毫秒退火(DSA)的边缘保护转让专利

申请号 : CN200980105096.5

文献号 : CN101946302B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 布莱克·凯尔梅尔罗伯特·C·麦金托什戴维·D·L·拉马尼亚克亚历山大·N·勒纳阿布拉什·J·马约尔约瑟夫·尤多夫斯凯

申请人 : 应用材料公司

摘要 :

本发明提供一种对一基板进行热处理的方法与设备。基板设置在一处理腔室中,而处理腔室配置成通过将电磁能导引朝向基板的表面而进行热处理。提供有一能量阻挡器以阻挡导引朝向基板的能量的至少一部分。阻挡器防止了当入射能量接近基板边缘时所产生的热应力对基板的损害。

权利要求 :

1.一种用于在一处理腔室中处理一基板的设备,包括:一基板支撑件,配置成定位一基板以进行处理;

一能量源,配置成将一电磁能导引朝向该基板支撑件;以及一个或多个能量阻挡器,配置成支撑在所述基板支撑件上,并且在该基板的中央部分暴露于该电磁能的同时,所述一个或多个能量阻挡器配置成阻挡至少一部分的该电磁能到达该基板的周围部分,其中所述能量阻挡器中的至少一个为一阴影环,所述阴影环包括用于与一升举构件接合的一个或多个凸出部,其中所述能量阻挡器和所述基板支撑件具有对准点。

2.如权利要求1所述的设备,其中所述凸出部中的至少一个具有用于与一升举构件接合的一个或多个凹部。

3.如权利要求1所述的设备,其中该阴影环包括用于与该基板支撑件上的销紧配的一个或多个凹部。

4.如权利要求1所述的设备,其中该阴影环的一部分延伸于该基板支撑件上方,并与该基板支撑件分隔开。

5.如权利要求1所述的设备,其中该阴影环包括用于与该基板支撑件上的一个或多个凹部紧配的一个或多个销。

6.如权利要求1所述的设备,其中该升举构件包括配置成与所述凸出部接合的一个或多个升举销。

7.如权利要求1所述的设备,其中所述能量阻挡器中的至少一个支撑在该基板支撑件上。

8.如权利要求1所述的设备,其中所述能量阻挡器中的至少一个是不透明的。

说明书 :

