B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 刘耀红刘晋升唐华平

申请人 : 同方威视技术股份有限公司

摘要 :

公开了一种用于离子泵的电源设备,包括:开关元件,具有第一端、第二端和第三端;感测元件,与开关元件的第二端连接;升压变压器,包括初级和次级绕组,其中初级绕组的同名端和次级绕组的同名端极性相反,且初级绕组的一端连接到直流电源,另一端连接到开关元件的第三端;控制电路,基于初级绕组产生的反激电压和感测元件上的电压,产生要施加到开关元件的第一端的开关控制信号,开关元件在开关控制信号的控制下导通和断开,从而在升压变压器的次级绕组的输出端产生输出电压;整流电路,对变压器的次级绕组的输出端产生的输出电压进行滤波。该电源设备具备效率高,体积小,重量轻的优点,并且其功率范围符合溅射离子泵电源的功率要求。

权利要求 :

1.一种用于离子泵的电源设备,包括:

高频开关元件,具有第一端、第二端和第三端;

感测元件,与所述高频开关元件的第二端连接;

高频升压变压器,包括初级绕组和次级绕组,其中初级绕组的同名端和次级绕组的同名端的极性相反,并且初级绕组的一端连接到直流电源,另一端连接到高频开关元件的第三端;

控制电路,基于初级绕组中产生的反激电压和感测元件上的电流反馈信号,产生要施加到高频开关元件的第一端的高频开关控制信号,其中所述高频开关元件在所述高频开关控制信号的控制下导通和关断,从而在高频升压变压器的次级绕组的输出端产生输出电压,所述高频开关控制信号的脉冲频率为一电阻和电容构成的振荡电路的振荡频率;

整流电路,对高频升压变压器的次级绕组的输出端产生的输出电压进行滤波;

其中,所述控制电路基于对所述反激电压分压产生的反馈电压和感测元件上的电流反馈信号二者的相对大小来产生高频开关元件导通和关断的时间长度;

所述的电源设备,还包括泄放电路,用于在高频开关元件处于关断期间时,泄放高频升压变压器的初级绕组中的能量,所述泄放电路包括:二极管,阳极连接到第三端,阴极通过电容器与初级绕组的同名端连接;

系列稳压管;

多位置选择开关,与所述系列稳压管串联后与所述电容器并联;以及与所述电容器并联的电阻器,

其中,通过所述多位置选择开关选择连接系列稳压管中不同工作电压的稳压管,来得到不同的溅射离子泵电源输出电压。

2.如权利要求1所述的电源设备,所述感测元件是电阻器。

3.如权利要求1所述的电源设备,其中所述整流电路包括:多个串联的二极管和与所述串联的二极管并联的滤波电容器。

4.如权利要求1所述的电源设备,还包括电压监测和保护电路,包括:采样放大电路,对输出电压采样,并且将采样电压放大;

电压调整显示电路,将采样电压调整到预定的倍数,比较报警电路,将调整后的电压与预设的阈值进行比较,当调整后的电压超过预定的阈值时,向用户报警。

5.如权利要求1所述的电源设备,还包括电流监测和保护电路,包括:采样放大电路,对输出电流进行采样,并且将采样电流放大;

电流调整显示电路,将采样电流调整到预定的倍数;

比较报警电路,将调整后的电流与预设的阈值进行比较,当调整后的电流超过预定的阈值时,向用户报警。

6.如权利要求1所述的电源设备,所述直流电源的电压是24伏。

7.如权利要求6所述的电源设备,所述直流电源是电池组。

8.如权利要求6所述的电源设备,所述直流电源是从交流电转换而来的。

说明书 :

溅射离子泵用电源设备

技术领域

[0001] 本发明涉及溅射离子泵用电源,具体涉及基于单端反激式开关电源原理的溅射离子泵电源,以及对真空离子泵电源的工作电流、电压有实时显示及联锁保护等功能要求的应用领域。

