使用电化学测定装置检测或者定量目标物质的方法、电化学测定装置以及电化学测定用电极板转让专利

申请号 : CN200980107168.X

文献号 : CN101960300B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 佐佐木英弘冈弘章

申请人 : 松下电器产业株式会社

摘要 :

本发明的目的是提供一种能够使用电化学测定装置,迅速地灵敏度良好地检测或者定量包含在试样液中的目标物质的浓度的电化学测定用电极板,具体而言,本发明是使用电化学测定用电极板(1)进行测定的方法,电化学测定用电极板(1)包括基板(31)、设置在上述基板的上表面上的上层(40)、设置在上述基板的下表面上的下层(11)、夹在上述基板的上表面与上述上层之间的第1电极体(32)、夹在上述基板的下表面与上述下层之间的第2电极体(12),上述上层具有多个上层贯通孔(41a和41b),上述第1电极体具有由经过上层贯通孔(41b),从上述上层的上表面露出的部分构成的多个第1电极(32d),上述基板多个基板贯通孔(33),上述第2电极体在上述第2电极体中有由经过上述上层贯通孔(41a)以及上述基板贯通孔,从上述上层的上表面露出的部分构成的多个第2电极(12d)。

权利要求 :

1.一种检测或者定量包含在试样液中的目标物质的方法,其特征在于:该方法是由包括参照电极、辅助电极以及电化学测定用电极板,或者对极以及电化学测定用电极板的电化学测定装置检测或者定量包含在试样液中的目标物质的方法,所述试样液含有电子介体,所述电化学测定用电极板由第1电极板或者第2电极板构成,此处,所述第1电极板包括:

由绝缘体构成的基板;

设置在所述基板的上表面上的由绝缘体构成的上层;

设置在所述基板的下表面上的由绝缘体构成的下层;

夹在所述基板的上表面与所述上层之间的第1电极体;和夹在所述基板的下表面与所述下层之间的第2电极体,所述基板有多个基板贯通孔,

所述上层有多个上层贯通孔,

所述第1电极体有由经过所述上层贯通孔,从所述上层的上表面露出的部分构成的多个第1电极,所述第2电极体有由经过所述上层贯通孔以及所述基板贯通孔,从所述上层的上表面露出的部分构成的多个第2电极,俯视时,

所述多个基板贯通孔的每一个都没有与所述第1电极重叠,在所述各第1电极的周围,预先配置与所述第1电极的中心间距离相等的4个以上相同面积的第2电极,在所述各第2电极的周围,预先配置与所述第2电极的中心间距离相等的2个相同面积的第1电极,所述各第1电极的面积与其周围的所述第2电极的总和面积相等,此处,所述第2电极板包括:

由绝缘体构成的基板;

设置在所述基板的上表面上的由绝缘体构成的上层;

设置在所述基板的下表面上的由绝缘体构成的下层;

夹在所述基板的上表面与所述上层之间的第1电极体;和夹在所述基板的下表面与所述下层之间的第2电极体,所述基板具有从所述基板的上表面贯通到下表面的多个基板贯通孔,所述上层具有从所述上层的上表面贯通到下表面的多个上层贯通孔,所述第1电极体具有由经过所述上层贯通孔,从所述上层的上表面露出的部分构成的多个第1电极,所述第2电极体具有由经过所述上层贯通孔以及所述基板贯通孔,从所述上层的上表面露出的部分构成的多个第2电极,俯视时,

所述多个基板贯通孔的每一个都没有与所述第1电极重叠,在所述各第2电极的周围,预先配置有与所述第2电极的中心间距离相等的4个以上相同面积的第1电极,在所述各第1电极的周围,预先配置有与所述第1电极的中心间距离相等的2个相同面积的第2电极,所述各第2电极的面积与其周围的所述第1电极的总和面积相等,所述方法包括:

使所述参照电极、所述辅助电极以及所述电化学测定用电极板,或者所述对极以及所述电化学测定用电极板接触所述试样液的接触工序;

在所述第1电极体以及所述第2电极体的一方上扫描正电位,在另一方上施加负电位,或者在所述第1电极体以及所述第2电极体的一方上施加正电位,在另一方上扫描负电位,测定在所述第1电极体以及所述第2电极体之间流过的电流值的电流测定工序;和从在所述电流测定工序中得到的电流值检测所述目标物质,或者计算所述目标物质的量的计算工序。

2.根据权利要求1所述的检测或者定量包含在试样液中的目标物质的方法,其特征在于:在所述第1电极体上,设置调整从所述上层的上表面露出的部分的面积的多个覆盖绝缘体。

3.根据权利要求2所述的检测或者定量包含在试样液中的目标物质的方法,其特征在于:在所述各第1电极上设置所述覆盖绝缘体,俯视时,

所述各第1电极和设置在其上面的所述覆盖绝缘体共有中心点,其外缘是相似形状。

4.根据权利要求1所述的检测或者定量包含在试样液中的目标物质的方法,其特征在于:俯视时,

所述各第1电极的形状是正四边形。

5.根据权利要求1所述的检测或者定量包含在试样液中的目标物质的方法,其特征在于:俯视时,

所述各第1电极的形状是正六边形。

6.根据权利要求1所述的检测或者定量包含在试样液中的目标物质的方法,其特征在于:所述第1电极体由包含所有所述多个第1电极的金属板构成。

7.根据权利要求1所述的检测或者定量包含在试样液中的目标物质的方法,其特征在于:所述第2电极体由包含所有所述多个第2电极的金属板构成。

8.一种电化学测定装置,其特征在于:该电化学测定装置包括参照电极、辅助电极以及电化学测定用电极板,或者对极以及电化学测定用电极板,所述电化学测定用电极板由第1电极板或者第2电极板构成,此处,所述第1电极板包括:

由绝缘体构成的基板;

设置在所述基板的上表面上的由绝缘体构成的上层;

设置在所述基板的下表面上的由绝缘体构成的下层;

夹在所述基板的上表面与所述上层之间的第1电极体;和夹在所述基板的下表面与所述下层之间的第2电极体,所述基板具有从所述基板的上表面贯通到下表面的多个基板贯通孔,所述上层具有从所述上层的上表面贯通到下表面的多个上层贯通孔,所述第1电极体具有由经过所述上层贯通孔,从所述上层的上表面露出的部分构成的多个第1电极,所述第2电极体具有由经过所述上层贯通孔以及所述基板贯通孔,从所述上层的上表面露出的部分构成的多个第2电极,俯视时,

所述多个基板贯通孔的每一个都没有与所述第1电极重叠,在所述各第1电极的周围,预先配置有与所述第1电极的中心间距离相等的4个以上相同面积的第2电极,在所述各第2电极的周围,预先配置有与所述第2电极的中心间距离相等的2个相同面积的第1电极,所述各第1电极的面积与其周围的所述第2电极的总和面积相等,此处,所述第2电极板包括:

由绝缘体构成的基板;

设置在所述基板的上表面上的由绝缘体构成的上层;

设置在所述基板的下表面上的由绝缘体构成的下层;

夹在所述基板的上表面与所述上层之间的第1电极体;和夹在所述基板的下表面与所述下层之间的第2电极体,所述基板具有多个基板贯通孔,所述上层具有多个上层贯通孔,俯视时,

所述多个基板贯通孔的每一个都没有与所述第1电极重叠,在所述各第2电极的周围,预先配置有与所述第2电极的中心间距离相等的4个以上相同面积的第1电极,在所述各第1电极的周围,预先配置有与所述第1电极的中心间距离相等的2个相同面积的第2电极,所述各第2电极的面积与其周围的所述第1电极的总和面积相等。

9.一种电化学测定用电极板,其特征在于,包括:由绝缘体构成的基板;

设置在所述基板的上表面上的由绝缘体构成的上层;

设置在所述基板的下表面上的由绝缘体构成的下层;

夹在所述基板的上表面与所述上层之间的第1电极体;

夹在所述基板的下表面与所述下层之间的第2电极体,所述基板具有从所述基板的上表面贯通到下表面的多个基板贯通孔,所述上层具有从所述上层的上表面贯通到下表面的多个上层贯通孔,所述第1电极体具有由经过所述上层贯通孔,从所述上层的上表面露出的部分构成的多个第1电极,所述第2电极体具有由经过所述上层贯通孔以及所述基板贯通孔,从所述上层的上表面露出的部分构成的多个第2电极,俯视时,

所述多个基板贯通孔的每一个都没有与所述第1电极重叠,在所述各第1电极的周围,预先配置有与所述第1电极的中心间距离相等的4个以上相同面积的第2电极,在所述各第2电极的周围,预先配置有与所述第2电极的中心间距离相等的2个相同面积的第1电极,所述各第1电极的面积与其周围的所述第2电极的总和面积相等。

10.根据权利要求9所述的电化学测定用电极板,其特征在于:在所述第1电极体上,设置有调整从所述上层的上表面露出的部分的面积的多个覆盖绝缘体。

11.根据权利要求10所述的电化学测定用电极板,其特征在于:在所述各第1电极上设置有所述覆盖绝缘体,俯视时,

所述各第1电极和设置在其上面的所述覆盖绝缘体共有中心点,其外缘是相似形状。

12.根据权利要求9所述的电化学测定用电极板,其特征在于:俯视时,

所述各第1电极的形状是正四边形。

13.根据权利要求9所述的电化学测定用电极板,其特征在于:俯视时,

所述各第1电极的形状是正六边形。

14.根据权利要求9所述的电化学测定用电极板,其特征在于:所述第1电极体由包含所有所述多个第1电极的金属板构成。

15.根据权利要求9所述的电化学测定用电极板,其特征在于:所述第2电极体由包含所有所述多个第2电极的金属板构成。

16.一种电化学测定用电极板,其特征在于,包括:由绝缘体构成的基板;

设置在所述基板的上表面上的由绝缘体构成的上层;

设置在所述基板的下表面上的由绝缘体构成的下层;

夹在所述基板的上表面与所述上层之间的第1电极体;

夹在所述基板的下表面与所述下层之间的第2电极体,所述基板具有从所述基板的上表面贯通到下表面的多个基板贯通孔,所述上层具有从所述上层的上表面贯通到下表面的多个上层贯通孔,所述第1电极体具有由经过上层贯通孔,从所述上层的上表面露出的部分构成的多个第1电极,所述第2电极体具有由经过所述上层贯通孔以及所述基板贯通孔,从所述上层的上表面露出的部分构成的多个第2电极,俯视时,