毫秒退火(DSA)的边缘保护

技术领域

[0001] 本发明的实施例一般地涉及一种用于制造半导体器件的设备及方法。更特别地,本发明针对一种用于对基板进行热处理的设备及方法。

背景技术

[0002] 集成电路(IC)市场对于较大的存储容量、较快的切换速度以及较小的特征结构(feature)尺寸有持续的需求。业界解决这些需求的主要步骤之一是将在大型熔炉中进行硅基板的批处理改变为在小型腔室中进行单基板处理。
[0003] 在单基板处理过程中,通常将基板加热至高温以允许在基板的部分所界定的多个IC器件中进行多种化学及物理反应。特别值得注意的是,IC器件的较佳电性效能需要对注入区域进行退火。退火会将先前变成非晶的基板区域重新改造为结晶结构,并且通过将掺杂剂的原子并入基板的结晶晶格而活化掺杂剂。例如退火的热处理需要在短时间内提供相对大量的热能至基板,并且接着快速冷却基板以终止热处理。目前所使用的热处理实例包括快速热处理(RTP)及脉冲式退火(impulse annealing)(尖峰式退火;spike annealing)。即使IC器件仅存在于硅基板的顶部几微米处,传统的RTP处理仍加热整个基板。此限制了一个处理可以加热与冷却基板的速度。再者,一旦整个基板处于升高的温度,热反而会消散至周围空间或结构中。因此,目前最先进的RTP系统努力以达到400℃/s的升温速率以及150℃/s的降温速率。尽管RTP与尖峰式退火处理被广泛的使用,但目前的技术并不理想,因为在热处理过程中,基板的升温速率过于缓慢,而使基板暴露于高温过长的时间。此热预算(thermal budget)的问题随着基板尺寸增大、切换速度加快及/或特征结构尺寸减少而变得更为严重。
[0004] 为了解决在传统RTP处理中所出现的部分问题,已使用多种扫描激光退火技术以对基板表面进行退火。一般来说,当基板相对于输送至基板表面上的小区域的能量而移动或被扫描时,这些技术会将恒定的能通量传送至这些小区域。由于严格的均匀性需求,以及使得跨越基板表面的扫描区域的重叠的最小化的复杂性,这些类型的处理对于基板表面上形成的接点层(contact level)器件进行热处理是无效率的。
[0005] 已发展出动态表面退火(DSA)技术而对基板表面的有限区域进行退火,以提供基板表面上的良好界定的退火及/或再熔化区域。一般来说,在这种激光退火处理过程中,基板表面上的各个区域会顺序暴露于输送自激光的期望量的能量,以导致优先加热基板的期望区域。这些技术优于的将激光能量扫掠跨越基板表面的传统处理,这是因为相邻扫描区域之间的重叠严格受限于晶粒(die)之间的未使用空间或是切割线(kurf line),因而造成跨越基板的期望区域的均匀退火。
[0006] DSA技术的一个缺点在于针对基板表面的一部分的退火会使得退火部分与未退火部分之间的界面区域在退火期间受到高热应力,这是因为温差高达500℃。在大多数例子中,这些热应力缓和是由于来自退火区域的热传导至基板的未退火区域。然而,随着退火处理进行至基板的边缘,因为接近边缘的缘故而使得热吸收基板区域的有效性降低,则热应力会导致基板的物理性变形或破裂。图1图示欲对接近基板100边缘104的部分102进行退火的退火处理。由源108所发射出的电磁能106加热该部分102,而边缘部分110仍然处于未加热状态。由于边缘部分110的相对小的热吸收能力,所以在退火部分102与边缘部分110之间的界面区域产生了高热应力。高热应力通常通过接近基板100边缘104的边缘部分110中的变形或破裂而缓和。因此需要一种能够对基板所有期望区域进行退火,且不会伤害到基板的热处理设备及方法。

发明内容

[0007] 本发明的实施例提供一种用于在一处理腔室中处理一基板的设备。该设备包括:一基板支撑件,配置成定位一基板以进行处理;一能量源,配置成将一电磁能导引朝向该基板支撑件;以及一个或多个能量阻挡器,配置以阻挡至少一部分的电磁能。
[0008] 本发明的其它实施例提供一种在一处理腔室中处理一基板的方法。该方法包括:使用一基板支撑件将该基板定位在该处理腔室中;将一电磁能导引朝向该基板的至少一部分;以及阻挡该电磁能的至少一部分照射在该基板。

附图说明

[0009] 为让本发明的上述特征更明显易懂,可配合参考实施例说明,部分实施例图示在附图中。需注意的是,虽然附图仅示出本发明的特定实施例,但并非用以限定本发明的精神与范围,本发明可以允许其他等效实施例。
[0010] 图1是执行基板的热处理的热处理设备的现有技术代表图。
[0011] 图2是根据本发明的一个实施例的设备的剖面视图。
[0012] 图2A是图2的设备的一部分的详细视图。
[0013] 图3是根据本发明的一个实施例的设备的顶视图。
[0014] 图3A是图3的设备的一部分的详细视图。
[0015] 图3B是图3的设备的另一部分的详细视图。
[0016] 图4A是根据本发明的一个实施例的设备的剖面视图。
[0017] 图4B是根据本发明的一个实施例的设备的另一剖面视图。
[0018] 图5是根据本发明的另一实施例的设备的立体视图。
[0019] 图6是根据本发明的另一实施例的设备的剖面视图。

