柔性半导体器件的制造方法转让专利

申请号 : CN200910108702.0

文献号 : CN101944477B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王雪深李群庆

申请人 : 清华大学鸿富锦精密工业(深圳)有限公司

摘要 :

本发明涉及一种柔性半导体器件的制造方法,其包括以下步骤:提供一硬基底,该硬基底具有一表面;提供一柔性基底,该柔性基底具有一第一表面及与该第一表面相对设置的一第二表面,将该柔性基底的第一表面固定于所述硬基底的表面;采用半导体加工工艺直接在所述柔性基底的第二表面形成半导体器件;以及去除所述硬基底,形成一柔性半导体器件。上述制造方法可以避免在所述柔性基底上直接进行半导体加工以形成柔性半导体器件时,所述柔性基底自身发生卷曲及表面起伏的现象,便于进行加工且可以提高该柔性半导体器件的精度。

权利要求 :

1.一种柔性半导体器件的制造方法,其包括以下步骤:

提供一硬基底,该硬基底具有一表面;

提供一柔性基底,该柔性基底具有一第一表面及与该第一表面相对设置的一第二表面;

在所述硬基底的表面形成一粘结层;

当所述粘结层未固化或未凝固时,将所述柔性基底的第一表面的一侧边缘接触所述粘结层,并使该柔性基底的第一表面逐渐与所述粘结层接触;

真空处理所述柔性基底与所述粘结层,去除该柔性基底与该粘结层的界面之间的气泡;

固化所述粘结层,使得该柔性基底的第一表面固定于所述硬基底的表面;采用半导体加工工艺直接在所述柔性基底的第二表面形成半导体器件;以及去除所述硬基底,形成一柔性半导体器件。

2.如权利要求1所述的柔性半导体器件的制造方法,其特征在于,所述柔性基底的材料为聚对苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚醚砜、聚丙烯、聚丙硫醚、聚碳酸酯、聚醚酰亚胺、聚苯硫醚、聚苯醚、聚砜或聚邻苯二甲酸胺。

3.如权利要求1所述的柔性半导体器件的制造方法,其特征在于,在所述硬基底的表面形成一粘结层的方法包括:提供一粘结层的材料;清洗所述硬基底的表面;以及将所述粘结层的材料涂于该清洗后的硬基底的表面。

4.如权利要求3所述的柔性半导体器件的制造方法,其特征在于,所述清洗所述硬基底的方法为:预先采用丙酮、异丙醇或乙醇清洗所述硬基底;去离子水清洗该硬基底;以及对该硬基底进行等离子处理。

5.如权利要求1所述的柔性半导体器件的制造方法,其特征在于,所述粘结层的材料为聚酰亚胺、环氧树脂、丙烯酸树脂、聚酯、聚酰胺、硅树脂、三聚氰胺树脂、苯酚树脂或聚二甲基硅氧烷。

6.如权利要求1所述的柔性半导体器件的制造方法,其特征在于,所述半导体加工工艺包括溅射、蒸镀、化学沉积、掩模或刻蚀。

7.如权利要求1所述的柔性半导体器件的制造方法,其特征在于,所述半导体器件包括薄膜晶体管、场效应晶体管、发光二极管或光敏电阻。

8.如权利要求7所述的柔性半导体器件的制造方法,其特征在于,所述半导体器件为薄膜晶体管,所述在柔性基底的第二表面形成薄膜晶体管的方法包括以下步骤:形成一栅极于该柔性基底的第二表面;形成一绝缘层覆盖所述栅极;形成一半导体层于所述绝缘层表面;以及在所述半导体层的表面形成一源极及一漏极,并使该源极及漏极间隔设置且与该半导体层电连接,形成一薄膜晶体管。

9.如权利要求1所述的柔性半导体器件的制造方法,其特征在于,所述半导体器件为发光二极管,所述在柔性基底的第二表面形成发光二极管的方法包括以下步骤:在所述柔性基底的第二表面依次形成一第一半导体层、一活性层及一第二半导体层;对第二半导体层、活性层进行刻蚀,直至暴露出第一半导体层的表面;以及在第二半导体层的表面形成一第二电极,及在第一半导体层的表面形成一第一电极。

