半导体封装用导线接合装置的焊针构造及导线结合方法转让专利

申请号 : CN200910053653.5

文献号 : CN101930901B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王德峻于睿吕岱烈

申请人 : 日月光封装测试(上海)有限公司

摘要 :

本发明公开一种半导体封装用导线接合装置的焊针构造及导线结合方法,所述焊针构造包含:一绝缘本体及一预热电阻层。所述绝缘本体具有一杆体部、一缩径部、一导线通道及一供线孔。所述导线通道设于所述杆体部及缩径部内,所述供线孔形成于所述缩径部的末端并连通于所述导线通道,以输出一导线。所述预热电阻层具有一阳极部、一阴极部及一热能产生部。所述阳极部及阴极部分别形成在所述杆体部的不同圆周面位置上,及所述阳极部及阴极部分别由所述杆体部延伸至所述缩径部,并且所述阳极部及阴极部在所述缩径部上相互连接而形成所述热能产生部,所述热能产生部邻近于所述供线孔。

权利要求 :

1.一种半导体封装用导线接合装置的焊针构造,其特征在于:所述焊针构造包含:

一绝缘本体,其具有一杆体部、一缩径部、一导线通道及一供线孔,所述导线通道设于所述杆体部及缩径部内,所述供线孔形成于所述缩径部的末端并连通于所述导线通道,以输出一导线;及一预热电阻层,其具有一阳极部、一阴极部及一热能产生部,所述阳极部及阴极部分别形成在所述杆体部的不同圆周面位置上,及所述阳极部及阴极部分别由所述杆体部延伸至所述缩径部,所述阳极部或阴极部的宽度大于所述热能产生部的宽度,并且所述阳极部及阴极部在所述缩径部上相互连接而形成所述热能产生部,所述热能产生部形成至少一对称型弧型回路状构造,所述弧型回路的路径不交错,且邻近于所述供线孔。

2.如权利要求1所述的半导体封装用导线接合装置的焊针构造,其特征在于:所述导线为具反应活性的导线;所述的具反应活性的导线为铜线、铝线、银线、钯线或其合金线材。

3.如权利要求1所述的半导体封装用导线接合装置的焊针构造,其特征在于:所述预热电阻层是由具电阻特性的金属或合金制成,所述金属或合金包含镍、铬、铁、铜、银、金、铂、钯、铝或其合金。

4.如权利要求1或3所述的半导体封装用导线接合装置的焊针构造,其特征在于:所述预热电阻层是选择由电镀、蒸镀或溅射来沉积形成在所述绝缘本体的表面上。

5.如权利要求1所述的半导体封装用导线接合装置的焊针构造,其特征在于:所述预热电阻层由陶瓷材料复合金属或合金的复合粉末材料加工制成。

6.如权利要求1或5所述的半导体封装用导线接合装置的焊针构造,其特征在于:所述绝缘本体的表面具有一凹槽,所述预热电阻层填入所述绝缘本体的凹槽内。

7.如权利要求1或3所述的半导体封装用导线接合装置的焊针构造,其特征在于:所述预热电阻层是一金属箔,其固定在所述绝缘本体的表面上。

8.如权利要求2所述的半导体封装用导线接合装置的焊针构造,其特征在于:所述预热电阻层的热能产生部环绕所述供线孔。

9.如权利要求1或8所述的半导体封装用导线接合装置的焊针构造,其特征在于:所述预热电阻层上另覆盖有一绝缘保护层。

10.一种半导体封装用的导线接合方法,其特征在于:所述导线接合方法包含:提供一半导体封装用的元件,其具有至少一焊垫;

提供一焊针,所述焊针包含一绝缘本体及一预热电阻层,所述绝缘本体具有一杆体部、一缩径部、一导线通道及一供线孔,及所述预热电阻层附着于所述焊针的绝缘本体,其中所述预热电阻层具有一阳极部、一阴极部及一热能产生部,所述阳极部及阴极部分别形成在所述杆体部的不同圆周面位置上,及所述阳极部及阴极部分别由所述杆体部延伸至所述缩径部,所述阳极部或阴极部的宽度大于所述热能产生部的宽度,并且所述阳极部及阴极部在所述缩径部上相互连接而形成所述热能产生部,所述热能产生部形成至少一对称型弧型回路状构造,所述弧型回路的路径不交错,且邻近于所述供线孔;