具体实施方式

[0020] 本发明的实施例提供一种对基板进行热处理的设备及方法。在配置以进行包含将电磁能导引朝向基板表面的至少一部分的热处理的处理腔室中,设置有一装置以阻挡至少一部分的电磁能到达基板。该装置被配置成允许借助任意几个装置插入及移除基板,并且能够抵抗基板处理过程中的环境。
[0021] 图2为根据本发明的一个实施例的热处理腔室200的剖面视图。腔室200的特征在于壁202、底板204及顶部部分206,而壁202、底板204及顶部部分206配合地界定出一处理腔室。处理腔室包含一基板支撑件208,以将基板定位在腔室中。基板支撑件208包括导管部分210,而导管部分210穿过底板204,以将多种处理介质运送至基板支撑件,及自基板支撑件运送出。导管部分210包括通道212,以通过开口214而运送处理介质至基板支撑件208的表面。导管部分210还可包括通道216,用以运送热控制介质至基板支撑件208内部的管道,借以加热或冷却基板支撑件208。为了说明的目的,所示的基板250设置在基板支撑件208上。
[0022] 基板可以经过入口218而导引进入腔室200,且如果需要的话,入口218可借助门(图中未示)而被密封。处理气体可以经由入口220而导引进入处理腔室内,并且可通过开口222或是通过其它适合导管而排出。在一些实施例中,举例来说,通过基板支撑件208中的导管而将处理气体排出是有利的。在其它实施例中,可通过基板支撑件208中的导管(图中未示)而将气体提供至设置在基板支撑件208上的基板的背面。这种气体可用于处于高真空下的基板处理的热控制。热控制气体通常不同于处理气体。
[0023] 腔室200通常与用于将电磁能导引朝向设置在腔室200中的基板的源(图中未示)并列设置。电磁能通过设置在顶部部分206中的窗224而允许进入处理腔室,且窗224为石英或其它适合材料,用于在传送电磁能的同时也可承受处理环境。腔室200还包括一能量阻挡器226,所述能量阻挡器226配置成阻挡来自源的电磁能的至少一部分朝向基板支撑件208。
[0024] 腔室200还包括一升举销(lift pin)组件228,用于操作设备内部的能量阻挡器以及基板。在一个实施例中,升举销组件228包括用于操作基板250的多个升举销230,以及用于操作能量阻挡器226的多个升举销232。升举销可以通过多个通道234而进入腔室200。
[0025] 图2A为部分腔室200的详细视图。可看到窗224、能量阻挡器226及入口220,且详细示出升举销组件228。升举销230、232通过导引管236导引,以确保升举销230、232的适当对准。在一个实施例中,升举销230、232围绕有梭动机构(shuttle)246,而梭动机构246接触导引管236的内侧以维持升举销230、232与导引管236的对准。梭动机构246可以为任何坚硬的材料,但较佳具有低摩擦力表面以碰撞导引管表面。在一个实施例中,梭动机构246为具有塑料衬套(图中未示)的铁索体不锈钢,以接触导引管236。在一些实施例中,升举销230、232可通过致动器轴环(collar)238而操作,而轴环238通过梭动机构246而磁性地耦接至升举销230、232,如图2A所示。致动器轴环238配置成相对于导引管
236而朝纵向方向移动,以视需要而延伸并缩回升举销230、232。致动器臂使致动器轴环
238沿着导引管236移动,以延伸并缩回升举销。在本实施例中,单一致动器臂240操作升举销230、232,但视需要也可使用多个致动器臂。升举销232延伸进入腔室200受限于止挡件242。可如图2A所示提供有导引管弹簧244,以允许在升举销230已被止挡件242缩短之后,致动器臂240仍持续朝向腔室200移动。以此方式,在使用单一致动器臂240以移动升举销230、232时,可在止挡住升举销232之后,升举销230仍持续移动。在本实施例中,升举销232比升举销230更长,因此,在升举销230将基板250升举离开基板支撑件208之前,允许升举销232将能量阻挡器226升举起。