所述多个基板贯通孔的每一个都没有与所述第1电极重叠,在所述各第2电极的周围,预先配置有与所述第2电极的中心间距离相等的4个以上相同面积的第1电极,在所述各第1电极的周围,预先配置有与所述第1电极的中心间距离相等的2个相同面积的第2电极,所述各第2电极的面积与其周围的所述第1电极的总和面积相等。

17.根据权利要求16所述的电化学测定用电极板,其特征在于:在所述第2电极体上,设置有调整从所述上层的上表面露出的部分的面积的多个覆盖绝缘体。

18.根据权利要求17所述的电化学测定用电极板,其特征在于:在所述各第2电极上设置有所述覆盖绝缘体,俯视时,

所述各第2电极和设置在其上面的所述覆盖绝缘体共有中心点,其外缘是相似形状。

19.根据权利要求16所述的电化学测定用电极板,其特征在于:俯视时,

所述各第2电极的形状是正四边形。

20.根据权利要求16所述的电化学测定用电极板,其特征在于:俯视时,

所述各第2电极的形状是正六边形。

21.根据权利要求16所述的电化学测定用电极板,其特征在于:所述第1电极体由包含所有所述多个第1电极的金属板构成。

22.根据权利要求16所述的电化学测定用电极板,其特征在于:所述第2电极体由包含所有所述多个第2电极的金属板构成。

说明书 :

使用电化学测定装置检测或者定量目标物质的方法、电化

学测定装置以及电化学测定用电极板

技术领域

[0001] 本发明涉及检测或者定量包含在试样液中的目标物质,特别是在生物体内微量含有的物质的方法、电化学测定装置以及电化学测定用电极板。

背景技术

[0002] 近年来,正在开发把酶具有的特异的催化作用和具有电极反应活性的电子介体相组合,定量包含在血液中的蔗糖、葡萄糖等糖类的电化学测定用电极板。在这样的电化学测定用电极板中,通过在糖类与酶之间发生了反应以后,电化学地测定电子介体,借助电子介体,间接地定量包含在试样液中的糖类。
[0003] 作为其一个例子,电化学测定用电极板适于在生物体中含有的微量溶液样品的分析。从而,正在尝试电化学测定用电极板与各种有机材料或者无机材料相组合,对传感器等的应用。
[0004] 由于这种方法对于糖类的特异性高,操作时的温度影响小,定量装置的机构也简便,因此通过使用该方法,一般人能够在家庭等中简单地测定血糖值。
[0005] 电化学测定用电极板的电极响应速度由于随着电化学测定用电极板具有的微小电极的面积减少而增高,因此正在研究各种电极形状、电极的微细化。但是,伴随着电极面2
积的减小,所得到的电流值减少。例如,如果把电极面积细微化到数百μm 左右,则能够检测出的电流值降低到数十~数nA级。因此,测定时发生噪声响应增加或者灵敏度降低。于是,为了消除这些不理想的情况,在专利文献1~4中正在研究集成了多个微小电极的电化学测定用电极板。
[0006] 在专利文献1~4中,提出了大量地再现性良好地在基板上制作把邻接的微小电极之间的距离保持为一定的微小电极的方法。
[0007] 图18表示在专利文献1中记载的现有的电化学测定用电极板的结构的整体图(图18(a))以及部分放大图(图18(b))。该电化学测定用电极板200叠层绝缘层的基板201/起到氧化电极作用的下部电极体202/绝缘层203/起到还原电极作用的表面电极204而构成。在表面电极204的表面上形成圆柱形的多个微细孔205,在该微细孔205中露出下部电极体202的膜面。
[0008] 绝缘性的基板201例如由在硅基板201a的主表面上覆盖氧化膜201b的所谓的带氧化膜的硅基板构成。下部电极202是在基板201上的氧化膜201b的表面(即,绝缘体的表面)用金属、半金属、炭材料、或者半导体形成的氧化电极。表面电极204是在绝缘层203上,与下部电极体202相同,由金属、半金属或者半导体形成的还原电极。
[0009] 由下部电极体202的从微细孔205的露出部分(以下,记为氧化电极202a)和表面电极204,构成以氧化电极和还原电极为一对的作用电极对。即,氧化电极202a以及表面电极204的每一个都起到作用电极的作用,更详细地讲,如上所述,下部电极体202的露出部分起到氧化电极,表面电极204起到还原电极的作用。另外,图18中,206是用于在下部电极体202的一个端部上连接外部引线而开口了的电极引出用的开口部分。此处,微细孔205指的是把绝缘层203和表面电极204完整贯通,到达下部电极体202表面的孔。
[0010] 在使用了上述那样的电化学测定用电极板的电化学测定装置中,为了得到电流响应,在下部电极体202和表面电极204上施加电位。在电化学测定装置由氧化电极202a、表面电极204、对极(未图示)的3个电极构成的情况下,以对极在试样溶液中显示的电位为0,在氧化电极体202a-对极之间、表面电极204-对极之间施加电位。
[0011] 另外,在电化学测定装置由氧化电极体202a、表面电极204、参照电极(未图示)、辅助电极(未图示)的4个电极构成的情况下,以参照电极在试样体中表示的电位为0,在氧化电极202a-参照电极之间、表面电极204-参照电极之间施加电位。
[0012] 在专利文献4以及非专利文献1中,提出了把圆柱形的微细孔205的间隔取为比直径大的电化学测定用电极板,报告了使用该电极板的电化学测定结果。在这些文件中,作为宏电极的表面电极204具有比作为微小电极集合体的下部电极大的面积。测定时,分别施加能够在氧化电极202a上发生氧化反应,而且能够在表面电极204上发生还原反应的电位。由此,报告了在氧化电极202a与表面电极204之间发现自感应氧化还原循环,能够得到视觉上高的电流响应。
[0013] 这样,借助存在于试样液中的电子介体,定量糖类等目标物质。另外,即使在氧化电极202a上施加引起还原反应的电位,在表面电极204上施加引起氧化反应的电位,也发现了同样的自感应氧化还原循环。
[0014] 此处,使用图19说明在专利文献4、非专利文献1以及2中记载的自感应氧化还原循环。
[0015] 图19中的自感应氧化还原循环在2个作用电极,即微小电极221以及宏电极222上进行。在微小电极221的表面,通过发生还原体224的氧化反应,生成氧化体225,在微小电极221中流过氧化电流。通过在宏电极222中接近微小电极221的部分222a的表面中,还原氧化体225,成为还原体226,在宏电极222中流过还原电流。进而,通过氧化体225扩散,到达微小电极221的表面,再次发生从还原体224向氧化体225的氧化反应,在微小电极221中流过氧化电流。
[0016] 其结果,在宏电极222a的表面中,通过还原从微小电极221生成的氧化体225,成为还原体226,能够向微小电极221表面供给还原体224。由此,在微小电极221与宏电极222a之间发生循环氧化反应和还原反应,即所谓的氧化还原循环反应的结果,在微小电极
221中稳定地流过电流,能够进行在试样液中微量包含的目标物质的检测以及定量。而且,为了使高灵敏度测定的有效性提高,通过在基板上更多地形成微小电极221,尽可能多地形成由进行氧化还原循环的氧化电极和还原电极构成的电极对。
[0017] 专利文献1:日本特许第2556993号公报(第6页,第1图)
[0018] 专利文献2:日本特许第2564030号公报(第7页,第2图)
[0019] 专利文献3:日本特开2006-78404号公报(第25页,图1)
[0020] 专利文献4:日本特许第3289059号公报(第16页,图5)
[0021] 专利文献5:日本特开2007-010429号公报(图3,图4)
[0022] 非专利文献1:J.Electrochem.Soc.,138卷,12号,3551页
[0023] 非专利文献2:青木幸一等著「使用微小电极的电化学测定法(微小電極を用いる電気化学測定法)」(社)电子信息通信学会编(電子情報通信学会編),平成10年2月10日发行,48-49,70-71页
[0024] 如图18所示,如果起到还原电极作用的表面电极204的面积比氧化电极202a的面积大很多,则产生以下的问题。
[0025] 虽然在宏电极(macroelectrode)222a上生成的还原体226扩散,但是其不仅到达微小电极221(相当于图18中的氧化电极202a),还如图19的右侧所示,其一部分也到达宏电极222(相当于图18中的表面电极204)中远离微小电极221的部分222b上。这样的还原体227通过氧化反应成为氧化体228。即,在宏电极222上也发生氧化反应(参照日本特开平3-246460号公报的第4图)。
[0026] 其次,该氧化体228扩散,到达宏电极222中接近微小电极221的部分222a上。在那里通过还原反应,成为还原体226。还原体226扩散,到达微小电极221表面,再次氧化后成为氧化体225(或者,再次到达宏电极222中远离微小电极221的部分222b)。
[0027] 即,在图18的表面电极204上同时发生氧化反应和还原反应。其结果在表面电极204上也同时发生希望在氧化电极202a中检测出的还原体的氧化反应。从而,在表面电极
204中发生的还原体不能有效地在氧化电极202a上氧化,在高灵敏度化方面产生课题。除此以外,由于表面电极204作用为宏电极,因此电位施加时的充电电流大。从而,与作为微小电极的氧化电极202a相比较,还产生了反应达到稳定状态的时间长这样的课题。