10.如权利要求1所述的柔性半导体器件的制造方法,其特征在于,所述去除所述硬基底的方法包括外力剥离法、加热法或刻蚀法。

说明书 :

柔性半导体器件的制造方法

技术领域

[0001] 本发明涉及一种半导体器件的制造方法,尤其涉及一种柔性半导体器件的制造方法。

背景技术

[0002] 传统的半导体器件如薄膜晶体管或发光二极管,通常是在玻璃等硬基底上形成的。最近,替代半导体器件玻璃基底的柔性基底如塑料基底的研究业已进行。柔性半导体器件用的柔性基底有耐用、重量轻、柔韧性较好等优点,因此,柔性半导体器件具有广阔的应用前景。
[0003] 然而,柔性基底自身会有卷曲、表面起伏等特点,不利于采用传统半导体加工工艺在该柔性基底上形成一半导体器件。为此,日本的TsunenoriSuzuki等人于2007年3月1日在美国公开的、公开号为US 2007/0045621A1,标题为“SEMICONDUCTOR DEVICE AND MANUFACTURING METHODTHEREOF”的专利申请中揭示一种柔性半导体器件及其制造方法。
[0004] 请参阅图1,所述柔性半导体器件的制造方法包括:在硬基底101上形成分离层102;在分离层102上形成绝缘层103;在绝缘层103上形成半导体元件1111;和需要连接到该半导体元件1111上的第一电极层104;在该部分第一电极层104上形成一无机绝缘层
1115;在该第一电极层104及无机绝缘层1115上形成含有有机化合物的层105,并形成与含有有机化合物的层105和无机绝缘层1115接触的第二电极层106;以及将柔性基底108固定到第二电极层106,然后在分离层102处将硬基底101和形成半导体元件1111的绝缘层103彼此分离,以形成具有柔性基底108的半导体器件。
[0005] 上述制造方法虽然提供了一种柔性半导体器件的制造方法,但该制造方法是先在硬基底101上形成一柔性半导体器件,并将柔性基底108固定到该柔性半导体器件上,然后再将在硬基底101上形成的半导体器件与该硬基底101分离,从而得到一柔性半导体器件。然而,上述制造方法较复杂,且并没有揭示在具有易卷曲及表面易起伏的柔性基底上直接进行半导体加工以制造柔性半导体器件的方法。

发明内容

[0006] 有鉴于此,本发明提供一种简单的能在柔性基底上直接制造柔性半导体器件的方法。
[0007] 一种柔性半导体器件的制造方法,其包括以下步骤:提供一硬基底,该硬基底具有一表面;提供一柔性基底,该柔性基底具有一第一表面及与该第一表面相对设置的一第二表面,将该柔性基底的第一表面固定于所述硬基底的表面;采用半导体加工工艺直接在所述柔性基底的第二表面形成半导体器件;以及去除所述硬基底,形成一柔性半导体器件。
[0008] 与现有技术相比较,本发明提供的柔性半导体器件的制造方法是先将柔性基底固定于硬基底的表面,然后在所述柔性基底的第二表面直接进行半导体加工以形成柔性半导体器件,该种方法可以避免在所述柔性基底上直接进行半导体加工以形成柔性半导体器件时,所述柔性基底自身发生卷曲及表面起伏的现象,便于进行加工且可以提高该柔性半导体器件的精度。本发明提供的柔性半导体器件的制造方法具有方法简单、易于操作的特点。

附图说明

[0009] 图1是现有技术制造柔性半导体器件的工艺流程图。
[0010] 图2是本发明第一实施例提供的柔性半导体器件的制造方法流程图。
[0011] 图3是本发明第一实施例提供的柔性半导体器件的制造工艺流程图。
[0012] 图4是本发明第二实施例提供的柔性半导体器件的制造方法流程图。
[0013] 图5是本发明第二实施例提供的柔性半导体器件的制造工艺流程图。