[0026] 能量阻挡器226配置成阻挡通过窗224而导引朝向基板250的一部分电磁能。如下面将详细描述的,能量阻挡器226可经配置而使得所述能量阻挡器226的一部分支撑在基板支撑件208上,而另一部分则延伸于一部分的基板支撑件208上方。在一些实施例中,能量阻挡器226在设置于基板支撑件208上的基板的边缘上方投射一阴影。能量阻挡器226可因此被称为阴影环(shadow ring)或边缘环。升举销可通过与凹槽紧配而操作能量阻挡器226。
[0027] 在操作过程中,升举销232延伸进入处理腔室中,并升举能量阻挡器226而使所述能量阻挡器226在基板支撑件208上方并与基板支撑件208相距一足够距离,以允许在操作设置在基板支撑件208上的基板250时,不会接触到能量阻挡器226。升举销230延伸进入处理腔室,以在基板支撑件208上方升举基板250,且允许基板搬运构件(图中未示)经过入口218(图2)而进入处理腔室,并取得基板。当致动器240使升举销230、232往上移动时,致动器轴环238A会碰撞止挡件242。致动器臂240持续移动,并在致动器轴环238B持续将升举销230往上移动的同时,使导引管弹簧244压抵致动器轴环238A。当基板搬运构件延伸进入处理腔室时,致动器臂240使升举销230缩回,直到导引管弹簧244处于完全延伸状态为止,并接着使升举销230、232两者均缩回,直到基板250与能量阻挡器226支撑在基板支撑件208上为止。在本实施例中,因具有单一致动器240,故升举销230、232一同延伸并缩回。在具有多个致动器的实施例中,当基板支撑件208上并未设置有基板时,升举销232可以仍然为延伸状态。当通过搬运构件而将基板提供至处理腔室中时,升举销230接着延伸以升举在搬运构件上方的基板,并允许搬运构件通过入口218(图2)从处理腔室而缩回。升举销230可接着缩回,以将基板设置在基板支撑件208上。升举销232可接着缩回以将能量阻挡器226设置在处理位置。
[0028] 为了从腔室移除基板,反向操作升举销230、232。在单一致动器的实施例中,升举销230、232延伸进入处理腔室。升举销232首先与能量阻挡器226接合,并将所述能量阻挡器226抬高至基板支撑件208上方。在短时间之后,升举销230与基板250接合,并通过操作升举销230、232而使能量阻挡器226与基板250上升至基板支撑件208上方。当致动器轴环238A触及止挡件242,升举销232停止上升,而在致动器臂240持续往上移动时,导引管弹簧244压缩。当致动器臂240持续往上移动时,升举销230持续移动,而同时升举销232系保持不动。因此,由升举销232所支撑的基板250会接近能量阻挡器226。当轴环
238B到达导引管236的上方末端,则致动器臂240与升举销230停止移动。基板搬运设备会接着延伸进入处理腔室。致动器臂会接着下降,以使基板250下降至基板搬运设备上,而自腔室移除。在多致动器的实施例中,当基板经操作而由基板支撑件208移至基板搬运设备时,以及当操作新的基板至基板支撑件208上时,升举销232可仍然为完全延伸状态。
[0029] 图3为根据本发明的一个实施例的设备的顶视图。图3示出如上所述的能量阻挡器300的一个实施例。在一些实施例中,能量阻挡器300为辐射阻挡器。在本实施例中,能量阻挡器300为一个环,且形状为环状,并形成为单一物件而配置成阻挡部分导引朝向基板支撑件208的能量。在一些实施例中,能量阻挡器300为不透明的,而在其它实施例中,能量阻挡器300针对用于基板退火的电磁能的部分频率为部分可穿透的,并且阻挡住其它频率。在本实施例中,基板支撑件208的特征在于开口302允许升举销230(图2及图2A)由配置于基板支撑件208下方而转为操作设置在基板支撑件208上的基板。在本实施例中,能量阻挡器300的特征为用于与升举销232(图2及图2A)紧配的凸出部304(tab)。升举销移动能量阻挡器300以允许基板在处理腔室内部的转移。能量阻挡器300的特征还在于用于使能量阻挡器300与基板支撑件208对准的对准点306。