发明内容

[0028] 本发明是为了解决上述的课题而完成的,目的是提供迅速、高灵敏度地定量包含在试样液中的糖类等目标物质的浓度的方法以及电化学测定装置,进而,能够在上述方法以及装置中使用的电化学测定用电极板。
[0029] 为了解决上述课题,本发明是通过由参照电极、辅助电极以及电化学测定用电极板,或者由对极以及电化学测定用电极板等构成的电化学测定装置,检测或者定量包含在试样液中的目标物质的方法,详细情况如下。
[0030] 上述试样液含有电子介体,上述电化学测定用电极板由第1电极板或者第2电极板构成。第1电极板或者第2电极板具备由绝缘体构成的基板、设置在上述基板上表面上的由绝缘体构成的上层、设置在上述基板的下表面上的由绝缘体构成的下层、夹在上述基板的上表面与上述上层之间的第1电极体、夹在上述基板的下表面与上述下层之间的第2电极体。
[0031] 上述上层有从上述上层的上表面贯通到下表面的多个上层贯通孔。上述第1电极体有由经过上层贯通孔,从上述上层的上表面露出的部分构成的多个第1电极。上述基板有从上述基板的上表面贯通到下表面的多个基板贯通孔,上述第2电极有由经过上述上层贯通孔以及上述基板贯通孔,从上述上层的上表面露出的部分构成的多个第2电极。
[0032] 第1电极板在俯视时,上述多个基板贯通孔的每一个都没有与上述第1电极重叠,在上述各第1电极的周围,预先配置与上述第1电极的中心间距离相等的4个以上实质上相同面积的第2电极,在上述各第2电极的周围,预先配置与上述第2电极的中心间距离相等的2个实质上相同面积的第1电极,上述各第1电极的面积与其周围的上述第2电极的总和面积实质上相等。
[0033] 上述第2电极板在俯视时,上述多个基板贯通孔的每一个都没有与上述第1电极重叠,在上述各第2电极的周围,预先配置与上述第2电极的中心间距离相等的4个以上实质上相同面积的第1电极体,在上述各第1电极的周围,预先配置与上述第1电极的中心间距离相等的2个实质上相同面积的第2电极,上述各第2电极的面积与其周围的上述第1面积的总和面积实质上相等。
[0034] 上述方法包括以下的过程。使上述参照电极、上述辅助电极以及上述电化学测定用电极板,或者上述对极以及上述电化学测定用电极板接触上述试样液的接触工序、在上述第1电极体以及上述第2电极体的一方上扫描正电位,在另一方上施加负电位,或者在上述第1电极体以及上述第2电极体的一方上施加正电位,在另一方上扫描负电位,测定在上述第1电极体以及上述第2电极体之间流过的电流值的电流测定工序、从上述电流测定工序中得到的电流值检测上述目标物质,或者计算上述目标物质的量的计算工序。
[0035] 另外,本发明是上述的电化学测定装置、第1电极板或者第2电极板。
[0036] 第1电极板也可以采用在上述第1电极体上,设置调整从上述上层的上表面露出的部分的面积的多个覆盖绝缘体的结构。这种情况下,在上述各第1电极上设置上述覆盖绝缘体,能够构成为俯视时,上述各第1电极和设置在上述各第1电极上的上述覆盖绝缘体共有中心点,其外缘是相似形状。
[0037] 在第1电极板中,第1电极的形状在俯视时,优选是正四边形或者正六边形。
[0038] 第2电极板也可以采用在上述第2电极体上,设置调整从上述上层的上表面露出的部分的面积的多个覆盖绝缘体的结构。这种情况下,在上述各第2电极上设置上述覆盖绝缘体,能够构成为俯视时,上述各第2电极和设置在上述各第2电极上的上述覆盖绝缘体共有中心点,其外形是相似形状。
[0039] 在第2电极板中,第2电极的形状在俯视时,优选是正四边形或者正六边形。
[0040] 在第1电极板或者第2电极板中,上述第1电极体能够由包含所有上述多个第1电极的金属板构成。另外,上述第2电极体能够由包含所有上述多个第1电极的金属层板构成。
[0041] 另外,在本说明书中,所谓电极的面积指的是电极的表面积。
[0042] 本发明的上述目的、其它目的、特征以及优点参照附图,将从以下的理想实施方式的详细说明中明确。
[0043] 依据本发明的检测或者定量包含在试样溶液中的目标物质的方法,能够迅速而且高灵敏度地检测目标物质。另外,依据本发明的电化学测定用电极板,能够相等地保持多个电极上的反应生成物的量,或者能够抑制成为噪声的反应。从而,通过使用该电极板,能够迅速、高灵敏度而且高精度地对包含在试样液中的目标物质进行检测或者定量。

附图说明

[0044] 图1是模式地表示实施方式1的电化学测定用电极板的立体图。
[0045] 图2是模式地表示实施方式1的电化学测定用电极板的分解立体图。
[0046] 图3是具有实施方式1的电化学测定用电极板的电化学测定装置的概略图。
[0047] 图4是由实施方式1的电化学测定装置,计算包含在试样液中的目标物质的浓度的方法的工序流程图。
[0048] 图5表示标准曲线生成方法的一个例子。
[0049] 图6是模式地表示在实施方式1的电化学测定用电极板中形成有参照电极以及辅助电极的电极板的立体图。
[0050] 图7是模式地表示实施方式2的电化学测定用电极板的分解立体图。
[0051] 图8是模式地表示实施方式3的电化学测定用电极板的立体图。
[0052] 图9是模式地表示实施方式3的电化学测定用电极板的分解立体图。
[0053] 图10是模式地表示实施方式4的电化学测定用电极板的分解立体图。
[0054] 图11是模式地表示在实施方式3的电化学测定用电极板上形成有参照电极以及辅助电极的电极板的立体图。
[0055] 图12是模式地表示实施方式1的电化学测定用电极板的上层贯通孔的排列的平面图。
[0056] 图13是模式地表示实施方式3的电化学测定用电极板的上层贯通孔的排列的平面图。
[0057] 图14是模式地表示实施方式4的电化学测定用电极板的上层贯通孔的排列的平面图。
[0058] 图15是表示实施例1以及3的电化学测定用电极板的制造工序的剖面图。
[0059] 图16是表示比较例1的电化学测定用电极板的制造工序的剖面图。
[0060] 图17是表示实施例2的电化学测定用电极板的制造工序的剖面图。
[0061] 图18是表示现有的电化学测定用电极板的结构的立体图。
[0062] 图19是模式表示在现有的电化学测定用电极板的电极上发生的氧化还原反应。
[0063] 图20是实施方式5中的电化学测定用电极板的立体图。
[0064] 图21是实施方式5中的电化学测定用电极板的分解立体图。
[0065] 图22是模式地表示实施方式5中的电化学测定用电极板的上层贯通孔以及覆盖绝缘体的排列的平面图。
[0066] 图23是模式地表示实施方式6中的电化学测定用电极板的上层贯通孔以及覆盖绝缘体的排列的平面图。
[0067] 图24是表示实施例4的电化学测定用电极板的制造工序的剖面图。
[0068] 符号的说明
[0069] 1、60、70、80、81、82、90、200:电化学测定用电极板
[0070] 3、4:切口部分
[0071] 10:第2电极体设置层
[0072] 12:第2电极体
[0073] 12a:第2电极体的电子信号传递部分
[0074] 12b:第2电极体的主干部分
[0075] 12c:第2电极导线
[0076] 12d:第2电极
[0077] 21:电极的集合体
[0078] 22:参照电极
[0079] 23:辅助电极
[0080] 24:试样液容器
[0081] 25:控制装置
[0082] 26:记录器
[0083] 27:电化学测定装置
[0084] 30:第1电极体设置层
[0085] 31、201:基板
[0086] 32:第1电极体
[0087] 32a:第1电极体的电信号传递部分
[0088] 32b:第1电极体的主干部分
[0089] 32c:第1电极体引线
[0090] 32d:第1电极
[0091] 33:基板贯通孔
[0092] 34:覆盖绝缘体(基板部分)
[0093] 40:上层
[0094] 41:上层贯通孔
[0095] 41a:使第2电极露出的上层贯通孔
[0096] 41b:使第1电极露出的上层贯通孔
[0097] 42:覆盖绝缘体(上层部分)
[0098] 61:参照电极
[0099] 62:辅助电极
[0100] 201a:硅基板
[0101] 201b:氧化膜
[0102] 202:下部电极体
[0103] 202a:氧化电极
[0104] 203、207:绝缘层
[0105] 204:表面电极
[0106] 205:微细孔
[0107] 206:开口
[0108] 208:抗蚀剂
[0109] 221:微小电极
[0110] 222:宏电极
[0111] 222a、222b:宏电极的一部分
[0112] 224、226、227:还原体
[0113] 225、228:氧化体