背景技术

[0002] 溅射离子泵是超高真空获得系统中使用最多的一种真空泵。内部核心部件是阳极和阴极,阳极是一种薄壁不锈钢筒,阴极是分置于阳极两边的两块钛板,故溅射离子泵简称钛泵。其工作时,由外部永久磁铁提供一个磁力线平行于阳极筒,强度为1000~1500高斯的磁场,阳极与阴极之间直接加有3~7kV直流高压,产生潘宁放电,气体分子被电离,产生的离子轰击阴极溅射出钛原子,钛原子沉积于阳极筒壁及阴极上离子轰击较少的部位,形成新鲜钛膜,新鲜钛膜能吸附极性气体分子,掩埋惰性气体分子,从而达到抽气实现高真空的目的。离子泵工作时所需的3~7kV直流高压由离子泵电源提供,所产生的电流大小由气体分子被电离后的离子浓度及其移动速度决定,也就是说离子泵电流的大小与气体分子数目成正比,也就是与真空度成反比,因此由离子泵电流的大小可以推算出系统真空好坏的程度,离子泵正常工作时其电流通常只有几微安到几十微安,在真空变坏的极端情况下,工作电流可以到几毫安。溅射离子泵电源的功率通常为几十瓦。
[0003] 单端反激开关电源是一种新兴电源技术,具有效率高、电路简单、体积小和重量轻的优点,缺点是功率较小,通常为20~100W,所以目前主要应用于小功率低压直流电源。
[0004] 电子加速器的运行离不开真空技术,其中的核心部件加速管是一个高真空部件,其真空的获得和维护都通过离子泵来实现。加速器工作过程中需要对加速管内部的真空状态进行在线监控,控制系统通过真空状态信息来决定加速器的下一步工作状态,以防加速管真空度下降、离子泵或者离子泵电源工作不正常给整个加速器系统造成严重破坏。这就需要离子泵电源在工作过程中不只是能提供幅值稳定的高压,还要能够对电压、电流信号进行实时监控,并在发现异常时能给上级控制系统发出警报信号。加速器停机时,也需要离子泵能够持续工作,对加速管的真空状态进行维持,以便加速器下次开机时具有一个良好的真空状态,能够立即投入工作,这就要求离子泵电源能够24小时不间断地工作。
[0005] 传统的离子泵电源,大部分都只能提供简单的高压供电功能,获得高压的模式通常是采用传统的线性变压器升压的模式,虽然结构简单,但是体积和重量大,效率低,稳定性差;且缺乏对电压、电流信号的监控和报警功能,不适合在加速器等对真空状态需要在线监控的领域应用。最新的技术中,也有采用开关电源技术取代线性变压器升压技术的方案,如中国专利(00112595.8)“智能溅散离子泵电源控制器”所采用的技术,虽然也具有了电压、电流信号的监控和报警功能,但是电源供电方式单一,在市电停电时不能满足24小时不间断工作的要求,且没有采用最新的电子技术和优势电子元器件,电路结构复杂,效率不高。