[0030] 图3A为图3的设备的一部分的详细视图。图中示出一部分的能量阻挡器300,其中可见升举销凸出部304以及对准点306。图中还可见基板支撑件208以及所述基板支撑件208中的开口302,而图中所示的升举销230处于延伸位置。所示的升举销232还处于延伸位置而与凸出部304紧配。在本实施例中,升举销232通过凹部310而与凸出部304紧配。在本实施例中,升举销与凹部具有圆形剖面形状,但在其它实施例中,所述升举销具有其它形状,例如方形、矩形、三角形、椭圆形及类似形状。另外,虽然图3的实施例的特征为针对三个升举销而有三个凸出部,但只要能量阻挡器可以被适当地操作,则可使用任何数量的升举销。在本实施例中,对准点306为一由能量阻挡器300往下突出的锥形销,并且与凹口312紧配。由能量阻挡器300上方看来,对准点306看起来像是在能量阻挡器300的上表面中的凹部。可使用设计以确保能量阻挡器300与基板支撑件208对准的对准点306的任何配置与数量。举例来说,对准销可以设置在基板支撑件208上,并向上对准形成在能量阻挡器300中的凹部。能量阻挡器300与基板支撑件208的对准确保保护设置在基板支撑件208上的基板的期望部位不受电磁辐射的影响。
[0031] 在图3A所示的实施例中,凹口312与凹陷部314对准,以允许升举销232自由地移动通过基板支撑件208,并与凸出部304中的凹部310接合。图3B显示另一实施例,其中对准点306远离凹陷部314设置。在图3A及图3B所示的实施例中,能量阻挡器300具有圆形的或是形成斜面的边缘316。对准点306在能量阻挡器300的上表面也具有圆形的或是形成斜面的边缘318。在上述两个实施例中,所示的对准点306的边缘318实质正切于能量阻挡器300的圆形的或是形成斜面的边缘316的内部末端。然而,其它实施例可包括位于其它合宜位置的对准特征结构。针对在图中示出的两个实施例,对准点306位于能量阻挡器300的内部边缘与外部边缘之间的约略中途位置,或是实质正切于内部边缘。
[0032] 图4A为根据本发明的一个实施例的设备的剖面视图。在所示的实施例中,能量阻挡器300相对于基板支撑件208而呈一分隔配置。如上所述,升举销232与凸出部304的凹部310紧配。在本实施例中所示出的对准点306为一截头锥状(frustroconical)销406,由能量阻挡器300往下突出,以与凹口312紧配,且在能量阻挡器300的上表面不具有相应的凹部。在操作过程中,本实施例的能量阻挡器配置成在处理过程中支撑在基板支撑件208上。能量阻挡器300的特征在于切除部分408,所述切除部分408设计成在当能量阻挡器300支撑在基板支撑件208上时,保持与基板支撑件208之间的分隔关系。切除部分408的尺寸设计在处理中可使得延伸部410延伸在设置于基板支撑件208上的基板的一部分上方。延伸部410因此在支撑于基板支撑件208上的一部分的基板上方产生一阴影,因而预防电磁能照射在太靠近基板的边缘处。以此方式,具有延伸部410的能量阻挡器300保护设置在基板支撑件208上的基板的边缘不会因为处理过程中的极度热应力而变形或损害。
能量阻挡器300因此有时被称为阴影环或是边缘环。图4B示出另一实施例,如图3B所示,其中凹口312并不与凹陷部314对准。
[0033] 在图4A所示的实施例中,能量阻挡器300在最厚位置处的厚度高达约5毫米(mm)。切除部分408可减少厚度高达约80%,因而造成延伸部410的厚度小于约3mm。延伸部410可在基板上产生一阴影,而此阴影由基板边缘约3mm。在处理过程中,延伸部410与支撑在基板支撑件208上的基板之间的空隙小于约2mm。能量阻挡器300可以由任何能够承受处理环境的材料制成,但较佳由氧化铝(AlxOy,其中y/x的比率为约1.3~约1.7)、氮化铝(AlN)、石英(二氧化硅;SiO2)或碳化硅(SiC)制成,而最佳由氧化铝制成。这些材料可用于使得能量阻挡器为不透明,或是使能量阻挡器能传送入射在所述能量阻挡器上的部分或所有电磁能。