具体实施方式

[0014] 下面将结合附图对本发明提供的一种柔性半导体器件的制造方法作进一步的详细说明。
[0015] 请参阅图2,本发明第一实施例提供的一种柔性半导体器件,即底栅型薄膜晶体管的制造方法,该制造方法包括以下步骤:(s110)提供一硬基底,该硬基底具有一表面;(s120)提供一柔性基底,该柔性基底具有一第一表面及与该第一表面相对设置的第二表面,将该柔性基底的第一表面固定于所述硬基底的表面;(s130)采用半导体加工工艺直接在所述柔性基底的第二表面形成半导体器件;(s140)去除所述硬基底,形成一柔性半导体器件。
[0016] 请参阅图3,在所述步骤(s110)中,提供一硬基底12,该硬基底具有一表面122。所述硬基底12的表面122比较平整。该硬基底12的表面122可预先经过丙酮、异丙醇或乙醇进行清洗;再用去离子水清洗,并用氧气等离子处理,以保证该硬基底12的表面122比较干净,从而有利于后续工艺的进行。所述硬基底12的材料为玻璃、石英、氮氧化硅、氮化硅、金属或硬质塑料等材料。所述硬基底12的形状不限,根据实际需要确定。本实施例中,所述硬基底12为方形的玻璃。
[0017] 所述步骤(s120)具体地包括以下步骤:(s121)在所述硬基底12上形成一粘结层14;(s122)提供一柔性基底16,该柔性基底16具有一第一表面162及与该第一表面162相对设置的第二表面164;(s123)当所述粘结层14未固化或未凝固时,将所述柔性基底16的第一表面162的一侧边缘18接触该粘结层14,并将该柔性基底16从该边缘18置于该粘结层14上;(s124)固化所述粘结层14。
[0018] 在上述步骤(s121)中:首先,提供一粘结材料。该粘结材料具有流动性、可以凝固或固化以及不溶于丙酮、异丙醇和乙醇等特点。该粘结材料可以为聚酰亚胺、环氧树脂、丙烯酸树脂、聚酯、聚酰胺、硅树脂、三聚氰胺树脂、苯酚树脂或聚二甲基硅氧烷等材料。本实施例中,所述粘结材料为聚二甲基硅氧烷。其次,将所述粘结材料旋涂于所述硬基底12上,以形成粘结层14。由于所述硬基底12经过清洗,其表面比较干净,有利于增加该硬基底12与所述粘结材料的结合力。该步骤还可以用甩胶的方式将所述粘结材料涂于所述硬基底12上。
[0019] 在上述步骤(s122)中:所述柔性基底16需要进行清洗。具体地,该柔性基底16可预先经过丙酮、异丙醇或乙醇进行清洗;再用去离子水清洗,并用氧气等离子处理,以保证该柔性基底16的表面干净。其中,所述柔性基底16具有柔软、薄而且质量轻的特点。该柔性基底16的材料为聚对苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚醚砜、聚丙烯、聚丙硫醚、聚碳酸酯、聚醚酰亚胺、聚苯硫醚、聚苯醚、聚砜或聚邻苯二甲酸胺等聚合物材料。所述柔性基底16的厚度及形状不限,可以根据实际需要确定。所述柔性基底16的厚度可以大于等于10微米。本实施例中,所述柔性基底16的材料为透明的聚对苯二甲酸乙二酯,该柔性基底16的厚度为30微米,该柔性基底16的形状为方形。
[0020] 所述步骤(s123)中,当所述粘结层14未固化或未凝固时,将所述柔性基底16的第一表面162一侧边缘18接触该粘结层14,并使该柔性基底16的第一表面162逐渐与所述粘结层14接触。这样,有利于去除该柔性基底16与该粘结层14接触时产生的气泡,使两者较好的结合,从而该柔性基底16比较平坦,不易卷曲。
[0021] 在上述步骤(s124)中:首先,将所述具有柔性基底16的硬基底12放入一真空机中进行真空处理,以去除所述柔性基底16的第一表面162与所述粘结层14界面之间可能存在的气泡,使得该柔性基底16更加平坦。其次,固化或凝固所述粘结层14。所述固化或凝固的方式包括自然干燥、高温干燥或冷却干燥。本实施例中,采用自然干燥的方法固化聚二甲基硅氧烷。