所述焊针利用所述预热电阻层的热能产生部加热所述焊针的绝缘本体;由所述焊针提供一导线,所述导线穿过所述供线孔,使所述导线的端部延伸至所述焊针外部并形成一焊球;及接合所述导线的焊球于所述半导体封装用的元件的焊垫上。

说明书 :

半导体封装用导线接合装置的焊针构造及导线结合方法

【技术领域】

[0001] 本发明是有关于一种半导体封装用导线接合装置的焊针构造及导线结合方法,特别是有关于一种可对焊球提供预热功能以保持焊球具适当软硬度的半导体封装用导线接合装置的焊针构造及导线结合方法。【背景技术】
[0002] 在半导体封装构造制造过程中,打线接合(wire bonding)技术已广泛地应用于半导体芯片与封装基板或导线架之间的电性连接上。一般打线接合制造过程是以金线(gold wire)为主,但相较于金线,由于铜线(copper wire)具有低成本的优势且具有较佳的导电性、导热性及机械强度,因而铜制焊线的线径可设计得更细且散热效率较佳。然而,铜线最大的缺点在于铜金属本身容易与氧起氧化反应;以及铜金属本身的硬度较大,可能在打线期间产生较大的冲击作用力予焊垫表面。上述问题可能影响铜线与半导体芯片或基板的焊垫之间的结合可靠度及结合良品率(yield),并可能造成焊垫的损坏。
[0003] 为了解决上述技术问题,美国专利公开第2007/0251980号提出一种打线用减少氧化系统(Reduce Oxidation System for Wire Bonding),其适用于具有反应活性的导线(如铜线),其中一打线机台包含:一结合位置区,用以在打线过程中支撑一半导体装置,所述半导体装置包含一基板及一芯片;一焊针(capillary),用以输出一具反应活性的导线(如铜线);一电子火焰熄灭杆(electronic flame offwand),用以在导线的端部形成焊球;一第一气体供应管,用以在导线(如铜线)形成焊球时,提供一氮气及氢气的混合气体,以减少导线的氧化,并利用氢气与周遭氧气的氧化反应而提供高温,以提供热能维持焊球具适当软硬度(或称为可塑性);以及,一第二气体供应管,具有一出口朝向所述结合位置区,所述第二气体供应管可以由所述结合位置区的上方提供另一混合气体至所述结合位置区,以便在导线结合所述基板及芯片的过程中,减少导线的氧化及维持焊球的软硬度。
[0004] 虽然上述打线机台可利用所述第一及第二气体供应管提供混合气体,以覆盖处于高温环境下的导线并避免导线氧化及维持焊球的软硬度,但是实际上作业常遇到的问题在于:若混合气体供应量太少,则导线可能氧化或硬度太高;若气体供应量太多,则可能过度浪费气体使用量或硬度太软。因此,若仅要求操作人员依靠经验调控气体控制阀门,以控制气体的单位时间流量,显然无法达到即时精准调整控制导线氧化程度及焊球软硬度等参数的目的。若焊球的硬度过大,则可能在打线期间产生较大的冲击作用力予焊垫表面,因此可能影响铜线与焊垫之间的结合可靠度及结合良品率(yield),并可能造成焊垫的损坏。
[0005] 故,有必要提供一种半导体封装用导线接合装置的焊针改良构造,以解决现有技术所存在的问题。【发明内容】
[0006] 本发明的主要目的在于提供一种半导体封装用导线接合装置的焊针构造及导线结合方法,其是在焊针表面设置预热电阻层,其可在通电后产生热能,以对焊针尖端的焊球提供预热功能,以保持焊球具适当软硬度(可塑性),进而提高导线与焊垫之间的结合可靠度及结合良品率(yield),并相对降低造成焊垫损坏的机率。
[0007] 本发明的次要目的在于提供一种半导体封装用导线接合装置的焊针构造及导线结合方法,其是在焊针表面设置预热电阻层,预热电阻层包含至少一弧型回路,其环绕供线孔,以利用足够的回路长度来扩大总预热表面积,故能相对提高预热效果。
[0008] 本发明的另一目的在于提供一种半导体封装用导线接合装置的焊针构造及导线结合方法,其是在焊针表面设置预热电阻层,以对焊针尖端的焊球提供预热功能,故能相对减少对氢气燃烧供热的需求,以降低保护气体中氢气的使用量,进而相对降低打线程序的加工成本。