[0034] 图5示出本发明的另一实施例。处理腔室的下方部分500为可见的。图中示出能量阻挡器502设置在基板支撑表面504的上方。基板支撑表面504的特征为孔洞516,用于将处理介质输送至支撑表面504上的基板的部分。能量阻挡器502的特征为从能量阻挡器502的外部边缘延伸出的多个凸出部506。在本实施例中,能量阻挡器502为一个环,且形状为环状,并形成为单一物件而配置以阻挡电磁能到达设置在支撑表面504上的基板的至少一部分。能量阻挡器502可以为一阴影环或边缘环。能量阻挡器502还具有特征为多个对准点508,所述多个对准点508配置成在能量阻挡器502中的孔洞,以与设置在腔室下方部分500的销510紧配。在本实施例中,能量阻挡器502通过升举臂512来操作,而其中升举臂512延伸于多个凸出部506的下方。升举臂512藉由升举销514而致动,且升举销514使升举臂512在垂直方向上移动,而使得升举臂512接触凸出部506,并由此升举能量阻挡器502。在本实施例中,能量阻挡器502可包括能够阻挡期望能量并承受处理环境的任何材料。部分较佳的材料在上文已讨论。能量阻挡器502可以为不透明的,或是可以传送入射在所述能量阻挡器502上的部分或所有电磁能。
[0035] 可预期本发明的其它实施例,虽然并未图示在附图中。如上所述的环状能量阻挡器可以由两个或多个可分离的(detachable)部件所形成,而这些部件可以在处理循环的过程中的方便时间点耦合与去耦合。举例来说,两个或多个环部件可以耦接以形成用于处理腔室的辐射阻挡器。在处理过程中,环部件支撑在基板支撑件上,以阻挡电磁能到达设置在支撑件上的基板的至少一部分。当基板插入处理腔室中或由处理腔室取出时,环部件可以垂直地或横向地缩回,以允许取得基板。举例来说,三个环部件可以各自耦接至一缩回器(retractor),以横向地移动各个环部件一固定的距离,以提供允许基板升举到基板支撑件上方的一空隙。
[0036] 图6示出本发明的另一实施例。由图中可见基板支撑件600具有能量阻挡器602。在本实施例中提供有支撑环604,所述支撑环604在能量阻挡器602不与基板支撑件600接触时用于限制住能量阻挡器602。当能量阻挡器602不与支撑环604接触时,则能量阻挡器
602支撑在基板支撑件600上。可以借助基板支撑件600上的销606而达到对准,而销606配置成与能量阻挡器602中的凹部608紧配。在本实施例中,图中所示的销606为截头锥状延伸部,从基板支撑件600突出,并配置成插入具有相似形状的凹部608。然而,在其它实施例中,销606与凹部608可具有合宜的形状,例如圆形、方形、三角形,及上述形状的类似形状。
[0037] 在操作过程中,图6的设备的功能是在处理过程中被动地将能量阻挡器602设置在基板支撑件600上。基板支撑件600在本实施例中一般为可移动的,并在处理腔室中升高与下降,以利于基板的插入及取出。当基板设置在基板支撑件600上时,基板升高至处理位置。当基板支撑件600升起时,销606与凹部608接触并紧配,而将能量阻挡器602从支撑环604举起。能量阻挡器602的延伸部610藉由切除部分612而延伸在设置于支撑件600上的基板的一部分上方,并阻挡一部分的电磁能导引朝向基板。在部分实施例中,能量阻挡器602可以为阴影环或边缘环。在处理之后,基板支撑件600下降至基板传输位置。能量阻挡器602支撑在支撑环604上,并与支撑件600脱离,因而产生供取出基板的空间。
[0038] 此处所述的能量阻挡器还可用于保护量测装置而使量测装置在处理腔室中不会受到不期望的辐射的影响。装置通常配置在处理腔室内部,以在处理期间量测多种参数。在许多实例中,这些装置易受到电磁辐射的影响,并且会受到直接由能量源入射的能量的破坏或产生误差。如本发明所述的能量阻挡器可用于防止来自源的能量直接照射至量测装置。举例来说,在一些实施例中,诸如高温计的温度量测装置可以设置在处理腔室内部,并通过感测基板所发射出的电磁能量而量测基板的温度。若来自源的能量直接照射至该些装置,则这些装置会变得不精准。如上所述的辐射阻挡器可阻挡住可能直接照射在装置上的至少一部分的电磁能。
[0039] 尽管上文公开了本发明的一些实施例,但是在不脱离本发明的基本范围内,可以设计本发明的其他或更多实施例,并且本发明的范围由权利要求确定。