[0022] 所述柔性基底16由于设置在未固化或未凝固的粘结层14上,可以避免该柔性基底16由于其自身引起的卷曲及表面起伏,使得该柔性基底16能够与该粘结层14较好的结合,从而柔性基底16的表面比较平坦,以便利用半导体加工工艺直接在其表面进行加工,形成柔性半导体器件。
[0023] 所述步骤(s130)中,采用蒸镀、溅射、化学沉积、掩模或刻蚀等半导体加工工艺直接在所述柔性基底16的第二表面164形成半导体器件。所述半导体器件包括薄膜晶体管、场效应晶体管、发光二极管或光敏电阻等。
[0024] 本实施例中,采用半导体加工工艺直接在柔性基底16的第二表面164进行加工,以形成一底栅型薄膜晶体管20。具体地包括以下步骤:(s131)形成一栅极220于该清洗后的柔性基底16的第二表面164;(s132)形成一绝缘层230覆盖所述栅极220;(s133)形成一半导体层240于所述绝缘层230表面;(s134)在半导体层240上形成一源极251及一漏极252,并使该源极251及漏极252间隔设置且与上述半导体层240电连接。
[0025] 在步骤(s131)中,该栅极220的材料应具有较好的导电性。具体地,该栅极220的材料可以为金属、合金、氧化铟锡(ITO)、锑锡氧化物(ATO)、导电银胶、导电聚合物或碳纳米管膜等导电材料。该金属可以为铝、铜、钨、钼或金。该合金为铝、铜、钨、钼和金中两种以上金属的合金。具体地,当该栅极220的材料为金属、合金、ITO或ATO时,可以通过蒸镀、溅射、化学沉积、掩模或刻蚀等方法形成栅极220。当该栅极220的材料为导电银胶、导电聚合物或碳纳米管膜时,可以通过直接黏附或印刷涂覆的方法形成栅极220。一般地,该栅极220的厚度为0.5纳米~100微米。
[0026] 本实施例中,该栅极220的材料为ITO,形成栅极220的方法具体可通过下述两种方式进行。
[0027] 第一种方式具体包括以下步骤:首先,在所述柔性基底16的第二表面164均匀涂覆一层光刻胶;其次,通过曝光及显影等光刻方法在光刻胶上形成栅极区域;再次,通过真空蒸镀、磁控溅射或电子束蒸发等沉积方法在上述栅极区域表面沉积一ITO层;最后,通过丙酮等有机溶剂去除光刻胶及其上的ITO层,即得到形成在柔性基底16的第二表面164上的栅极220。
[0028] 第二种方式具体包括以下步骤:首先,在柔性基底16的第二表面164沉积一ITO层;其次,在该ITO层表面涂覆一层光刻胶;再次,通过曝光及显影等光刻方法去除栅极区域外的光刻胶;最后,通过等离子体刻蚀等方法去除栅极区域外的金属层,并以丙酮等有机溶剂去除栅极区域上的光刻胶,即得到形成在柔性基底16的第二表面164上的栅极220。本实施例中,该栅极220的厚度约为1微米。
[0029] 在步骤(s132)中形成一绝缘层230覆盖所述栅极220。所述绝缘层230的材料可以为氮化硅、氧化硅等硬性材料或苯并环丁烯、聚酯、丙烯酸树脂等柔性材料。根据绝缘层230的材料种类的不同,可以采用不同方法形成该绝缘层230。具体地,当该绝缘层230的材料为氮化硅或氧化硅时,可以通过沉积的方法形成绝缘层230。当该绝缘层230的材料为苯并环丁烯、聚酯或丙烯酸树脂时,可以通过印刷涂覆的方法形成绝缘层。一般地,该绝缘层230的厚度为0.5纳米~100微米。本实施例中采用印刷涂覆苯并环丁烯的方法形成所述绝缘层230,使之覆盖于所述栅极220的表面。所述绝缘层230的厚度约为1微米。