具体实施方式

[0114] 以下,参照附图说明本发明的实施方式。
[0115] (实施方式1)
[0116] 图1是模式地表示实施方式1的电化学测定用电极板1的立体图。电化学测定用电极板1是从下侧开始顺序叠层了下层11、基板31和上层40,第2电极体12夹在下层11与基板31之间,第1电极体32夹在基板31与上层40之间的结构。
[0117] 在上层40中,矩阵形地形成多个上层贯通孔41a和41b。在需要严格的区别术语的情况下,把上层贯通孔41a称为第1上层贯通孔。同样,把上层贯通孔41b称为第2上层贯通孔41b。
[0118] 图1中,如果把横方向定义为行方向,把纵方向定义为列方向,则形成有上层贯通孔41的行方向的位置顺序成为A、B、C、D、……、M,列方向的位置顺序成为a、b、c、d、……、g。而且,上层贯通孔41(X,x)表示行方向的位置处于X(X=A、B、C、D、……、N),列方向的位置处于x(x=a、b、c、d、……、g)的上层贯通孔41。
[0119] 上层贯通孔41内,大的一方的上层贯通孔41b沿着行方向各形成6个,沿着列方向各形成3个,总计形成18个。另外,沿着行方向具有长边的小的一方的上层贯通孔41a沿着行方向各形成6个,沿着列方向各形成4个,总计形成24个,沿着列方向具有长边的小的一方的上层贯通孔41a沿着行方向各形成7个,沿着列方向各形成3个,总计形成21个。俯视时,各上层贯通孔41b的形状是正四边形,各上层贯通孔41a的形状是具有实质上与上层贯通孔41b的边的长度相同长度的长边的长方形。
[0120] 交互等间隔地配置在电化学测定用电极板1的上表面上使第1电极体32露出的上层贯通孔41b、在电化学测定用电极板1的上表面上使第2电极体12露出的上层贯通孔41a。上层贯通孔41a经过图1中没有表示的基板31上的基板贯通孔,使第2电极体12露出到电化学测定用电极板1的上表面上。电化学测定用电极板1具有形成为在端部的附近露出设置在第2电极体12上的第2电极引线12c的切口3、形成为在端部附近露出设置在第1电极体32上的第1电极引线32c的切口4。
[0121] 图2是图1表示的电化学测定用电极板1的分解立体图。如图2所示,实施方式1的电化学测定用电极板1从下侧开始顺序叠层第2电极体设置层10、第1电极体设置层
30以及上层40。
[0122] 第2电极体设置层10由下层11以及设置在下层11的上表面上的第2电极体12构成。第1电极体设置层30由基板31以及设置在基板31的上表面上的第1电极体32构成。下层11、基板31、上层40的每一个都是绝缘体。第2电极体12如图2所示,夹在下层11与基板31之间。同样,第1电极体32夹在基板31与上层40之间。上层40有多个上层贯通孔41。
[0123] 图2中,按照与图1相同的配置,设置上层贯通孔41。在这些上层贯通孔41内,从左上的上层贯通孔41b(B,b)以及以该上层贯通孔41b为基点,沿着行方向(D,b)、(F、b)、……以及列方向(B、d)、(B、f)配置的上层贯通孔41b露出第1电极体32的一部分。第1电极体32中,从各上层贯通孔41b露出的部分,即在图2中,第1电极体32上用灰色涂抹了的部分与试样液接触,起到第1电极32d的作用。
[0124] 图2中,设置18个第1电极32d。第1电极体32中,形成上层40的部分,即在图2中,第1电极体32上没有用灰色涂抹,表示为白的部分没有与试样液接触。由此,该部分不能起到第1电极的作用。第1电极体32由从上层贯通孔41b露出的部分、被上层40覆盖而没有与试样液接触的电子信号传递部分32a和与所有的电子信号传递部分32a连接的主干部分32b构成。另外,第1电极体32在其主干部分32b的一端有第1电极引线32c。
[0125] 基板31有多个基板贯通孔33。图2中设置45个基板贯通孔33。45个基板贯通孔33设置成在上层贯通孔41中,与没有露出第1电极体32的一部分的45个上层贯通孔41a的位置以及形状一致并重叠。上层贯通孔41中,没有露出第1电极体32的一部分的
45个上层贯通孔41a经过基板贯通孔33露出第2电极体12的一部分。即在图2中,第2电极体12中用灰色涂抹的部分与试样液接触,起到第2电极12d的作用。
[0126] 图2中,设置45个第2电极12d。第2电极体12中,形成基板31的部分,即在图2中,第2电极体12上没有用灰色涂抹表示为白的部分没有与试样液接触。由此,该部分没有起到第2电极的作用。第2电极体12由从上层贯通孔41a经过基板贯通孔33露出的部分、被基板30覆盖而没有与试样液接触的电子信号传递部分12a和与全部电子信号传递部分12a接触的主干部分12b构成。另外,第2电极体12在其主干部分12b的一端有第2电极引线12c。
[0127] 接着,说明上层贯通孔41和基板贯通孔33。上层贯通孔41a和基板贯通孔33每一个都沿着铅直方向贯通,俯视时,实质上有一定的剖面形状以及一定的面积。各上层贯通孔41a的面积与各基板贯通孔33的面积实质上相等。第1电极32d的面积与上层贯通孔41b的面积相等,第2电极12d的面积与基板贯通孔33的面积相等。其形状是正四边形或
2 2 2
长方形,其面积例如是10μm ~10000μm。如果超过10000μm,则发生在图19的右侧中所示的不希望的反应,其结果在高灵敏度化方面产生课题。另外,所有第1电极32d的面积优选实质上相等,所有第2电极12d的面积优选实质上也相等。
[0128] 下层11的厚度大于等于100μm在保持电极的强度方面是理想的。另外,基板31以及上层40的厚度优选分别大于等于0.05μm小于等于50μm。在基板31以及上层40的厚度小于0.5μm的情况下,由于发生针孔等,第1电极体32与第2电极体12有可能短路。另外,在第1电极32d或者第2电极12d以外的电极体部分接触试样液,检测或者定量包含在试样液中的目标物质时,针孔的发生还有可能不能发挥本发明的电化学测定用电极板具有的功能。另外,在厚度大于50μm的情况下,在基板贯通孔33和上层贯通孔41的形成时,产生加长用于形成的时间,或者不能够形成微细贯通孔这样的不理想状况。另外,第1电极
32d与第2电极12d的间隔扩大,其结果,在电极上反应了的氧化体与还原体的扩散长度加长,不能期待充分的氧化还原循环效果。
[0129] 接着,说明上层贯通孔41a、上层贯通孔41b的配置关系和面积。图12是表示上层40中的上层贯通孔41a、41b的排列一部分的俯视图。图12中,为了方便,仅是上层贯通孔
41b涂抹了灰色,与上层贯通孔41a相区别。另外,在与几个最接近上层贯通孔41b的上层贯通孔41a之间加入直线,使得易于确认与最接近的上层贯通孔41的位置关系。
[0130] 上层贯通孔41b每隔开行方向的1个位置(B,D,……),而且每隔开列方向的1个位置(b,d,……)排列。从而,存在上层贯通孔41b不存在的行方向的位置,即列(A,C,E,G,I,K,M)。另外,存在上层贯通孔41b不存在的列方向的位置,即行(a,c,e,g)。在这些列(A,C、E、G、I,K,M)以及行(a,c,e,g)中,每隔开1个位置存在上层贯通孔41a。配置4个上层贯通孔41a使得围绕在各上层贯通孔41b的周围。
[0131] 上层贯通孔41b的中心与这4个各上层贯通孔41a的中心的之间的距离相等。
[0132] 例如,如果着眼于1个上层贯通孔41b(B,b),则在周围4个上层贯通孔41a(B,a)、(C,b)、(B,c)、(A,b)配置成以相同的中心间距离接近。其间隔优选是1~20μm。在小于1μm的情况下,基板的制造工序中的对位很困难,成为发生不合格品的原因。另外,在大于
20μm的情况下,图19中表示的氧化体和还原体与第1电极32d和第2电极12d,即氧化电极和还原电极之间的扩散长度加长,不能期待充分的氧化还原循环效果。
[0133] 1个上层贯通孔41b与沿着行方向或者列方向配置的相互邻接的上层贯通孔41a的中心间距离全部实质上相等。另外,用灰色表示的上层贯通孔41b的面积与第1电极32d的面积相等。该第1电极32d的面积实质上与在行方向和列方向的4方中相互邻接的4个上层贯通孔41a的总和面积相等。即,1个第1电极32d的面积与相互邻接的4个第2电极12d的总和面积相等。
[0134] 返回到图2。能够在第1电极体32和第2电极体12上分别独立地施加电位,在各个电极上能够进行目标物质的电化学反应,更具体地讲,进行氧化反应和还原反应。一般把进行氧化反应的电极称为氧化电极,把进行还原反应的电极称为还原电极。
[0135] 由在第2电极12d上的电化学反应发生的电信号沿着第2电极体12传递,能够经过第2电极引线12c,由电流计等计测仪器进行定量。同样,由在第1电极32d上的电化学反应发生的电信号沿着第1电极体32传递,能够经过第1电极引线32c,由电流计等计测仪器进行定量。
[0136] 有列方向长边的第2电极12d在俯视时,与在行方向的2个方向中,中心间距离相等的2个第1电极32d邻接。在行方向有长边的第2电极12d在俯视时,与在列方向的2个方向中,中心间距离相等的2个第1电极32d邻接。各第1电极32d在俯视时,与在行方向以及列方向的4个方向中,中心间距离相等的4个第2电极12d邻接。即,各电极32d、12d中能够电化学地成对作用的1个第1电极32d与4个第2电极12d邻接,通过把邻接的第1电极32d的面积和与其第1电极32d邻接的第2电极12d的面积的总和形成为相等,进行有效的氧化还原循环。
[0137] 通过分别微细地形成第1电极32d和第2电极12d,能够使电极上的作用迅速地达到稳定状态。另外,通过相等地形成第1电极32d与第2电极12d的间隔,能够使电极板上的反应速度一致,防止发生由电极反应速度的不同引起的浓度梯度。由此,电极板上的反应能够保持稳定状态。在使用本实施方式的电化学测定用电极板1,根据电化学法定量试样溶液中的氧化还原物质时,根据有效的氧化还原循环,能够迅速而且灵敏度良好地检测上述氧化还原物质。