发明内容

[0006] 本发明的目的是提供一种基于单端反激式开关电源原理的溅射离子泵电源设备,使用单端反激式开关电源方式取代传统的线性电源方式。
[0007] 在本发明的一个方面,提供了一种用于离子泵的电源设备,包括:开关元件,具有第一端、第二端和第三端;感测元件,与所述开关元件的第二端连接;升压变压器,包括初级绕组和次级绕组,其中初级绕组的同名端和次级绕组的同名端的极性相反,并且初级绕组的一端连接到直流电源,另一端连接到开关元件的第三端;控制电路,基于初级绕组中产生的反激电压和感测元件上的电压,产生要施加到开关元件的第一端的开关控制信号,其中所述开关元件在所述开关控制信号的控制下导通和断开,从而在升压变压器的次级绕组的输出端产生输出电压;整流电路,对升压变压器的次级绕组的输出端产生的输出电压进行滤波。
[0008] 根据本发明的实施例,所述控制电路基于对所述反激电压分压产生的反馈电压和感测元件上的电压二者的相对大小来产生开关元件导通和断开的时间长度。
[0009] 根据本发明的实施例,该电源设备还包括泄放电路,用于在开关元件处于断开期间时,泄放升压变压器的初级绕组中的能量。
[0010] 根据本发明的实施例,该泄放电路包括:二极管,阳极连接到第三端,阴极通过电容器与初级绕组的同名端连接;多个并联的多位置选择开关,与所述电容器并联;与所述电容器并联的电阻器。
[0011] 根据本发明的实施例,所述感测元件是电阻器。
[0012] 根据本发明的实施例,该整流电路包括:多个串联的二极管和与所述串联的二极管并联的滤波电容器。
[0013] 根据本发明的实施例,该电源设备还包括电压监测和保护电路,包括:采样放大电路,对输出电压采样,并且将采样电压放大;电压调整显示电路,将采样电压调整到预定的倍数;比较报警电路,将调整后的电压与预设的阈值进行比较,当调整后的电压超过预定的阈值时,向用户报警。
[0014] 根据本发明的实施例,该电源设备还包括电流监测和保护电路,包括:采样放大电路,对输出电流进行采样,并且将采样电流放大;电流调整显示电路,将采样电流调整到预定的倍数;比较报警电路,将调整后的电流与预设的阈值进行比较,当调整后的电流超过预定的阈值时,向用户报警。
[0015] 根据本发明的实施例,所述直流电源的电压是24伏。
[0016] 根据本发明的实施例,所述直流电源是电池组。
[0017] 根据本发明的实施例,所述直流电源是从交流电转换而来的。
[0018] 上述的电源设备具备效率高,体积小,重量轻的优点。
[0019] 另外,根据实施例的电源设备功率范围20~100W恰好符合溅射离子泵电源的功率要求,且可以直接使用24V低压电源(如蓄电池)供电,在市电停电时仍然可实现溅射离子泵的24小时不间断工作。
[0020] 本发明实施例的真空离子泵电源装置,输出高压从3kV~7kV连续可调。
[0021] 本发明实施例的真空离子泵电源装置,还包括完整的离子泵与电源工作状态在线监测与状态报警保护功能,包括电压、电流实时监测与显示,电流、电压异常时联锁保护装置。可以在电源的工作状态或设备的真空状态发生异常时通过继电器的触点将故障报告给上级控制系统,从而满足加速器等某些特定使用设备需要对真空系统进行电流、电压监控及联锁保护的要求。

附图说明

[0022] 通过下面结合附图说明本发明的优选实施例,将使本发明的上述及其它目的、特征和优点更加清楚,其中:
[0023] 图1是一种简单的新型真空离子泵电源装置。
[0024] 图2是一种信号监测保护电路的功能结构示意。
[0025] 图3是一种带有电压电流信号监测与保护功能的溅射离子泵电源的具体结构。
[0026] 图4是一种电压监测与报警电路的具体结构。
[0027] 图5是一种电流监测与报警电路的具体结构。