[0030] 在步骤(s133)中形成一半导体层240于所述绝缘层230表面。该半导体层240的材料为非晶硅、多晶硅、有机半导体聚合物、纳米膜、纳米线状结构或纳米管等。根据形成半导体层240的材料种类的不同,可以采用不同方法形成该半导体层240。具体地,当半导体层240的材料为非晶硅或多晶硅时,可以通过化学气相沉积法形成半导体层240。当半导体层240的材料为有机半导体聚合物或纳米膜时,可以通过直接黏附或印刷涂覆有机半导体聚合物或碳纳米管膜的方法将该有机半导体聚合物或碳纳米管膜涂覆或黏附于绝缘层表面,形成半导体层240。当半导体层240的材料为纳米管或纳米线状结构时,可以通过转印的方法将纳米管或纳米线状结构转移到绝缘层230表面。一般地,所述半导体层240的厚度为0.5纳米~100微米。本实施例中,所述半导体层240的材料为碳纳米管膜,其厚度为1微米。
[0031] 在步骤(s134)中,该源极251及漏极252的材料应具有较好的导电性。具体地,该源极251及漏极252的材料可以为金属、合金、ITO、ATO、导电银胶、导电聚合物或碳纳米管薄膜等导电材料。根据形成源极251及漏极252的材料种类的不同,可以采用不同方法形成该源极251及漏极252。具体地,当该源极251及漏极252的材料为金属、合金、ITO或ATO时,可以通过蒸镀、溅射、沉积、掩模或刻蚀等方法形成源极251及漏极252。当该源极251及漏极252的材料为导电银胶、导电聚合物或碳纳米管膜时,可以将该导电银胶、导电聚合物或碳纳米管膜直接黏附或印刷涂覆于半导体层240的表面,形成源极251及漏极252。一般地,该源极251及漏极252的厚度为0.5纳米~100微米,源极251至漏极252之间的距离为1微米~100微米。
[0032] 本实施例中通过采用与形成栅极220相似的刻蚀方法在半导体层240上形成一源极251及漏极252,进而形成所述薄膜晶体管20。该源极251及漏极252与所述半导体层240电连接,且该源极251与漏极252间隔设置。该源极251及漏极252的厚度为1微米,源极251至漏极252之间的距离为50微米。该源极251及漏极252的材料为铝金属。
[0033] 所述步骤(s140)去除所述硬基底12,以形成一柔性半导体器件的方法为:采用外力直接将所述硬基底12及粘结层14与所述柔性基底16剥离。本实施例中,当玻璃硬基底12及粘结层14与聚对苯二甲酸乙二酯柔性基底16分离后,聚对苯二甲酸乙二酯柔性基底
16的透明度几乎没有改变,而且仍具有柔软性。当然,该步骤也可以采用其他方法使硬基底与柔性基底分离,如,加热法、刻蚀法。从而得到本实施例所述的底栅型柔性基底薄膜晶体管20。
[0034] 可以理解,采用与本实施例类似的方法也可以制备薄膜晶体管阵列,如顶栅型薄膜晶体管阵列。形成顶栅型薄膜晶体管阵列具体包括以下步骤:提供一硬基底,该硬基底具有一表面;提供一柔性基底,该柔性基底具有一第一表面及与该第一表面相对设置的一第二表面,将该柔性基底的第一表面固定于所述硬基底的表面;采用半导体加工工艺直接在所述柔性基底的第二表面形成顶栅型薄膜晶体管阵列;以及去除所述硬基底,形成一柔性顶栅型薄膜晶体管阵列。
[0035] 请参阅图4及图5,本发明第二实施例提供一种柔性基底发光二极管的制造方法,该制造方法包括与第一实施例基本相似,不同之处在于:本实施例中在一柔性基底上直接进行发光二极管加工工艺,以形成发光二极管。本实施例具体包括以下步骤:(s210)提供一硬基底12,该硬基底12具有一表面122;(s220)提供一柔性基底16,该柔性基底16具有一第一表面162及与该第一表面162相对设置的第二表面164,将该柔性基底16的第一表面162固定于所述硬基底12的表面122;(s230)采用半导体加工工艺直接在所述柔性基底16的第二表面164形成一发光二极管;(s240)去除所述硬基底12,形成一柔性发光二极管
30。
[0036] 所述步骤(s210)中的硬基底的材料及性质与第一实施例中的步骤(s110)中的硬基底的材料及性质相同。