[0138] 第1电极32d和配置在其4方中的第2电极12d的组优选尽量配置多个。通过配置多个第1电极32d和第2电极12d的组,加大与上述试样液接触的电极面积。即,包含在试样液中的目标物质与上述电极的界面的面积增大,可以更多地得到伴随着电极表面的电化学反应的反应电流。这些第1电极32d或者第2电极12d的表面积与其投影面积相比较,表面粗度越大则表面积越大。例如,利用通过印刷等方法形成有导电性粒子的电极其表面粗度大,能够增大电极面积。
[0139] 接着,具体地叙述构成本实施方式的电化学测定用电极板1的部件的材料。作为下层11,使用表面或者整体有绝缘性的基板。例如,能够使用在硅基板的表面覆盖有作为绝缘层的SiO2膜的带氧化膜的硅基板、石英玻璃基板、氧化铝基板、聚对苯二甲酸乙二醇酯膜、聚对萘二甲酸乙二醇酯膜、聚酰亚胺膜等树脂材料构成的基板。
[0140] 第1电极体32以及第2电极体12由金属、金属氧化物、半导体等有导电性的材料形成。作为有导电性的材料,能够使用金、铂(白金)、钯、银、铬、钛和镍等金属,p以及n型硅、p以及n型锗、硫化镉、二氧化钛、氧化锌、磷化镓、砷化镓、磷化铟、硒化镉、碲化镉、二砷化钼、硒化钨、二氧化铜、氧化锡、氧化铟、铟锡氧化物等半导体,其它超导电碳黑(ケツシエンブラツク)等导电性碳。作为电极材料,优选使用稳定的金、铂、钯。
[0141] 基板31以及上层40能够使用以SiO2为代表的硅氧化物或者氮化硅,通过常压CVD、减压CVD、等离子CVD、溅射等方法形成。另外,能够用旋转涂层等旋涂玻璃(spin-on-glass、スピンオングラス)(东京应化工业株式会社(東京応化工業株式会社))、エラストジル(ELASTOSIL)(旭化成ワツカ一シリコ一ン株式会社(WACKER A SAHIKASEI SILICONE CO.,LTD)制)等的硅树脂、カプトン(kap ton)(東レ·デユポン株式会社(DU PONT-TORAY CO.,LTD)制)等的聚酰亚胺及其介质体、ジエイイ一ア一ル(jER)(ジヤパンエポキシレジン株式会社(JAPAN EPOXY RESINS CO.,Ltd)制)等的环氧树脂、スミコン(住友ベ一クライト株式会社(SUMITOMO BA KELITE CO.,LTD)制)等的热硬化性树脂、ピ一エムイ一ア一ル(东京应化工业株式会社制)或者エスユ一エイト(SU-8)(化药マイクロケム(Microchem)株式会社制)等的光抗蚀剂材料或者感光性树脂等树脂材料,根据把烘焙、由电子线或者紫外线实施的曝光、显影工序等组合起来的方法制作。从后述的孔形成工序中的加工的容易性出发,优选使用硅氧化物和氮化硅、光抗蚀剂材料或者感光性树脂。
[0142] 另外,在制造电化学测定用电极板1时,进行要在下层11的上表面上形成第2电极体12,要在基板31的上表面上形成第1电极体32的导电性材料的构图(图案形成)。在电极的构图(图案形成)中,能够使用把溅射等成膜方法与腐蚀方法组合起来的方法、把成膜方法与金属掩模组合起来进行的方法、使用光抗蚀剂进行的剥离(リフトオフ、lift off)法、使用了筛网的筛网印刷、使用了掩模的激光研磨法、由喷墨印刷法实施的直接描绘方法。
[0143] 说明在下层11上顺序叠层,形成有第1电极体32以后,以光抗蚀剂或者感光性树脂材料为材料,进行上层40的形成的情况。在形成有第1电极体32的基板31上涂敷光抗蚀剂的前体材料,进行烘焙工序。在那里,重叠具有在横方向以及纵方向中,以预定的中心间距离排列有正四边形或者长方形的多个孔的图形的图像掩模,用电子线、紫外线等把掩模图形曝光,显影后,把图形复制到基板上的光抗蚀剂或者感光性树脂材料上,然后通过进行腐蚀,形成基板贯通孔33。由此使用掩模和感光性树脂材料,能够形成有上层贯通孔41的上层40。或者也可以通过剥离法,形成基板贯通孔33和上层贯通孔41。
[0144] 第1电极体32以及第2电极体12优选用相同的方法形成。例如,在用成膜法形成第2电极体12的情况下,第1电极体32优选也用成膜法形成。另外,在用胶材料的印刷方法形成第2电极体12的情况下,第1电极体32优选也用相同的方法和材料形成。这是由于当把第1电极体32与第2电极体12进行比较,其表面粗糙度极端不同时,难以一致地形成第1电极32d以及第2电极12d的表面积。
[0145] 根据以上的制造方法,能够容易地形成具有在前面叙述过的形状、面积以及配置的上层贯通孔41a和41b、基板贯通孔33,由此,能够容易地使来自第1电极32d和第2电极12d的每一个反应生成物浓度一致。另外,通过使由第1电极32d和第2电极12d构成的电极对的中心间距离恒定地一致,能够使正确地在各个电极对之间进行的氧化还原循环反应的速度相等。而且,根据这些作用,第1电极32d上以及第2电极12d上的电化学反应能够迅速地达到稳定状态。其结果,能够迅速而且灵敏度良好地检测或者定量包含在试样液中的目标物质。
[0146] 在本实施方式的电化学测定用电极板1中,由于上层贯通孔41、基板贯通孔33成为试样液的通道,因此在试样液是水溶液的情况下,上层贯通孔41、基板贯通孔33的内壁优选是亲水性。从而,作为上层40以及基板31,优选选择硅基板、玻璃基板等有亲水性表面的基板,或者由亲水性聚对苯二甲酸乙二醇酯或聚对萘二甲酸乙二醇酯膜(ポリエチレンナフタレ一ト)基板等聚酯材料构成的基板。在使用具有疏水性的基板时,优选用乙醇、异丙醇(イソプロピルアルコ一ル)等在上层贯通孔41或者基板贯通孔33的内部实施亲水化处理。另外,优选还实施基于UV臭氧处理、氧等离子处理的亲水化处理。
[0147] [电化学测定装置的说明]
[0148] 图3表示具有实施方式1的电化学测定用电极板的电化学测定装置(以下,仅称为「测定装置」)。
[0149] 如图3所示,在测定装置27中,电化学测定用电极板1、参照电极22以及辅助电极23浸入到装满试样容器24的试样液中。由此,这些电极接触试样液。另外,在电化学测定用电极板1的表面,沿着行方向以及列方向形成多个第1电极32d以及第2电极12d,形成电极的集合体21。
[0150] 参照电极22成为施加到电化学测定用电极板1的电位基准的电极。以参照电极22在试样液中表示的电位为0,在第1电极32d、第2电极12d的每一个上施加电位。辅助电极23是为了在测定装置27中使安培法则成立,用于补偿电流的电极。控制装置25经过第1电极引线32c以及第2电极引线12c,与电化学测定用电极板1电连接,同样,也与参照电极22、辅助电极23电连接。由记录器26记录从控制装置25输出的电流响应。
[0151] [电化学测定方法的说明]
[0152] 其次,使用图3,说明包含在试样液中的电子介体的定量方法。
[0153] 根据循环伏安法(Cyclic Voltammetry)(サイクリツクボルタンメトリ一)等方法,预先调查电子介体的氧化反应进行的电位和还原反应进行的电位,在后面说明的氧化电极的电位的值和还原电极的电位的值中使用。另外,电位的基准是参照电极22在试样液中表示的平衡电位。即,分别施加到第2电极12d以及第1电极32d上的电位是以参照电极22为0V时的相对电位。在把第2电极12d和第1电极32d的电位输入到控制装置25以后开始测定。在后述的实施例中详细地说明,而在这里作为一个例子,叙述把第1电极32d作为氧化电极,把第2电极12d作为还原电极使用的情况。即,在本实施方式中,在第1电极32d上进行氧化反应,在第2电极12d上进行还原反应。
[0154] 说明具体的方法。首先,在第1电极32d上从0V起缓慢地施加正电压。在后述的实施例中,使施加到第1电极32d上的电压从0V起缓慢变化到+0.7V,作为氧化电极使用。另外,把该动作称为「扫描」。即,在本说明书中使用的术语「扫描」意味着使电位连续地变化。与此相对照,在本说明书中使用的术语「施加」意味着急剧地变化到预先决定的电位。
[0155] 这时,优选在还原电极上持续地施加预先调查的进行电子介体的还原反应的电位(例如在铁氰化钾的情况下,对于银/氯化银电极是0V)。在第1电极32d上扫描电压的速度(以下,有时称为「扫描速度」)一般大于等于5mV/秒小于等于500mV/秒。在后述的实施例中是100mV/秒。
[0156] 另外,在上述的说明中,在第1电极32d上扫描正电位,在第2电极12d上施加负电压。而也可以在第1电极32d上施加正电位,在第2电极12d上扫描负电位。
[0157] 在第1电极32d中的氧化反应中得到的电流经过第1电极引线32c由控制装置25检测。同样,在第2电极12d中的还原反应中得到的电流经过第2电极引线12c由控制装置25检测。检测出的电流输出到记录器26,把所记录的氧化电流值与标准试样的氧化电流测定结果(后述的标准曲线)进行比较,能够定量检测对象物质。把在记录器26中记录的还原电流值与标准试样的还原电流测定结果进行比较,还能够定量试样液中的检测对象物质。为此,希望预先使用本实施方式的检测装置生成标准试样的标准曲线。
[0158] 另外,通过经由第2电极引线12c由控制装置25检测在还原反应中得到的电流,还能够进行不是以检测对象物质的定量为目的的检测。
[0159] 在这里说明使用了标准曲线的定量试样液中的检测对象物质的方法,即,计算试样液中的检测对象物质的浓度的方法。图4中表示计算包含在试样液中的目标物质的浓度的方法的工序流程图。本方法如图所示,由使参照电极、辅助电极、电化学测定用电极板接触试样液的接触工序(st1)、在各电极体上扫描或者施加电位测定电流值的电流测定工序(st2)、从上述电流值计算包含在试样液中的目标物质的浓度的计算工序(st3)构成。
[0160] 在本方法中,首先使用标准试样生成标准曲线。在该标准试样中,包括浓度已知的还原型电子介体(在这里假定为亚铁氰化钾)。把该电子介体浓度为已知的标准试样用作为试样液,使用图3表示的电化学测定装置,根据图4表示的工序流程,把还原型电子介体的浓度、由电化学测定装置测定了的反应电流值之间的关系做成曲线。图5表示该曲线的一个例子。
[0161] 如图5所示,此处,假定在还原型的电子介体的浓度是100μM的情况下,反应电流值是10μA,在还原型的电子介体的浓度是300μM的情况下,反应电流值是30μA,在还原型的电子介体的浓度是500μM的情况下,反应电流值是50μA。把这些值在曲线上绘图,做出标准曲线。这样,从浓度已知的标准试样得到标准曲线。