[0009] 为达成本发明的前述目的,本发明提供一种半导体封装用导线接合装置的焊针构造,其特征在于:所述焊针构造包含:一绝缘本体,其具有一杆体部、一缩径部、一导线通道及一供线孔,所述导线通道设于所述杆体部及缩径部内,所述供线孔形成于所述缩径部的末端并连通于所述导线通道,以输出一导线;及一预热电阻层,其具有一阳极部、一阴极部及一热能产生部,所述阳极部及阴极部分别形成在所述杆体部的不同圆周面位置上,及所述阳极部及阴极部分别由所述杆体部延伸至所述缩径部,并且所述阳极部及阴极部在所述缩径部上相互连接而形成所述热能产生部,所述热能产生部邻近于所述供线孔。
[0010] 在本发明的一实施例中,所述导线为具反应活性的导线;所述的具反应活性的导线为铜线、铝线、银线、钯线或其合金线材。
[0011] 在本发明的一实施例中,所述绝缘本体由陶瓷材料制成,所述陶瓷材料包含氧化铝、氧化锆或其混合。
[0012] 在本发明的一实施例中,所述预热电阻层是由具电阻特性的金属或合金制成,所述金属或合金包含镍、铬、铁、铜、银、金、铂、钯、铝或其合金。
[0013] 在本发明的一实施例中,所述预热电阻层是选择由电镀、蒸镀或溅射来沉积形成在所述绝缘本体的表面上。
[0014] 在本发明的一实施例中,所述预热电阻层由陶瓷材料复合金属或合金的复合粉末材料加工制成。
[0015] 在本发明的一实施例中,所述绝缘本体的表面具有一凹槽,所述预热电阻层是网版印刷填入所述绝缘本体的凹槽内。
[0016] 在本发明的一实施例中,所述预热电阻层是一金属箔,其固定在所述绝缘本体的表面上。
[0017] 在本发明的一实施例中,所述预热电阻层的热能产生部是至少一弧型回路,其环绕所述供线孔。
[0018] 在本发明的一实施例中,所述预热电阻层上另覆盖有一绝缘保护层。
[0019] 在本发明的一实施例中,所述绝缘保护层选自低散热性绝缘材料。或者,所述绝缘保护层选自绝缘漆料,并在其外表面另外多加一低散热材料层。
[0020] 在本发明的一实施例中,所述阳极部或阴极部的宽度大于所述热能产生部的宽度。
[0021] 另一方面,本发明提供一种半导体封装用的导线接合方法,其特征在于:所述导线接合方法包含:提供一半导体封装用的元件,其具有至少一焊垫;提供一焊针,所述焊针包含一绝缘本体及一预热电阻层,所述绝缘本体具有一杆体部、一缩径部、一导线通道及一供线孔,及所述预热电阻层附着于所述焊针的绝缘本体,其中所述预热电阻层具有一阳极部、一阴极部及一热能产生部,所述阳极部及阴极部分别形成在所述杆体部的不同圆周面位置上,及所述阳极部及阴极部分别由所述杆体部延伸至所述缩径部,并且所述阳极部及阴极部在所述缩径部上相互连接而形成所述热能产生部,所述热能产生部邻近于所述供线孔;所述焊针利用所述预热电阻层的热能产生部加热所述焊针的绝缘本体;由所述焊针提供一导线,所述导线穿过所述供线孔,使所述导线的端部延伸至所述焊针外部并形成一焊球;及接合所述导线的焊球于所述半导体封装用的元件的焊垫上。
【附图说明】
[0022] 图1是本发明第一实施例半导体封装用导线接合装置的示意图。
[0023] 图2是本发明第一实施例半导体封装用导线接合装置的使用示意图。
[0024] 图3是本发明第一实施例半导体封装用导线接合装置的焊针构造的俯视图。
[0025] 图4是本发明第一实施例半导体封装用导线接合装置的另一焊针构造的纵向剖视图。
[0026] 图4A是本发明图4的局部放大图。
[0027] 图5是本发明第二实施例半导体封装用导线接合装置的焊针构造的俯视图。【具体实施方式】
[0028] 为让本发明上述目的、特征及优点更明显易懂,下文特举本发明较佳实施例,并配合附图,作详细说明如下:
[0029] 请参照图1及2所示,本发明第一实施例的半导体封装用导线接合装置主要包含一焊针(capillary)1、一电子点火杆(spark rod)2、一第一气体供应管3及一第二气体供应管4,上述元件共同装设在所述接合装置的一可移动式的机构(未绘示)上,以在打线(wire bonding)期间同步移动。在本实施例中,所述焊针1是一中空微型针状元件,用以输出一导线5,所述焊针1的细部构造将于下文另予详细说明。再者,所述电子点火杆2可适时产生火花,使所述焊针1输出的导线5的端部形成一焊球51。所述电子点火杆2并可选择结合在所述第一气体供应管3上。所述第一气体供应管3也邻接于所述焊针1,且所述第一气体供应管3具有一第一供气口31,所述第一供气口31朝向所述焊针1的一导线成球位置,以对所述导线成球位置提供一第一保护气体32。所述导线成球位置指的是所述导线5的端部形成所述焊球51时所在的一空间位置。再者,所述第二气体供应管4邻接于所述焊针1,且通常与所述第一气体供应管3位在所述焊针1的不同侧。所述第二气体供应管4具有一第二供气口41,所述第二供气口41朝向所述焊针1的一导线焊接位置,以对所述导线焊接位置提供一第二保护气体42。所述导线焊接位置指的是所述导线5焊接至一半导体封装半成品6时所在的一空间位置。在本实施例中,所述第一及第二保护气体32、42优选包含氮(N2)、氩(Ar)或其组合,并可选择另混合有氢(H2)等还原气体。所述第一及第二保护气体32、42所含的气体种类及比例可选择为相同或不同。另外,所述导线5优选为具反应活性的导线5,例如选自铜线(Cu)、铝线(Al)、银线(Ag)、钯线(Pd)或其合金线材。
[0030] 请参照图1、2及3所示,本发明第一实施例的焊针1包含一绝缘本体11及一预热电阻层12。所述绝缘本体11由熔点高于所述导线5熔点的耐热绝缘材质所制成,所述耐热绝缘材质优选为陶瓷材料,所述陶瓷材料可包含氧化铝、氧化锆或其混合,但并不限于此。所述绝缘本体11具有一杆体部111、一缩径部112、一导线通道113及一供线孔114,所述杆体部111与缩径部112是由耐热绝缘材质所制成的一体成型微型针状元件,在本发明中,所述杆体部111与缩径部112仅是概述其基本形状的差别,两者的实际形状可能因为打线需求而有所改变,例如所述杆体部111可以是圆柱型、多角柱型、多段式柱型或其他杆型或柱型,而所述缩径部112可以是圆锥型、角锥型、多段式渐缩锥型、细针型或外径比所述杆体部111为小的其他型态;惟,所述杆体部111与缩径部112的形状并非用以限制本发明。
再者,所述导线通道113是设于所述杆体部111及缩径部112内的一中空通道,其内径稍大于所述导线5,并可由所述导线通道113的顶端输入所述导线5。所述供线孔114则形成于所述缩径部112的末端并连通于所述导线通道113,所述供线孔114可以输出所述导线5,所述供线孔114的形状通常是呈圆弧凹槽状,但并不限于此。
[0031] 请再参照图1、2、3、4及4A所示,本发明第一实施例的预热电阻层12是由具电阻特性的金属或合金制成,且其熔点必需高于所述导线5的预热温度设定值(例如介于150℃至所述导线5的熔点之间),上述具电阻特性的金属或合金可根据所述导线5的材质而选自镍、铬、铁、铜、银、金、铂、钯、铝或其合金,例如选自镍铬铁合金或镍铬合金。所述预热电阻层12是选择由电镀(electroplating)、蒸镀(evaporation)或溅射(sputtering)来沉积形成在所述绝缘本体11的表面上。如图4及4A所示,在第一实施例的另一焊针1构造中,所述预热电阻层12亦可能是由陶瓷材料复合金属或合金的复合粉末材料所制成。此时,所述绝缘本体11的表面可先利用激光(laser)加工形成一凹槽115,可再利用网版印刷(printing)方式将复合粉末材料填入所述绝缘本体11的凹槽115内,以形成嵌镶状的所述预热电阻层12的各个部位,如此嵌镶状的构造可获得更好的结合强度,亦方便调整材料的电阻值,且所述预热电阻层12向内加热所述导线5的效率将更好,同时嵌镶状的构造亦具有保持热能及减少热能损失的效果。