具体实施方式

[0028] 本发明优选的实施例将在下面结合附图进行描述。在下面的描述过程中,省略了对于本发明来说是不必要的细节和功能,以防止对本发明的理解造成混淆。
[0029] 如图1所示,一种简单的基于单端反激式开关电源原理的溅射离子泵电源装置由24V电源1,控制电路2,高频开关3,保护电路4,高频升压变压器5及整流电路6组成。其中控制电路控制高频开关的通断,高频开关的快速通断让高压升压变压器工作于单端反激模式,产生高压脉冲,整流电路将高压脉冲整形为3kV~7kV的直流高压输出,供给溅射离子泵。
[0030] 图2表示了图1所述简单的基于单端反激式开关电源原理的溅射离子泵电源装置的一种具体实施电路。
[0031] 高频升压变压器5由T1构成,T1是一个以铁氧体为磁心,变压比不低于1∶10,初级线圈耐压不小于500V,次级线圈耐压不小于7kV,输入输出相互隔离的高频变压器。
[0032] 整流电路6由串联的高压整流二极管VD1,VD2,VD3,VD4及高压储能电容C1构成,使用多个二极管串联,是为了提高他们的整体耐压能力,使其串联后的整体反向击穿电压不小于7kV,高压储能电容耐压不小于7kV。
[0033] 高频开关3由大功率晶体管构成,如场效应管(MOSFET管),本发明实施例中选用最大电流20A耐压600V的20N60型场效应管,也可以选用其它型号的场效应管,只要耐压与变压器T1的变比乘积不小于7kV即可。
[0034] 保护电路4由低阻值小功率电阻器R1构成,阻值通常为0.1~0.2欧姆,高频开关导通时,电流经变压器T1的初级绕组、场效应管VT1流过电阻R1,在R1的上端形成一个不高于1V的电压;如果该电压达到1V,则该电压送到控制电路后,控制电路回关断高频开关,以对电路进行保护。
[0035] 控制电路2由电流控制型PWM(脉宽调制)电路和能量泻放电路构成,本发明实施例所采用的电流控制型PWM电路以UC3842芯片及其典型应用电路为基础,对高频开关的导通频率、每次导通的时间长短、电流过大时的关断条件进行控制。UC3842芯片是Unitrode公司生产的单端输出式电流控制型脉宽调制器芯片,使用该芯片构成电流控制型PWM电路具有管脚数量少,外围电路简单,频响特性好,工作频率高,过流限制、过压保护和欠压锁定等功能齐备的优点。
[0036] 二极管VD5,多位置选择开关K1,系列稳压管VZ1,电阻R2,电容C2构成的能量泻放电路,当高频开关关断时,变压器T1的初级绕组的能量通过该电路进行泻放。其中稳压管VZ1的工作电压V就是变压器T1的初级绕组进行能量泻放时初级绕组上的电压,此时变压器T1的次级绕组通过反激获得高压Vo,他们与脉冲变压器的变比n之间形成下述关系:Vo=V×n,通过多位置选择开关K1选择连接不同工作电压的稳压管VZ1,则可以获得不同的溅射离子泵电源输出高压。同时为了保护高频开关VT1,稳压管VZ1的工作电压要低于场效应管的耐压,本电路中,系列稳压管VZ1的工作电压分别为150V,250V,350V。变压器的变比n为20,溅射离子泵电源的最高输出电压对应为3kV,5kV,7kV可调。在最高电压范围内,要连续调整溅射离子泵电源的输出电压,可以通过调节电位器RP1,改变UC3842芯片(2)脚的参考电压,从而改变溅射离子泵电源的输出电压。
[0037] 本电路中所谓的单端是指高频升压变压器T1的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指高频升压变压器T1的接线端按照图2所示方法连接,接线端(1)与接线端(3)构成同名端。当高频开关导通时,高频升压变压器T1初级绕组的感应电压为(1)正(2)负,连接在次级绕组的整流二极管VD1~VD4处于截止状态,在初级绕组中储存能量。
当开关管VT1截止时,变压器T1初级绕组中存储的能量产生反激电压(1)负(2)正,耦合到次级绕组为(3)负(4)正,整流二极管VD1~VD4导通,初级绕组的能量反激到次级绕组通过整流二极管VD1~VD4和电容C1滤波后向钛泵(负载)输出。
[0038] 整个电路的工作原理为:
[0039] 24V电源经电阻R4,稳压二极管ZT2,电容C3构成的稳压电路将高于16V的驱动电源提供给UC3842芯片的(7)脚,即电源端。电阻R9和电容C6构成振荡电路接到UC3842芯片的(4)脚,使其产生所需频率的锯齿波,也即电阻R9和电容C6的振荡频率决定了UC3842芯片最终输出脉冲的频率。电阻R3和电位器RP1构成变压器T1初级绕组反激电压的分压取样电路,作为电压基准送到UC3842芯片的(2)脚,即电压反馈输入端,UC3842芯片的(1)脚为(2)脚的输出补偿端,通过并联的电阻R5,电容C4与(2)脚相连。电阻R8从保护电路电阻R1的上端将电流反馈信号引入UC3842芯片的(3)脚,即电流检测输入端。从(3)脚引入的电流反馈信号与(2)脚引入的电压反馈信号在UC3842芯片经过转换和比较,产生一个PWM(脉宽调制)波,从(6)脚(即输出端)输出该信号,控制场效应管VT1的通断。电流反馈信号与电压反馈信号的相对大小决定了PWM(脉宽调制)波的脉冲宽度,也就是说他们决定了高频开关每次导通时间的长短,电流反馈信号相对于电压反馈信号小得越多,则PWM脉冲越宽,VT1导通时间越长;电流反馈信号相对于电压反馈信号越接近,差值越小,则PWM脉冲越窄,VT1导通时间越短。同时电流检测输入端设置了1V的电流钳位,当保护电路上电流过大而使电阻R1上的电压超过1V(即3脚电平大于1V)时,将关断PWM脉冲,从而达到限流保护的目的。
[0040] UC3842芯片(6脚)输出的脉冲为高电平时使VT1导通,VT1导通,则电流从24V电源流过变压器T1的初级绕组,经高频开关VT1和保护电路R1到地,此时变压器T1次级绕组上的整流二极管相当于反接,次级绕组无输出,初级绕组储存能量,保护电路R1上获得电流反馈信号并送到UC3842芯片的(3)脚(电流检测输入端)。当UC3842芯片(6脚)输出的脉冲由高电平转为低电平时,VT1截止,变压器T1初级绕组储存的能量通过能量泻放电路泻放,在初级绕组上形成350V的反向电压,次级绕组通过反激形成约7kV的高压,通过整流二极管VD1,VD2,VD3,VD4及滤波电容C1加给负载(溅射离子泵),同时电阻R3和电位器RP1构成的分压取样电路将反映变压器T1初级绕组反激电压的信号送到UC3842芯片的电压反馈输入端(2)脚,该信号与先前输入的电流反馈信号在UC3842芯片内部经过转换比较之后控制UC3842芯片下一个输出脉冲的宽度,通过调整场效应管VT1下次导通时间的长短改变变压器T1下次工作时储存能量的多少,来调整输出功率达到稳定输出电压的目的。由于整个电路的工作频率非常高,达500kHz,所以本发明实施例的溅射离子泵电源实际输出的工作电压非常稳定,纹波很小。
[0041] 图3表示了以图1为基础的一种带有电压电流监测与保护功能的溅射离子泵电源的结构,其组成除了24V电源1,控制电路2,高频开关3,保护电路4,高频升压变压器5及整流电路6外,还包括AC220V转24V电路7,24V转±12V电路8,电压监测与报警电路9,电流监测与报警电路10。
[0042] AC220V转24V电路7是将市电220V的交流电转化为24V的直流电,满足单端反激式开关电源只能基于直流电进行转化的要求。带有AC220V转24V电路7的单端反激式溅射离子泵电源就可以直接使用AC220V市电作为电源,同时在AC220V转24V电路7的输出端并联接入24V蓄电池,则有市电时,AC220V供单端反激式溅射离子泵电源工作的同时,也给蓄电池充电,当市电突然停电时,则由蓄电池给单端反激式溅射离子泵电源供电,从而实现了单端反激式溅射离子泵电源24小时不间断工作。
[0043] AC220V转24V电路7具有多种实现方式,传统的方法有先通过变压器将AC220V转变为AC20V左右,然后使用整流桥整流,24V稳压管稳压,电容滤波实现24V直流电。由于现在的低压电源模块技术非常成熟,所以本发明实施例中直接采用市场上成熟的电源模块RS308,输入AC220V,直接输出24V,实现AC220V转24V电路7。