[0162] 接着,使用浓度未知的试样液和图3表示的电化学测定装置,根据图4表示的工序流程得到反映电流值。在这里得到的反映电流值是20μA的情况下,能够从标准曲线知道包含在试样液中的还原型的电子介体的浓度。从该还原型的电子介体的浓度计算包含在试样液(或者曾经包含的)目标物质的量。
[0163] 另外,实际上标准曲线的制作或者目标物质的量的计算等当然也能够全部在计算机上进行。
[0164] [关于参照电极、辅助电极的说明]
[0165] 返回到图3。代替图3中表示的参照电极22和辅助电极23的2个电极,也能够使用1个对极进行测定。但是参照电极22和辅助电极23优选独立地设置。这是因为在成为电位基准的参照电极或者对极中流过电流的期间,在其表面进行电极的反应,如果伴随着反应的进行,电子介体的浓度变化增大,则作为本实施方式的检测装置的基准的电位发生变动,不能够进行正确地测定。
[0166] 由此,优选极大地设定输入阻抗,使得在参照电极22中不流入电流。理想的是,使阻抗的值成为大于等于10的6次方欧姆。在参照电极22中能够使用银/氯化银电极、饱和氯化亚汞电极等。
[0167] 理想的是辅助电极23的表面积大。辅助电极23的理想的表面积大于等于电极集合体21的10倍。其理由是因为在辅助电极23的电极表面的小,不能流过充分电流的情况下,由电化学测定用电极板1得到的电流没有充分流入到控制装置25,不能得到正确的电流值,或者为了流过电流,辅助电极23的电位很大地变动,有时进行水的电分解等不希望的反应。
[0168] 作为辅助电极23,优选使用难以发射电极自身的氧化还原反应或者腐蚀反映的贵金属电极。例如,优选是使黑铂析出到铂线上具有大的电极面积的铂电极。
[0169] 图6表示构成与图3表示的电化学测定装置不同的测定装置的电极板。图6表示的电化学测定用电极板60在实施方式1的电化学测定用电极板1上一体地形成参照电极61以及辅助电极62。参照电极61以及辅助电极62形成在上层40上。即,在实施方式1的电化学测定用电极板1的表面涂敷抗蚀剂,在那里重叠了有参照电极以及对极的图形的图像掩模以后,通过紫外线或者电子线把图形曝光,显影后把图形复制到基板上的抗蚀剂上。
然后,通过溅射、蒸镀、CVD、丝网印刷喷墨印刷等方法形成电极层,然后通过剥离抗蚀剂的剥离法,制作参照电极61、辅助电极62,能够得到把作为作用电极体(一般是氧化电极体和还原电极体,在这里把第1电极体32和第2电极体12合在一起这样称呼)的第2电极体
12以及第1电极体32、参照电极61、辅助电极62一体化了的电极板60。另外,还可以使用金属掩模,形成参照电极61、辅助电极62。这种情况下,为了制作参照电极61,1条作用电极体以外的电极,在其上面电镀成为指示物质的金属、有机氧化还原性高分子,通过电解聚合法、印刷法形成并制作。另外,作为参照电极61上的指示物质,能够举出银、氯化银、聚乙炔二茂铁(po lyvinylferrocene、ポリビニルフエロセン)等。
[0170] 依据电化学测定用电极板60,由于在平板形的同一个电化学测定用电极板60内形成作用电极体、参照电极、对极的3个电极(体),因此使用它们构成的电化学测定装置适于少量的试样或者微量浓度区域中的测定,在生物体试样的分析中非常适宜。
[0171] (实施方式2)
[0172] 图7是模式地表示本实施方式2的电化学测定用电极板70的分解立体图。本实施方式的电化学测定用电极板70在立体图中,与图1表示的实施方式1的电极板相同,但是第2电极12d的形状和配置、第1电极32d的形状和配置不同。以下仅叙述与实施方式1不同的点。
[0173] 在图2表示的实施方式1的电化学测定用电极板10中,上层40中,使第2电极12d露出的上层贯通孔41a是长方形,是比使第1电极32d露出的正四边形的上层贯通孔41b小的结构,而在本实施方式中相反。即,在本实施方式中,使第2电极12d露出的上层贯通孔41a是正四方形,是比使第1电极32d露出的长方形的上层贯通孔41b大的结构。另外,在配置中,在实施方式1中,如图12所示,在1个上层贯通孔41b的周围配置4个上层贯通孔41a,而在本实施方式中,在1个上层贯通孔41a的周围与配置4个上层贯通孔41b。
[0174] 图7中,第1电极32d以及第2电极12d用灰色涂抹表示。如上所述,在本实施方式中,俯视时,与实施方式1交换了第1电极32d和第2电极12d的配置以及形状。
[0175] 本实施方式的电化学测定用电极板70通过具有上述结构,使各第2电极12d的露出面积与其周围的第1电极32d的总和面积相等,能够得到与实施方式1的电化学测定用电极板1同等的效果,在使用本实施方式的电化学测定用电极板70通过电化学法定量试样溶液中的电子介体浓度时,能够根据有效的氧化还原循环,精度良好地定量电子介体浓度。
[0176] (实施方式3)
[0177] 图8是模式地表示实施方式3的电化学测定用电极板80的立体图,图9是其分解立体图。本实施方式的电化学测定用电极板80在各上层贯通孔41a被3分割,与其相对应,基板贯通孔33、第2电极12d也分别被3分割这一点与实施方式1的电化学测定用电极板1不同。另外,在本说明书中,关于上层贯通孔41a、基板贯通孔33,第2电极12d的每一个,把被3分割了的各部分合在一起,作为1个上层贯通孔41a、基板贯通孔33、第2电极12d。
[0178] 图13是表示本实施方式的上层40中的上层贯通孔41a、41b的排列的一部分的俯视图。图13中,为了方便,仅把上层贯通孔41b用灰色表示,与上层贯通孔41a区别。另外,在与最接近上层贯通孔41b的上层贯通孔41a之间加入直线,使得易于确认上层贯通孔41b与上层贯通孔41a的位置关系。在本实施方式中,在1个上层贯通孔41b的周围配置分别被3分割了的4个上层贯通孔41a。在本实施方式中,1个上层贯通孔41b的面积与其周围的上层贯通孔41a的面积总和实质上也相等。
[0179] 返回到图9。上层贯通孔41b使第1电极32d从上层40露出,上层贯通孔41a与同形状的基板贯通孔33一起,使第2电极12d从上层40露出。即,在本实施方式中,在第1电极32d和最接近的第2电极12d中也能够形成电极面积相等的电极对。由此,在本实施方式的电化学测定装置80中,也能够得到与实施方式1的电化学测定用电极板1同等的效果,在使用本实施方式的电化学测定用电极板80通过电化学法定量试样溶液中的电子介休浓度时,通过有效的氧化还原循环,能够精度良好地定量电子介体浓度。
[0180] 与实施方式1和2的关系相同,在本实施方式中,也如图10所示,交换第1电极32b以及第2电极12b的形状以及配置,与此相伴随,可以制作上层贯通孔41a以及41b、基板贯通孔33的形状不同的电化学测定用电极板81。
[0181] 另外,图11表示的电化学测定用电极板82在电化学测定用电极板80上一体地形成参照电极61以及辅助电极62。使用它们构成的电化学测定装置适于少量的试样或者微量浓度区域中的测定,在生物体试样的分析中非常适宜。
[0182] (实施方式4)
[0183] 实施方式4中,上层贯通孔41a、41b的形状以及配置与第1电化学测定用电极板1不同。图14(a)模式地表示了本实施方式的电化学用测定用电极板(未图示)的上层的一部分。本实施方式的电化学测定用电极板在上层40中形成的上层贯通孔41b的形状不是正四边形而是正六边形这一点与实施方式1的电化学测定用电极板1不同。另外,是上层贯通孔41a的一条边的长度与上层贯通孔41b的一条边的长度实质上相同的长方形,在各上层贯通孔41b的周围等间隔地配置6个上层贯通孔41a。
[0184] 图14(b)中记载由1个上层贯通孔41b以及6个上层贯通孔41a构成的电极对。在上层贯通孔41b的周围等间隔地配置6个上层贯通孔411a、412a、413a、414a、415a、416a。
另外,各上层贯通孔41b的面积与配置在周围的6个上层贯通孔41a的面积的总和相等。
即,1个第1电极的面积与配置在其周围的6个第2电极的面积的总和相等。另外,所有第
1电极的面积优选实质上相等,所有第2电极的面积优选实质上相等。
[0185] 在本实施方式中也具有与实施方式1同样的效果。当然,使用实施方式1至3的电化学测定用电极板的制作方法,通过安排电极配置,能够制作本实施方式。
[0186] 以下的实施方式是在第1电极体上或者第2电极体上形成为了调整氧化电极与还原电极的关系而有用的覆盖绝缘体的实施方式。
[0187] (实施方式5)
[0188] 图20是本实施方式的电化学测定用电极板90的立体图。与实施方式1的电化学测定板的不同之点在于在上层贯通孔41b内的第1电极体32上形成覆盖绝缘体42。图21是本实施方式的电化学测定板的分解立体图。上层40上形成的覆盖绝缘体42覆盖从第1电极体32的上层贯通孔41b露出的区域的一部分。由覆盖绝缘体42覆盖了的部分没有与试样液接触,成为电信号传递部分32a,向主干部分32b传递第1电极体32d中的反应电流。
[0189] 其次,说明上层贯通孔41a、41b以及覆盖绝缘体42的形状和面积、配置关系。
[0190] 图22是表示本实施方式的上层40的一部分中的上层贯通孔41a、41b以及覆盖绝缘体42的排列的俯视图。图22中,为了方便,仅是第1电极32d露出的部分用灰色涂抹。上层贯通孔41b的外缘与被复绝缘体42的外缘处于相互相似的形状关系,进而共有中心点。在上层贯通孔41b内,没有由覆盖绝缘体42覆盖的部分使第1电极32d露出。另外,上层贯通孔41a使第2电极体露出。在这里也与实施方式1相同,从上层40露出的第1电极32d的面积与其周边的第2电极12d的面积的总和相等。覆盖绝缘体42为了调节第1电极32d的面积,在第1电极32上形成调节了其大小的部分。形成覆盖绝缘体42的效果具有容易进行用于使处于电极对关系的第1电极32d与其周围的4个第2电极12d的面积的总和一致的图形设计这样的优点。在本实施方式中也具有与实施方式1同样的效果。
[0191] (实施方式6)