或者,所述预热电阻层12亦可能是一预制的金属箔(例如镍铬铁合金、镍铬合金的箔片),其利用耐热粘胶(例如环氧树脂)、焊接、静电或通过固定用线材等辅助配件等物理性固定方式贴覆固定在所述绝缘本体11的表面上或凹槽115内。再者,必要时,本发明另可在所述预热电阻层12上另覆盖有一绝缘保护层13,例如各种耐热漆料,例如绿漆(即防焊层solder mask),但并不限于此。所述绝缘保护层13可用以避免所述预热电阻层12在长期使用下发生氧化问题。再者,所述绝缘保护层13可选自低散热性绝缘材料,以提供电性绝缘、保持热能以及减少热能损失等多重效果。或者,所述绝缘保护层13选自绝缘漆料,并在所述绝缘保护层13的外表面再另外多加一低散热材料层(未绘示),如此亦可达到相同效果。
[0032] 请再参照图1、2及3所示,本发明第一实施例的预热电阻层12具有一阳极部121、一阴极部122及一热能产生部123,所述阳极部121及阴极部122分别形成在所述绝缘本体11的杆体部111的不同圆周面位置上,及所述阳极部121及阴极部122分别由所述杆体部111延伸至所述缩径部112,并且所述阳极部121及阴极部122在所述缩径部112上相互连接而形成所述热能产生部123,所述热能产生部123邻近于所述供线孔114。在本实施例中,所述阳极部121或阴极部122的宽度优选皆大于所述热能产生部123的宽度,但所述阳极部121及阴极部122的宽度可以相同或不同,其设计优点在于:所述阳极部121及阴极部122的大面积宽度能方便向外电性连接外部电源的导线(未绘示),同时所述热能产生部123的宽度愈小,通过的电流密度愈大,产生热能的效率愈高。所述热能产生部123是形成多重的弧型回路状构造,例如包含一第一弧型回路123a及一第二弧型回路123b。所述第一弧型回路123a包含二个概呈半圆弧型的部分,每一部分的一端分别连接所述阳极部121及阴极部122,及每一部分的另一端则连接所述第二弧型回路123b的二端。所述第一弧型回路123a环绕在所述第二弧型回路123b外侧。所述第二弧型回路123b概呈C型,其环绕于所述供线孔114外侧。
[0033] 请参照图1、2及3所示,当使用本发明第一实施例的半导体封装用导线接合装置进行打线(wire bonding)时,本发明的半导体封装用的导线接合方法包含下列步骤:提供一半导体封装用的元件,其具有至少一焊垫(未标示);提供一焊针1,所述焊针1包含一绝缘本体11及一预热电阻层12,所述绝缘本体11具有一杆体部111、一缩径部112、一导线通道113及一供线孔114,及所述预热电阻层12附着于所述焊针1的绝缘本体11,其中所述预热电阻层12具有一阳极部121、一阴极部122及一热能产生部123,所述阳极部121及阴极部122分别形成在所述绝缘本体11的不同圆周面位置上,及所述阳极部121及阴极部122分别由所述杆体部111延伸至所述缩径部112,并且所述阳极部121及阴极部122在所述缩径部112上相互连接而形成所述热能产生部123,所述热能产生部123邻近于所述供线孔114;所述焊针1利用所述预热电阻层12的热能产生部123加热所述焊针1的绝缘本体
11;由所述焊针1提供一导线5,所述导线5穿过所述供线孔114,使所述导线5的端部延伸至所述焊针1外部并形成一焊球51;及接合所述导线5的焊球51于所述半导体封装用的元件的焊垫上。
