水下拉曼-荧光光谱联合探测装置转让专利

申请号 : CN201010227850.7

文献号 : CN101915755B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 郭金家刘智深

申请人 : 中国海洋大学

摘要 :

本发明涉及一种水下的拉曼-荧光光谱联合探测装置。包括作为密封舱的外壳,外壳上的光学窗口与电缆接头,和外壳内由激光器、前置光路、光纤、光栅、探测器构成的光谱仪,以及电子控制模块,其特征在于上述的是组合光栅:高分辨率的上光栅、低分辨率的下光栅,且上述的上光栅、下光栅的夹角θ。上述激光器同时作为拉曼光谱和荧光光谱的激光光源,且其波长为220~260nm之间的深紫外波长。上述的上光栅是3600grooves/mm。上述的下光栅是300grooves/mm。本发明采用相同的一个激光器作为激发光源,并同时获得水中物质的拉曼光谱和荧光光谱,不但体积小,而且激发效率高,适应面广,可广泛应用于近海环境污染物监测和深海油气资源探测等,为海洋化学探测提供更全面信息。

权利要求 :

1.一种水下拉曼-荧光光谱联合探测装置,包括密封舱的外壳(1),外壳(1)上的光学窗口(3)与电缆接头(9),和外壳(1)内由激光器(2)、前置光路(4)、光纤(5)、光栅(6)、探测器(7)构成的光谱仪,以及电子控制模块(8),其特征在于上述的光栅(6)是组合光栅:高分辨率的上光栅(10)、低分辨率的下光栅(11),且在上、下光栅(10、11)之间夹角为θ,由公式θ=|(α1-α2)+(β1-β2)|/2确定,其中α1和β1分别为上光栅(10)的入射角和出射角,α2和β2分别为下光栅(11)的入射角和出射角;通常光栅的入射角和出射角根据已有的光栅方程确定:(m/d)λ=sinα+sinβ

其中,m为衍射级次,d为光栅刻痕之间的距离,即光栅每毫米刻痕数的倒数,λ为衍射光的中心波长,α和β分别是光栅的入射角和出射角,上述激光器(2)同时作为拉曼光谱和荧光光谱的激光光源,且其波长为220~270nm。

2.根据权利要求1所述的水下拉曼-荧光光谱联合探测装置,其特征在于上述的上光栅(10)是3600grooves/mm。

3.根据权利要求1所述的水下拉曼-荧光光谱联合探测装置,其特征在于上述的下光栅(11)是300grooves/mm,中心波长为565nm。

4.根据权利要求1所述的水下拉曼-荧光光谱联合探测装置,其特征在于上述的探测器(7)为面阵CCD或EMCCD。

说明书 :

水下拉曼-荧光光谱联合探测装置

技术领域

[0001] 本发明属于海洋化学光谱探测装置,具体涉及一种水下拉曼-荧光光谱联合探测装置。

背景技术

[0002] 目前,大部分海洋化学探测都需要采集样品送回水上的实验室进行分析,缺乏用于水下现场探测的化学传感器,现有的现场探测化学传感器多是针对特定组分的实时、原位分析,缺少多参数同时分析的现场探测化学传感器。
[0003] 近年来发展了一些采用激光光谱手段的多参数海洋化学探测技术,如拉曼光谱、荧光光谱等,但都是单一光谱探测技术的应用。对于通常的水下原位探测,以近岸海水为例,由于存在大量的荧光物质,采用紫外、可见光波段激发拉曼,荧光的干扰非常严重,甚至会完全掩盖拉曼信号,采用近红外波长激发,可以较好的抑制荧光,但激发效率较低。而采用荧光光谱只能探测到海水中有色可溶有机物等一些主要的有机物成分,对于一些含量较低但危害巨大的物质,如多环芳烃,其荧光信号被完全湮没在有色可溶有机物荧光光谱中。 [0004] 鉴于海水中物质成分具有复杂性和多样性的特点,对于海洋物质化学成分的探测需要综合多方面的信息,而且由于海洋作业条件的限制,希望能够一次布放测量仪器获得尽可能多的数据,因此迫切需要具有综合测量或探测能力的仪器。