[0192] 图23是表示本实施方式的上层40的一部分中的上层贯通孔41a、41b以及被绝缘体42的排列的俯视图。本实施方式的电化学测定用电极板仅在上层贯通孔41b的内侧的第1电极上形成覆盖绝缘体42这一点与实施方式4的电化学测定用电极板不同。依据本实施方式,在难以控制面积的正六边形等多角形中,通过调节覆盖绝缘体的大小,除去实施方式4的效果以外,还有能够容易地进行用于使第1电极与其周围的第2电极的面积的总和一致的图形设计这样的优点。
[0193] 在以上的实施方式中,作为作用电极,表示了形成2个作用电极(一般是氧化电极和还原电极,在这里是第1电极和第2电极)的情况,但本发明并不限于这种情况,还可以是进而形成其它的电极,把作用电极任意组合2个以上使用的结构。使用具有这种结构的电化学测定用电极板在2个电极之间进行氧化还原循环反应,使用其它的电极进行包含在试样液中的妨碍物质的去除反应。具有这种结构的电化学测定用电极板能够去除妨碍物质的电流响应,由于适合于由各种成分组成的试样液的分析,因此在由各种成分构成的生物体试样的分析中非常适宜。
[0194] 另外,有使用与上述实施方式同样结构的电化学测定用电极板,把第1电极体32作为氧化电极体,把第2电极体12作为还原电极体使用的方法、把第2电极体12作为氧化电极体,把第1电极体32作为还原电极体使用的方法。
[0195] 另外,在以上的实施方式中,仅表示了上层贯通孔41b的形状是正四边形,配置在其周围的长方形的上层贯通孔41a的个数是4个的情况(实施方式1),上层贯通孔41a的形状是正四边形,配置在其周围的长方形的上层贯通孔41b的个数是4个的情况(实施方式2),上层贯通孔41b的形状是正四边形,配置在其周围的被3分割了的上层贯通孔41a的个数是4个的情况(实施方式3),上层贯通孔41b的形状是正六边形,配置在其周围的长方形的上层贯通孔41a的个数是6个的情况(实施方式4),上层贯通孔41b的形状是正四边形,在内部包括外缘相似形状的覆盖绝缘体42,配置在其周围的长方形的上层贯通孔41a的个数是4个的情况(实施方式5),以及上层贯通孔41b的形状是正六边形,在内部包括外缘相似形状的覆盖绝缘体42,配置在其周围的长方形的上层贯通孔41a的个数是6个的情况(实施方式6),但是本发明并不限于这些情况,只要各第1电极的面积与配置在其周围的多个第2电极的面积的总和相等,接近的边的距离的每一个都是一定的,则也可以是长方形或者其它的多角形。但是,如果边的数量过多,则由于配置在周围的电极的数量也增多,因此并不理想。由此,优选是正四边形或者正六边形。当然,上述结构也可以交换第1电极与第2电极。另外,如果使用覆盖绝缘层调节电极面极,则容易进行第1电极与第2电极的面积调节。
[0196] 本发明的电化学测定用基板通过使第1电极32d以及第2电极12d接触包括把基质氧化或还原的酶等氧化还原剂以及电子介体的试样液,在第1电极32d和第2电极12d上施加电压,测定在第1电极体32和第2电极体12中流过的电流,能够检测基质,另外,利用其电流值依赖于基质的温度这一点,还能够定量测定基质浓度。
[0197] 实施例
[0198] 以下,制造实施例以及比较例的电化学测定用电极板,进行了包含在试样液中的氧化还原物质的电化学测定。
[0199] (实施例1)
[0200] (实施例1的电极体)
[0201] 作为实施例1,制造了实施方式1的电化学测定用电极板1。另外,上层贯通孔41的个数与图1表示的电化学测定用电极板1不同。图15是表示其制造工序的剖面图。首先,作为下层11用的基板使用在表面上形成有厚度1μm的SiO2膜的厚度0.5mm的硅基板(信越化学工业株式会社制)(图15(a)),与具有第2电极体12的图形的金属掩模一起放入到溅射装置(株式会社アルバツク(ULVAC,Inc)制)内的预定位置,顺序成膜了铬和金。
[0202] 在压力1.3Pa的氩气环境下,把铬溅射10秒钟,把金溅射50秒钟,整体作为130nm的膜厚得到第2电极体12。接着,在第2电极体12的上面使用等粒子CVD装置(株式会社アルバツク(ULVAC,Inc)制)进行SiO2的沉积。作为成膜条件,在硅烷气流量10sccm,N2O气流量200sccm,压力80Pa,功率50W,基板温度300℃的条件下,进行了5分钟沉积的结果,形成430nm的SiO2膜,得到作为绝缘体的基板31,在其上面经过与第2电极体12的图形形成相同的工序,得到了第1电极体32(图15(b))。
[0203] 接着,为了提高基板31与抗蚀剂材料的密合性,通过旋转涂层法涂敷前处理材料(マイクロケム(Microchem)株式会社制:MCC PRIMER 80/20),在110℃下进行了180秒钟烘焙。在其上面涂敷了2~3μm厚的抗蚀剂材料(东京应化工业株式会社制:
TSMR-8900LB)。把抗蚀剂涂敷成膜完毕的基板放入到烘箱中,在100℃,30分钟的条件下进行了预烘焙工序,在120℃,30分钟的条件下进行了主烘焙工序。
[0204] 然后,使用具有基板贯通孔33的图形的铬掩模,由掩模位置对准器(ミカサ株式会社(MIKASA CO.,LTD)制)进行了60秒钟的密合曝光。接着,在显影液中进行25℃、120秒钟的显影,水洗、干燥后,把掩模图形复制到了抗蚀剂上。接着,把其基板用氩铣削装置(株式会社日立ハイテクノロジ一ズ(Hitachi High Technologies):E-3500),以氩气体流量125sccm、压力0.03Pa、束射电流90mA,进行了金然后铬的腐蚀。接着,在反应性等离子腐蚀装置中,在C2F6气体的流量25sccm、压力0.25Pa、150W的条件下,进行了15分钟的SiO2的腐蚀,形成了基板31中的基板贯通孔33的图形(图15(c))。
[0205] 接着,在去除了抗蚀剂以后,在形成了基板贯通孔33的第1电极体32的表面通过旋转涂层法涂敷感光性树脂材料(化药マイクロケム株式会社制:SU-8 2000)使厚度成为1μm,在70℃、30分钟的烘焙以后,使用具有上层贯通孔41a以及41b的排列图形的铬掩模,通过进行60秒钟的密合曝光,把掩模图形复制到树脂材料上。
[0206] 复制了以后,在显影液中进行20℃、300秒钟的显影,水洗、干燥以后,在作为绝缘膜的上层40上形成了使第1电极32d露出的上层贯通孔41b的图形(40×40μm,2000个)以及使第2电极12d露出的上层贯通孔41a的图形(40×10μm,4090个)(图15(d))。另外,把最接近的上层贯通孔41a与41b的间隔(最接近的边的间隔)做成5μm。最后,电化学测定用电极板使用UV灰化(UV Asher、UV アツシヤ一)装置,去除了树脂材料的残渣。
[0207] 其结果,得到了有多个第1电极32d和多个第2电极12d的本实施例的电化学测2
定用电极板1。在电化学测定用电极板1上,第1电极32d的面积的总和是3.2mm。
[0208] (比较例1)
[0209] (比较例1的电极体)
[0210] 作为比较例1,制造了具有图18表示的现有构造的电化学测定用电极板。图16是表示比较例1的电化学测定用电极板的制造工序的剖面图。作为图16(a)表示的基板201,使用了在表面形成1μm的SiO2膜的厚度0.5mm的硅基板(信越化学工业株式会社制)。把其放入到在实施例1中使用过的溅射装置内的预定位置,在设置了金属掩模以后,顺序成膜了铬以及金。在压力1.3Pa的氩气环境下,把铬溅射了10秒钟,把金溅射了50秒钟,通过整体成为130nm的膜厚,得到了下部电极体202(图16(b))。
[0211] 接着,卸下金属掩模,在下部电极体202的上层使用在实施例1中使用的等离子CVD装置,沉积了作为金属膜的SiO2。作为成膜条件,在硅烷气体流量10sccm,N2O气体流量200sccm,压力80Pa,功率50W,基板温度300℃的条件下,进行5分钟的沉积。其结果,形成了430nm的SiO2膜,得到了绝缘层207(图16的(c))。在其上面安装另外的金属掩模,使用与下部电极体202的形成相同的条件成膜了130nm的铬-铂。由此,形成了表面电极204(图16(d))。
[0212] 接着,在其基板上涂敷了2~3μm厚度的在实施例1中使用过的抗蚀剂材料。把该抗蚀剂涂敷成膜完毕的基板放入到烘箱中,以100℃、30分钟进行预烘焙工序。然后,使用铬掩模,由在实施例1中使用过的掩模位置对准器进行了60秒钟的密合曝光。接着,在显影液中进行25℃、120秒钟的显影,水洗、干燥以后,把掩模图形复制到抗蚀剂208上(图15(e))。在120℃、30分钟的条件下进行了主烘焙工序。
[0213] 如前面那样制作的具有掩模图形的抗蚀剂208的基板放入到在实施例1中使用过的氩铣削装置中,在氩气体的流量12sccm,压力0.03Pa,束射电流90mA的条件下,顺序腐蚀了金、铬以后,放入到反应性离子腐蚀装置中,在C2F6气体的流量25sccm、压力0.25Pa,150W的条件下进行了15分钟SiO2的腐蚀。其结果,得到在底面露出了下部电极体202的一部分(以下,记为氧化电极202a)的具有多个微细孔205的电极板。
[0214] 所形成的微细孔205的直径是20μm,形成的数量是10000个,中心间的距离是2 2
110μm,表面电极204的形成面积是169mm。其中,下部电极202a的面积的总和是3.1mm,
2
减去该值以后的165.9mm 成为在表面电极204中发生电极反应的部位,表面电极204的面积与下部电极202a的面积相比较大到53倍以上。通过以上的工序,得到了比较例1的电化学测定用电极板。
[0215] <使用了实施例1以及比较例1的电化学测定用电极板的电化学测定>
[0216] 构成使用了在实施例1中制作的电化学测定用电极板和在比较例1中制作的电化学测定用电极板的电化学测定装置,测定了电子介体的响应电流。
[0217] 在这样的电化学测定装置中,构成为使第1电极32d和第2电极12d(在比较例1中,是氧化电极202a和表面电极204)露出试样液。在本实施例中,把第1电极32d用作为氧化电极,把第2电极12d用作为还原电极。
[0218] 试样液使用把1mmol/l的亚铁氰化钾、1mmol/l的铁氰化钾的总计2mmol/l作为电子介体,溶解到50mmol/l的支持电解质(氯化钾)的水溶液。参照电极使用了银/氯化银电极(BAS株式会社制)。在辅助电极中使用了铂线。