[0034] 在上述导线接合方法中,所述接合装置下方预先放置有一半导体封装半成品6,其具有一载板61及至少一半导体芯片62(如图2所示),所述载板61可选自单层或多层的电路基板(substrate),或选自导线架(leadframe)。所述载板61及半导体芯片62即为半导体封装用的元件,两者的表面各具有至少一焊垫(未标示)。在使用时,由所述焊针1的供线孔114输出一具反应活性的导线5,利用所述电子点火杆2使所述导线5的端部在导线成球位置形成一焊球51,并在成球期间利用所述第一气体供应管3的第一供气口31朝向所述导线成球位置提供一第一保护气体32。接着,移动所述焊针1及其输出的导线5至一导线焊接位置进行焊接,并在焊接期间利用所述第二气体供应管4的供气口41朝向所述导线焊接位置提供一第二保护气体42。在焊接期间,如图2所示,所述焊针1首先压迫所述导线5的焊球51,使所述焊球51焊接结合至所述半导体芯片62(或载板61)表面的焊垫上;接着,所述焊针1牵引所述导线5,并由所述供线孔11进一步输出一段长度的导线5,直到所述导线5延伸至所述载板61(或半导体芯片62)的焊垫上。之后,所述焊针1压迫所述导线5,使所述导线5焊接结合至所述载板61(或半导体芯片62)的焊垫上,并扯断所述导线5。在完成焊接动作后,所述焊针1回复至所述导线成球位置,以进行下一周期的成球及焊接动作。
[0035] 值得注意的是,在上述成球及焊接期间,本发明导线接合装置的阳极部121及阴极部122已预先电性连接外部电源(未绘示),以便在上述形成所述焊球51前后,由所述外部电源通入电流至所述热能产生部123,如此所述第二弧型回路123b及第一弧型回路123a处将因金属、合金或其复合材质本身的电阻特性而产生热能,所述第二弧型回路123b及第一弧型回路123a的总长度则可用以扩大总预热表面积。所述热能可以使所述绝缘本体11邻近于所述供线孔114的位置保持在一预热温度设定值,例如介于150℃至所述导线5的熔点之间;若所述导线5为铜合金导线,则铜合金导线的熔点约为1100℃,而所述预热温度设定值可设定在175℃至500℃之间,但并不限于此。因此,所述热能产生部123的第二弧型回路123b及第一弧型回路123a将可提供预热功能,以保持所述焊球51具适当软硬度(可塑性),进而在焊接期间提高所述导线5与焊垫之间的结合可靠度及结合良品率(yield),并相对降低造成所述焊垫损坏的机率。
[0036] 请参照图5所示,其揭示本发明第二实施例的半导体封装用导线接合装置的焊针构造的俯视图,第二实施例的半导体封装用导线接合装置的焊针构造相似于本发明第一实施例,但第二实施例的差异特征在于:所述第二实施例的热能产生部123仅具单一弧型回路,其概呈C型,并环绕于所述供线孔114外侧。本发明第二实施例的热能产生部123相对具有较简单的架构,能相对简化构造及焊针购置成本,但所述热能产生部123仍可产生足够热能来使所述绝缘本体11邻近于所述供线孔114的位置保持在一预热温度设定值,以提供预热功能保持所述焊球51具适当软硬度(可塑性),进而在焊接期间提高所述导线5与焊垫之间的结合可靠度及结合良品率(yield),并相对降低造成所述焊垫损坏的机率。
[0037] 如上所述,相较于现有铜线打线程序中常因铜金属本身的硬度较大,而使铜线的焊球可能在打线期间产生较大的冲击作用力予焊垫表面,导致影响铜线与焊垫之间的结合可靠度及结合良品率等缺点,图1至5的本发明通过在所述焊针1表面设置所述预热电阻层12,其可在通电后产生热能,以对所述焊针1尖端的焊球51提供预热功能,以保持所述焊球51具适当软硬度(可塑性),进而提高所述导线5与焊垫之间的结合可靠度及结合良品率(yield),并相对降低造成焊垫损坏的机率。再者,本发明在所述焊针1表面设置所述预热电阻层12,所述预热电阻层12包含至少一弧型回路,其环绕所述供线孔114,以利用足够的回路长度来扩大总预热表面积,故能相对提高预热效果。另外,本发明在所述焊针1表面设置所述预热电阻层12,以对所述焊针1尖端的焊球51提供预热功能,其亦能相对减少对氢气燃烧供热的需求,以降低保护气体32、42中氢气的使用量,进而相对降低铜线打线程序的加工成本。
[0038] 本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。