发明内容

[0005] 本发明的目的是提供一水下拉曼-荧光光谱联合探测装置,可同时实现海水成分的拉曼光谱和荧光光谱探测,以弥补现有技术在海洋化学实时探测中的不足。 [0006] 本发明将拉曼光谱技术和荧光光谱技术结合。采用深紫外波长(220~270nm)激发拉曼光谱,由于拉曼光谱信号与激发波长的四次方成反比,与通常的可见光和近红外波长的激发相比,信号强度会有几十倍甚至上百倍的提高,即激发效率高,而且由于海水中的物质荧光发射波长通常大于300nm,采用深紫外波长激光光源激发,拉曼光谱范围小于300nm,与荧光发射光谱没有重叠,可获得理想的拉曼光谱。另外,由于紫外光的光子能量与电子能级间的能量差相当,深紫外波长激发容易得到共振拉曼光谱,可使信号进一步增强。
对荧光光谱探测来说,海水中溶解的很多有机物其吸收波长集中在220~270nm,采用深紫外波长具有更高的激发效率。
[0007] 如上所述,采用深紫外波长激发,无论对拉曼光谱还是荧光光谱激发,都有着更高的激发效率,而且对这两种光谱的激发波长范围具有较好的一致性,都在220~270nm范围内,激发产生的拉曼光谱和荧光光谱光谱范围不同,即拉曼光谱<300nm,荧光光谱>300nm,易于分离,这就是本发明的构建基础。
[0008] 本发明的技术方案包括作为密封舱的外壳,外壳上的光学窗口与电缆接头,和外壳内由激光器、前置光路、光纤、光栅、探测器构成的光谱仪,以及电子控制模块,其特征在于上述的光栅是组合光栅:高分辨率的上光栅、低分辨率的下光栅,且上述的上光栅、下光栅有一定的夹角θ。
[0009] 上述的上光栅分辨率是3600grooves/mm,尺寸为32×16mm。
[0010] 上述的下光栅分辨率是300grooves/mm,尺寸为32×16mm。
[0011] 上述激光器同时作为拉曼光谱和荧光光谱的激光光源,且其波长为220~270nm。 [0012] 上述的光电探测器为紫外增强型面阵CCD或EMCCD。
[0013] 本发明的技术关键最主要的部分为光谱仪中作为分光装置的组合光栅,同时实现拉曼光谱与荧光光谱分离与探测。组合光栅由上、下两块不同分辨率、有一定夹角的光栅组成,激光照射目标物产生的拉曼、荧光混合光谱照射到组合光栅,由于上下两块光栅分辨率不同、入射角度不同,因此就可以从空间上将拉曼光谱和荧光光谱进行分离,分别获得拉曼光谱和荧光光谱,然后分离的光谱通过面阵光电探测器探测,将光谱信号转化为电信号输入计算机进行处理。又由于拉曼和荧光光谱激发波长一致,可采用相同的一个激光器作为激发光源,不但体积小,而且激发效率高。
[0014] 显然采用本发明可同时获得水中物质的拉曼光谱和荧光光谱,即实现了水下拉曼光谱和荧光光谱的联合探测,适应面广,可应用于近海环境污染物监测和深海油气资源探测等,为海洋化学探测提供一种可获得更全面信息的探测手段。

附图说明

[0015] 图1为本发明的总体结构示意图。
[0016] 图2为本发明的光谱仪的分光装置中的组合光栅的立体结构示意图。 [0017] 其中,1.外壳,2.激光器,3.光学窗口,4.前置光路,5.光纤,6.光栅,7.探测器,8.电子控制模块,9.电缆接头,10.上光栅,11.下光栅。

具体实施方式

[0018] 如图1所示,本发明包括密封舱的外壳1,外壳1上的光学窗口3与电缆接头9,和外壳1内由激光器2、前置光路4、光纤5、光栅6、探测器7构成的光谱仪,以及相应的电子控制模块8,其特征在于上述的光栅6是组合光栅:高分辨率的上光栅10、低分辨率的下光栅11,且在上、下光栅10、11之间夹角为θ,θ由公式θ=|(α1-α2)+(β1-β2)|/2确定。 [0019] 其中α1和β1分别为上光栅(10)的入射角和出射角,α2和β2分别为下光栅(11)的入射角和出射角。
[0020] 通常光栅的角度由光栅方程确定,根据已有的光栅方程可得: [0021] (m/d)λ=sinα+sinβ
[0022] 上式中,m为衍射级次,d为光棚刻痕之间的距离,即光栅每毫米刻痕数(线对)的倒数,λ为衍射光的中心波长,α和β分别是光栅的入射角和出射角。 [0023] 对于上光栅10设其入射角和出射角为α1和β1,对于下光栅11设其入射角和出射角为α2和β2,那么上述夹角θ=|(α1-α2)+(β1-β2)|/2。例如采用248nm激光器作为激发光源,上光栅10和下光栅11之间的夹角θ为26.04°。
[0024] 上述的上光栅10是3600grooves/mm(线对/mm),尺寸为32×16mm,光栅的角度随选择的激光器波长而变,光栅的角度由光栅方程确定。例如采用248nm激光器作为激发光源,光栅入射角α1为6.75°。
[0025] 上述的下光栅11是300grooves/mm,尺寸为32×16mm,中心波长为565nm,光栅角度固定在入射角α2为19.31°。
[0026] 上述激光器2同时作为拉曼光谱和荧光光谱的激光光源,且其波长为220~270nm。
[0027] 上述探测器7为紫外增强型面阵CCD或EMCCD,为获得较好的分辨率,面阵的像素是2048×2048为宜,例如可采用Princeton Instruments公司的PIXIS:2048BUVCCD,其拉曼光谱和荧光光谱分别位于面阵探测器不同位置,通过分别读取不同位置探测器的数值,即可获得拉曼光谱和荧光光谱信号。
[0028] 本发明以波长为248nm激光器,150mm焦距光谱仪和2048×2048像素的CCD为例,上光栅对应的光谱范围为29nm(248.5~277.5nm),光谱分辨率为0.035nm,下光栅对应的光谱范围为531nm(299.5~830.5nm),光谱分辨率为0.65nm。可同时满足拉曼光谱和荧光光谱的对光谱探测范围和光谱分辨率的要求。
[0029] 本发明的具体实施中,以激发光源选择248nm激光器为例,部分多环芳烃在这个波长会产生共振,大大增强探测灵敏度,从而可利用共振拉曼光谱实现多环芳烃的探测,同时由于采用深紫外激发,不仅可获得通常的海水有色可溶有机物信号,而且还可以进一步获得色氨酸等蛋白类的有机物荧光信号。这样利用深紫外波长作为激发光源的水下拉曼-荧光光谱联合探测装置一方面提高了探测灵敏度,实现了低含量成分的检测,另一方面,拓宽了物质探测范围,获得更全面的信息。