[0044] 24V转±12V电路8是将直流24V转化为直流正12V和负12V,作为溅射离子泵电源的两个低压控制电路电压监测与报警电路9及电流监测与报警电路10的供电电源。24V转±12V电路8也有多种实现方式,本发明实施例中同样采用市场上成熟的电源模块HNM5-24D12,输入24V,直接获得±12V的两路输出,实现24V转±12V电路8。
[0045] 电压监测与报警电路9,对溅射离子泵电源的输出电压进行实时监测和显示,同时当电源故障或者负载短路造成输出电压低于用户设定的报警值时,通过继电器触点的通断向上级控制系统发出报警信号。
[0046] 图4表示了一种电压监测与报警电路的具体结构。包括采样放大电路91,电压调整显示电路92,比较报警电路93三个部分,其工作原理为:电阻R21,R22完成对溅射离子泵输出电压的分压取样,二极管VD21,VD22进行限压保护,比较器N21及电阻R23,R24,R25对电压取样信号进行放大输出,以便提供给电压调整显示电路92和比较报警电路93。比较器N23,电阻R27,R28及可变电位器RP22构成电压调整显示电路92,将取样电压调整到合适的倍数,并通过低压电压表头PV进行显示。如本电路中,溅射离子泵电源的输出电压为3~7kV,分压取样电阻上获得取样电压为1.2~2.8V,比较器N21将其放大到2.4~5.6V,通过调节RP2,使N23输出为3~7V,即对应为溅射离子泵电源输出电压的千分之一,就可以通过10V的直流电压表头显示,表头每1V实际代表1kV。比较器N22,电阻R26,可调电位器RP21,二极管VD23,继电器K21构成电压比较报警电路,用户针对溅射离子泵电源的正常输出电压,通过可调电位器RP21设定保护阈值,当采样放大电路91反映溅射离子泵电源输出电压的输出信号低于该保护阈值,则比较器N22输出+12V高电平使继电器K21的线包无电流,继电器K21的触点断开,上级控制系统的报警信号A被断开,形成“溅射离子泵电源输出电压过低”的故障报警。
[0047] 电流监测与报警电路10,对负载(溅射离子泵)的工作电流进行实时监测和显示,同时当电流过大,反映出离子泵真空度较差,且低于用户的预定要求时,通过继电器触点的通断向上级控制系统发出报警信号。
[0048] 图5表示了一种电流监测与报警电路的具体结构。包括采样放大电路101,电流显示电路102,比较报警电路103三个部分,其工作原理为:电流显示电路102由微安电流表PA,二极管VD31,VD32,电容C31组成,微安表直接串联在溅射离子泵电流的回路上,PA表头直接实时显示电流的大小,二极管VD31,VD32对表头PA形成限压保护作用,电容C31起滤波作用。采样放大电路101中,采样电阻R31串联在溅射离子泵电流回路上,电流流过电阻R31时,在R31的上端获得一个负电压信号,送到由比较器N31,电阻R32,R33,R34组成的放大电路进行信号放大并输出给比较报警电路103,二极管VD33,VD34对采样信号进行限压保护,电容C32对取样信号进行滤波。比较报警电路103由比较器N32,电阻R35,可调电位器RP31,二极管VD35,继电器K31构成,用户针对溅射离子泵工作时的正常真空状态和工作电流大小,通过可调电位器RP31设定保护阈值,当采样放大电路102反映溅射离子泵工作电流的输出信号低于该保护阈值(即采样信号放大后是比保护阈值负得更多负值电压),则比较器输出+12V高电平使继电器K21的线包无电流,继电器K21的触点断开,上级控制系统的报警信号C被断开,形成“溅射离子泵电流过大”的故障报警。
[0049] 需要特别说明的是,图2,图4,图5分别是本发明实施例的各种功能模块的一个具体实施电路,实际上电路在实现上是多种多样的,包括通过对上述三个具体电路中元器件的布局更改、同类产品中信号变化、增加少量电阻/电容器件等,均可对原有电路不形成本质更改的情况下实现本发明实施例所述功能,这是电子电路工程师共知的。
[0050] 至此已经结合优选实施例对本发明进行了描述。应该理解,本领域技术人员在不脱离本发明的精神和范围的情况下,可以进行各种其它的改变、替换和添加。因此,本发明的范围不局限于上述特定实施例,而应由所附权利要求所限定。