[0219] 经过引线,把实施例1的电化学测定用电极板连接到双恒电位仪(バイポテンシオスタツト、Bi-Potentiostat)(CH instruments社制:ALS740A),把第1电极32d的电位设定为相对于参照电极从0到+0.7V,把第2电极12d的电位设定为0V,把电位的扫描速度设定为100mV/s,通过循环伏安法(cyclic voltammetry、サイクリツクボルタンメトリ一)计测了在第1电极32d中流过的反应电流。
[0220] 另外,使比较例1的电化学测定用电极板同样经过引线连接到双恒电位仪(バイポテンシオスタツト),对于作为参照电极使用的银/氯化银电极,以扫描速度100mV/s把氧化电极202a的电位从0到+0.7V进行扫描。这时,表面电极204的电位对于参照电极设定为0V。其结果,在比较例1的电化学测定用电极板中,在氧化电极202a的电位为+0.6到+0.7V中,观测了伴随着亚铁氰化钾的氧化反应的恒稳电流,+0.7V中的值如表1所示,是22.5μA,在下述公式中表示亚铁氰化钾的氧化反应式。
[0221] [Fe(CN)6]-4→[Fe(CN)6]-3+e-(公式1)
[0222] 另一方面,在实施例1的电化学测定用电极板中,也在第1电极32d的电位为+0.6到+0.7V的期间,观测了伴随着亚铁氰化钾的氧化反应的恒稳电流。+0.7V中的值如表1所示,是32.3μA。
[0223] [表1]
[0224]恒稳状态电流值(μA)
实施例1 32.3
比较例1 22.5
[0225] 观测到比比较例1的电化学测定用电极板中的值还大的电流值认为如果结合图19的自感应氧化还原循环的说明图进行考虑,则在比较例1中,在表面电极204(宏电极
222)中氧化了的亚铁氰化钾在实施例1中由于在第1电极32d(微小电极221)中被有效地氧化,因此氧化反应的电流值增加。这样,在本实施例的电化学测定用电极板中,通过在基板上大量排列具有同一面积的微小电极对,认为各个电极对中反应面积一致,在2个电极之间进行有效的氧化还原循环反应。
[0226] 另外,对于比较例1的氧化电极202a以及实施例1的第1电极32d,评价了把电位急速地扫描到自然电位+0.4V得到的氧化电流的时间依赖性。这时,比较例1的表面电极204以及实施例1的第2电极12d的电位保持为0V。其结果,相对于比较例1的氧化电极202a的电流为了达到恒稳状态如表2所示需要26秒,实施例1的第1电极32d如图2所示,以6秒达到恒稳状态。考虑这是因为相对于比较例1的氧化电极202a需要表面电极204达到恒稳状态的时间,实施例1的第1电极32d在最接近的4个第2电极12d之间立即达到了恒稳状态。
[0227] [表2]
[0228]达到恒稳状态需要的时间(s)
实施例1 6
比较例1 26
[0229] 从以上的结果可知,在实施例1的电化学测定用电极板中,能够迅速而且灵敏度良好地检测试样液中的目标物质。另外,通过事先做成标准曲线,还能够定量试样液中的目标物质的浓度。
[0230] (实施例2)
[0231] (实施例2的电化学测定用电极板)
[0232] 在实施例2中,制作了在实施方式2中表示的电化学测定用电极板70。图17表示实施例2的电化学测定用电极板的制造工序的剖面图。与在图15中表示的实施例1的电化学测定用电极板的制造工序的差别仅在于在图17(c)的工序中,根据基板贯通孔33的形状不同,所使用的掩模的图形不同这一点。
[0233] 在图17(c)的工序中,形成基板贯通孔33的排列图形(40×40μm,2000个),在图17(d)的工序中,在上层40中形成了上层贯通孔41a的排列图形(40×40μm,2000个)以及41b的排列图形(40×10μm,4090个)。在作为绝缘层的上层40中形成了使第2电极
12d露出的上层贯通孔41a的图形(40×40μm,2000个)以及使第1电极32d露出的上层贯通孔41b的图形。上层贯通孔41a与41b的间隔为5μm。在本实施例中,第2电极12d
2
的面积总和是3.2mm。通过以上的工序,得到了实施例2的电化学测定用电极板。
[0234] (实施例3)
[0235] (实施例3的电化学测定用电极板)
[0236] 在实施例3中,制作了在实施方式3中表示的电化学测定用电极板80。制造工序与图15表示的实施例1的工序几乎相同。本实施例与实施例1在制造中使用的掩模的排列图形不同。在图15(c)的工序中使用的掩模具有基板贯通孔33(8×8μm,2130个)的排列图形,在图15(d)的工序中使用的掩模具有上层贯通孔41a(8×8μm,2130个)以及41b(96×96μm,300个)的排列图形。这些掩模的图形如图8中表示的那样,在一个上层贯通孔41b的一条边上配置被3分割了的上层贯通孔41a,在一个上层贯通孔41b的周围,配置分别被3分割了的4个上层贯通孔41a。另外,上层贯通孔41a与41b的间隔是10μm,最接近的上层贯通孔41b之间的间隔为5μm。在本实施例中,第1电极32d的面积总和是
2
2.8mm。通过以上的工序,得到了实施例3的电化学测定用电极板。
[0237] (比较例2)
[0238] (比较例2的电化学测定用电极板)
[0239] 在比较例2中,制作各第1电极32d的面积大到超过10000μm2的电极板。本比较2
例的各第1电极32d的面积是57600μm。图15是表示实施例3的电化学测定用电极板的制造工序的剖面图。本实施例的制造工序与实施例3的工序相同,使用了在图15(c)的工序中使用的具有基板贯通孔33(20×20μm,2130个)的排列图形的掩模、具有图15(d)的工序中的上层贯通孔41a(20×20μm,2130个)以及41b(240×240μm,50个)的排列图形的掩模这一点不同。这些掩模的图形如在图8中表示的那样,在1个上层贯通孔41b的一条边上配置被3分割了的上层贯通孔41b,在1个上层贯通孔41b的周围,配置分别被3分割了的4个上层贯通孔41a。另外,上层贯通孔41a与41b的间隔是10μm,最接近的上层
2
贯通孔41b之间的间隔为5μm。在本比较例中,第1电极32d的形成面积是2.9mm。通过以上的工序,得到了比较例2的电化学测定用电极板。
[0240] (实施例4)
[0241] (实施例4的电化学测定用电极板)
[0242] 在实施例4中,制造了实施方式6的电化学测定用电极板。其特征是俯视时,上层贯通孔41b的形状是正六边形,在其内侧具有外缘相似形状的覆盖绝缘体。
[0243] 图24是表示本实施例的电化学测定用电极板的制造工序的剖面图。本实施例的制造工序与实施例1的工序的不同点在于在图24(d)表示的上层40的形成工序中,使用有上层贯通孔41a、41b以及覆盖绝缘体42的图形的铬掩模,把其图形复制到感光性树脂材料上。另外,关于制造方法,在实施例1中,在基板31的形成中使用了等离子CVD法,而替代该方法,通过溅射法形成,仅在这一点与实施例1的制造方法不同。以下仅说明与实施例1的制造工序不同之点。
[0244] 把形成了第2电极体12的基板安装到溅射装置(株式会社アルバツク(ULVAC,Inc)制)内的预定位置,在氧气流量5sccm,氩气流量5sccm,压力0.3Pa,功率500W,阳极电流0.35A,阳极电压2.21kV,靶与基板间的距离为50mm的条件下,进行了25分钟的沉积,形成了基板31。其以后经过与实施例1相同的工序,在形成了第1电极体上32的基板表面上涂敷了感光性树脂材料。
[0245] 接着,把在图23中表示的上层贯通孔41以及覆盖绝缘体42的图形复制到感光性树脂材料上,经过形成上层贯通孔41以及覆盖绝缘体42的工序,得到了本实施例的电化学测定用电极板。
[0246] 在上层40中的图形成为上层贯通孔41b(正六边形的一条边为40μm,1200个)、上层贯通孔41a(40×10μm,3041个)以及覆盖绝缘体42的图形(正六边形的一条边为30μm,1200个)。上层贯通孔41b形成为最接近6个上层贯通孔41a,其最接近的边的间隔
2
为5μm。在本实施例中,第1电极32d的面积总和是2.9mm。
[0247] 通过以上的工序,得到了实施例4的电化学测定用电极板。
[0248] <使用了实施例2至4以及比较例2电化学测定用电极板的电化学测定装置>[0249] 接着,在与实施例1的测定相同的条件下,构成使用了实施例2至4以及比较例2的电化学测定用电极板的电化学测定装置,进行了亚铁氰化钾的氧化电流的测定。其结果,在与实施例1的测定成膜方法相同的条件下,在电化学测定装置中观测到了表3表示的恒稳状态电流。
[0250] [表3]
[0251]恒稳状态电流值(μA)
实施例2 30.2
实施例3 29.3
比较例2 23.1
实施例4 27.0
[0252] 用实施例2至4的电化学测定装置观测到的亚铁氰化钾的氧化反应的恒稳电流是比比较例2的恒稳电流还大的值。
[0253] 另外,如表4所示,实施例2至4的第1电极32d上的反应达到恒稳状态的时间也比比较例2的时间短。这一点推测为由于第1电极32d的面积大,在远离第2电极12d的部分中进行了并不期待的反应。
[0254] [表4]
[0255]达到恒稳状态需要的时间恒(s)
实施例2 8
实施例3 9
比较例2 18
实施例4 2
[0256] 从以上的结果可知,在实施例2至4的电化学测定用电极板中,也与实施例1的电化学测定用电极板相同,能够迅速而且灵敏度良好地检测试样液中的目标物质。另外,通过事先做成标准曲线,还能够定量试样液中的目标物质浓度。
[0257] 根据上述说明,对于从业人员来讲应该知道本发明的众多改良或者其它的实施方式。从而,上述说明应该解释为仅作为例示,仅是在向从业人员示教执行本发明的最佳形态的目的下提供的。不脱离本发明的精神,能够实质地改变其构造以及/或者功能的详情。
[0258] 产业上的可用性
[0259] 本发明的检测或者定量包含在试样液中的目标物质的方法能够在定量微量包含在蔗糖、葡萄糖等生物体试样中的物质的方法中利用。另外,能够在定量微量包含在饮用水等中的有害成分浓度的方法中利用。
[0260] 另外,本发明的电化学测定用电极板还能够在构成电化学传感器、液体彩谱的检测器的电化学测定装置中利用。