[0037] 所述步骤(s220)中的具体步骤与第一实施例中的步骤(s120)中的具体步骤相同。
[0038] 所述步骤(s230)中,采用半导体加工工艺直接在所述柔性基底16的第二表面164形成发光二极管的方法包括以下步骤:(s231)在柔性基底16的第二表面164依次形成一第一半导体层310、一活性层320及一第二半导体层330;(s232)对第二半导体层330、活性层320进行刻蚀,直至暴露出第一半导体层310的表面;以及(s233)在第二半导体层330的表面形成一第二电极332,使得该第二电极332与该第二半导体330电连接,及在第一半导体层310的表面形成一第一电极312,使得该第一电极312与该第一半导体310电连接,且第一电极312与第二电极332电绝缘。
[0039] 所述步骤(s231)中,采用金属有机化学气相沉积(MOCVD)技术在所述柔性基底16的第二表面164上依次外延生长所述第一半导体层310、活性层320及第二半导体层330。
[0040] 其中,所述第一半导体层310、第二半导体层330可以为N型半导体层或P型半导体层两种类型,且该第一半导体层310与第二半导体层330的类型不同。所述N型半导体层具有提供电子移动场所的作用。所述P型半导体层具有提供空穴移动的场所的作用。N型半导体层的材料包括N型氮化镓、N型砷化镓及N型磷化铜等材料中的一种。P型半导体层的材料包括P型氮化镓、P型砷化镓及P型磷化铜等材料中的一种。本实施例中第一半导体层的材料为N型氮化镓,其厚度为2微米,第二半导体层的材料为P型氮化镓,其厚度为0.3微米。所述活性层320为包含一层或多层量子阱层的量子阱结构(Quantum Well)。量子阱层的材料为氮化铟镓、氮化铟镓铝、砷化镓、砷化铝镓、磷化铟镓、磷化铟砷或砷化铟镓中的一种。本实施例中,活性层的厚度为0.3微米,为两层结构,一层的材料为氮化铟镓,另一层的材料为氮化镓。
[0041] 所述步骤(s232)采用刻蚀技术刻蚀第二半导体层330、活性层320直至暴露出第一半导体层310。所述刻蚀技术包括湿法刻蚀技术及干法刻蚀技术。本实施例中,采用的刻蚀技术为干法刻蚀技术中的电感耦合等离子刻蚀技术。
[0042] 所述步骤(s233)可以采用物理气相沉积法,如,电子束蒸发法、真空蒸镀法及离子溅射法等在所述第二半导体层330的表面形成第二电极332,在第一半导体层310的表面形成第一电极312。所述第一电极312、第二电极332的材料包括钛、铝、镍及金中的一种或其任意组合。所述第一电极312、第二电极332至少为一层结构。本实施例中,采用电子束蒸发法制备所述钛/金(一层钛层及一层金层)第二电极332、第一电极312。
[0043] 所述步骤(s240)中去除所述硬基底12,形成柔性发光二极管30。其中,所述去除所述硬基底12及粘结层14的方法与第一实施例中的步骤(s140)去除所述硬基底12及粘结层14的方法相同。
[0044] 本发明实施例提供的柔性半导体器件制造方法具有以下优点:第一,由于在未固化或未凝固的粘结层上设置所述柔性基底的第二表面,避免了所述柔性基底自身产生的卷曲及表面起伏的现象,使得柔性基底能够与所述粘结层较好的结合,从而该柔性基底的表面比较平坦,进而,可以采用半导体加工工艺直接在所述柔性基底的第二表面形成柔性半导体器件,不需要预先形成柔性半导体器件,然后再将一柔性基底粘合到所述柔性半导体器件上,以形成柔性半导体器件。因此,本发明实施例提供的柔性半导体器件的制造方法具有方法简单、易于操作的特点。第二,本发明实施例中,采用直接剥离柔性基底与硬基底的方法,不会影响柔性基底的透明性等特性,而且方法简单。
[0045] 另外,本领域技术人员还可以在本发明精神内做其他变化,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围内。